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Super-resolution

Super-resolution techniques are concerned with recovering fine details from coarse
information.

There are two different categories of super-resolution:

spectral estimation, single-snapshot, optical, diffraction,

spatial interpolation, multiple-snapshot, geometrical, image-processing

Applications include:

medical imaging

microscopy

astronomy

line spectral estimation

direction of arrival estimation

neuroscience

geophysics
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Rayleigh length

The Rayleigh length of an imaging system as the minimum separation between two
point sources that the system can resolve.
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Existing super-resolution papers

1 Point sources on R with continuous measurements
Donoho 1992
Demanent and Nguyen 2014

2 Well-separated point sources on Td and optimization methods
Candès and Fernandez-Granda 2013, 2014
Tang, Bhaskar, Shah, and Recht 2013, 2014
L. 2017

3 Well-separated point sources on Td and greedy methods
Fannjiang and Liao 2012
Duarte and Baraniuk 2013

4 Well-separated point sources on T and other methods
MUSIC: Liao and Fannjiang 2013
Matrix pencil method: Moitra 2015

5 Not well-separated point sources on T
Morgenshtern and Candès 2016
Denoyelle, Duval and Peyré 2016
L. and Liao 2017

6 Curves on Td

Ongie and Jacob 2016
Benedetto and L. 2016
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Background

Definition (Rayleigh index)

For any discrete set T ⊆ R, the Rayleigh index of T is the smallest number R∗(T) such
that any interval of length R contains at most R elements of T,

R∗(T) = inf
{

R : sup
a∈R

#(T ∩ [a, a + R)) ≤ R
}
.

Definition (Sparse clumps)

Let S(N,R) be the set of all measures µ ∈ M(R) supported in the lattice {n/N}n∈Z and
has support with Rayleigh index at most R.
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Background

We are given the bandwidth Ω > 0 and noise level δ > 0, and observe the noisy
low-frequency Fourier transform of µ ∈ S(N,R),

y(ω) =

∫
R

e−iωt dµ(t) + η(ω) for all |ω| ≤ Ω,

where ‖η‖L2(−Ω,Ω) ≤ δ.

Definition (Min-max error for sparse clumps)

The min-max recovery error for the sparse clumps model is

E(N,R,Ω, δ) = inf
µ̃(y,N,Ω,R,δ)∈S(N,R)

sup
µ∈S(N,R)

sup
‖η‖L2(−Ω,Ω)

≤δ

(∑
n∈Z
|µ̃(n/N)−µ(n/N)|2

)1/2
.
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Background

Theorem (Donoho, 1992)

If N and Ω are sufficiently large, then for all R and δ, there exist A,B > 0 depending
only on Ω,R such that

AN2R−1δ ≤ E(N,R,Ω, δ) ≤ BN2R+1δ.

Donoho did not obtain the true dependence of E(N,R,Ω, δ) on N, and in that
same paper, he posed the problem of finding the true dependence. My opinion is
that the sharp upper bound is

E(N,R,Ω, δ) ≤ BN2R−1δ.

The theory of super-resolution was revived about 5 years ago mainly due to a
publication of Candès and Fernandez-Granda. Most recent papers focus on
measures on Td not Rd.
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Discrete model

Suppose there is a collection of S point sources located on a grid,

µ =

N−1∑
n=0

xnδ n
N

where x ∈ CN
S .

We observe noisy low frequency Fourier coefficients,

ym =

∫
T

e−2πimt dµ(t) + zm, for 0 ≤ m ≤ M − 1,

where z is some unknown noise.

Important physical quantities:

Rayleigh length 1/M

Grid width 1/N

Super-resolution factor N/M
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Failure of compressed sensing

The measurements can be written as the linear system

y = Φx + z, where Φm,n = e−2πimn/N .

Assuming that ‖z‖ < δ, we could try compressed sensing techniques such as

min
x̃∈CN

‖x̃‖1 such that ‖Φx̃− y‖ ≤ δ.

When N � M, the measurement matrix Φ ∈ CM×N fails to satisfy the conditions for
standard compressed sensing theory, such as RIP and incoherence.

Figure : Sensing matrix for compressed sensing (left) and super-resolution (right)
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Min-max error

Definition (Min-max error)

The min-max error for the discrete model is

E(M,N, S, δ) = inf
x̃(y,M,N,S,δ)∈CN

y=Φx+z

sup
x∈CN

S

sup
z∈CM

‖z‖≤δ

‖x̃− x‖.

Here, the infimum is taken over all x̃ depending on the known information, M,N, S, δ
and y = Φx + z, and in particular, x̃ is selected independently of the unknown
information x and z.

The min-max error is method agnostic: If xalg = xalg(y,M,N, S, δ) is chosen
according to some algorithm, then necessarily

sup
x∈CN

S

sup
z∈CM

‖z‖≤δ

‖xalg − x‖ ≥ E(M,N, S, δ).

The min-max error is a strong way of measuring the performance of an algorithm
because the supremum is taken over all possible S-sparse vectors and δ bounded
noise.
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Sharp estimate on the min-max error

Corollary (L. and Liao, 2017)

For any integer S > 0, there exist A,B > 0 depending only on S such that for all
sufficiently large integers M and N,

A
1
√

M

( N
M

)2S−1
δ ≤ E(M,N, S, δ) ≤ B

1
√

M

( N
M

)2S−1
δ.

Implications:

As expected, the super-resolution factor N/M governs the difficulty of recovering
point sources at fine scales.

Noise level δ needs to be small in comparison to (N/M)2S−1 for the min-max error
to be reasonably small.

Perhaps “uniform” super-resolution recovery is hopeless? Maybe the best we can
do is a theory that holds for a small subset of vectors.
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Min-max error and smallest singular value

Definition (S-lower restricted isometry constant)

Let S ≤ M ≤ N. The S-lower restricted isometry constant is

Θ(M,N, S) = min
|T|=S

σmin(ΦT),

where ΦT ∈ CM×|T| is the restriction of Φ to the columns indexed by T and σmin(ΦT) is
its smallest singular value.

Proposition (Demanet and Nguyen, 2015)

If 2S ≤ M ≤ N and δ > 0, then

δ

2Θ(M,N, 2S)
≤ E(M,N, S, δ) ≤

2δ
Θ(M,N, 2S)

.
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Sharp estimate on lower restricted isometry constant

Theorem (L. and Liao, 2017)

For any integer S > 0, there exist constants A,B > 0 depending only on S such that for
all sufficiently large integers M and N,

A
√

M
(M

N

)S−1
≤ Θ(M,N, S) ≤ B

√
M
(M

N

)S−1
.

About the numerology:

Each column of Φ has Euclidean norm
√

M, which explains the
√

M term.

In view of the connection between imaging, it makes sense from a physical point
of view that Θ only depends on the super-resolution factor N/M.

The singular values of ΦT and ΦT̃ are identical whenever T̃ = T + a mod N and
a ∈ Z, so WLOG 0 ∈ T. Even though |T| = S one of its columns is already fixed.
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Lower bound

Definition (Polynomial interpolation space)

Let S ≤ M ≤ N. For each v ∈ CN
S , let P(M, v) be the set of trigonometric polynomials f

such that supp(̂f ) ⊆ {0, 1, . . . ,M − 1} and f (n/N) = vn for all n ∈ supp(v).

Proposition: Duality (L. and Liao, 2017)

Let S ≤ M ≤ N. For any support set T of cardinality S,

1
σmin(ΦT)

= sup
‖v‖=1

supp(v)⊆T

inf
f∈P(M,v)

‖f‖L2 .
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Lower bound

Proposition: Sparse Lagrange polynomials (L. and Liao, 2017)

Fix any integer S > 0. There exists C > 0 depending only on S such that for all
sufficiently large M and N and any support set T with cardinality S, there exists a family
of trigonometric polynomials {Hn}n∈T such that for all n ∈ T,

Hn( m
N ) = δm,n for all m ∈ T,

supp(Ĥn) ⊆ {0, 1, . . . ,M − 1},

‖Hn‖L2(T) ≤ C
1
√

M

( N
M

)S−1
.

We call {Hn}n∈T the sparse Lagrange polynomials adapted to T.

The Lagrange polynomials {Ln}n∈T also satisfy the first and second properties, but it
turns out that without any additional assumptions on T, the best one can do is

‖Ln‖L2(T) ≤ CSNS−1.
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Lower bound
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Lower bound

Fix any support set T with cardinality S and let {Hn}n∈T be the sparse Lagrange
polynomials adapted to T. For any unit norm v ∈ CN supported in T, define the
interpolating polynomial

H(v) =
∑
n∈T

vnHn ∈ P(M, v).

By the duality principle and Cauchy-Schwarz,

1
σmin(ΦT)

≤ sup
‖v‖=1

supp(v)⊆T

‖H(v)‖L2(T) ≤
(∑

n∈T

‖Hn‖2
L2(T)

)1/2
≤ C

√
S
M

( N
M

)S−1
.

This inequality holds for all support sets with cardinality S, which yields the desired
lower bound for Θ(M,N, S).
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Upper bound

We first write

Θ(M,N, S) = min
|T|=S

σmin(ΦT) = min
|T|=S

inf
u 6=0

supp(u)⊆T

‖Φu‖
‖u‖

.

We are looking for a u ∈ CN
S such that û is small on {0, 1, . . . ,M − 1}.

If v is well-localized bump near the origin, then an appropriate modulation of v has
Fourier transform that is small near the origin.

Consider the vector (Donoho 1992),

un =

{
(−1)n

(S−1
n

)
if n = 0, 1, . . . , S− 1,

0 otherwise.

Under the assumptions of the theorem,

Θ(M,N, S) ≤
‖Φu‖
‖u‖

≤ B
√

M
(M

N

)S−1
.
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Conclusions about the discrete problem

Summary:

Proved a sharp estimate on the lower restricted isometry constant and min-max
recovery error.

The noise needs to be extremely small in order to recover arbitrary sparse vectors.

Constructed a new family of interpolating trigonometric polynomials.

Future work:

Do any of the current super-resolution algorithms achieve the min-max error?

What is the exact dependence of Θ(M,N, S) on S?

What about arbitrary Vandermonde matrices with nodes on the circle?

What about weaker ways of measuring the recovery rate, say probabilistic
models?
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Continuous model

Let µ ∈ M(Td). Cases of interest:

“Off-the-grid” point sources: µ =
∑N

n=1 anδxn

“Cartoon-like” images: µ =
∑N

n=1 anσn, where σn is a surface measure

Let Λ ⊆ Zd be a finite set. Cases of interest:

Uniform sampling: Λ = {−M, . . . ,M}d for some M > 0

Non-uniform sampling: no assumptions on Λ beyond finiteness

Suppose we observe

F(m) = µ̂(m) =

∫
Td

e−2πim·x dµ(x), for all m ∈ Λ.
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Background

Question (Exact recovery for measures)

What kinds of µ can we recover from the spectral data F on Λ?

Heuristic: If µ is “not complicated”, then we expect total variation minimization to work.

Definition (TV-min)

Given F on a finite set Λ ⊆ Zd, the total variation minimization problem is

inf ‖ν‖TV such that ν ∈ M(Td) and F(m) = ν̂(m) for all m ∈ Λ.

Remark: The pre-dual of TV-min can be rewritten as a semi-definite program. The
latter can be numerically solved in polynomial time and gives information about the
support of the solutions.
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Background

Theorem (Candès and Fernandez-Granda, 2014)

There exists a constant C > 0 depending only on the dimension d, such that all
sufficiently large integers M > 0, the following holds. Let Λ = {−M, . . . ,M}d and
µ ∈ M(Td) be a discrete measure such that for any distinct x, y ∈ supp(µ), we have

sup
1≤j≤d

|xj − yj|T ≥
C
M
.

If F(m) = µ̂(m) for all m ∈ Λ, then µ is the unique solution to TV-min.

The measure µ can be exactly recovered without any prior assumptions on its
support!

The current best result for the implicit constant for d = 1 is C = 1.26, established
by Fernandez-Granda in 2016.

In d = 1, the Rayleigh length for this model is O(1/M) but this result only applies
to discrete measures with separation O(1/M)...
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Background

Questions

If #Λ = O(M), can one recover information at scales� 1/M? What happens if there
is no separation assumption?

Recall the well-known dual characterization of solutions to TV-min.

Proposition: Duality

Let µ ∈ M(Td), Λ ⊆ Zd be a finite set, and F(m) = µ̂(m) for all m ∈ Λ. Then µ is a
solution to TV-min if and only if there exists a ϕ ∈ C∞(Td) such that

supp(ϕ̂) ⊆ Λ

‖ϕ‖L∞(Td) ≤ 1

ϕ = sign(µ) µ-a.e.

Weilin Li On the recovery of measures without separation conditions
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Beurling super-resolution

Beurling studied TV-min for µ ∈ M(R) instead of M(Td). He observed that there is a
“uniform support” property built into TV-min for the problem on R. The same principle
holds for Td.

Proposition: Uniform support (Benedetto and L., 2016)

Given F on the finite set Λ ⊆ Zd, let ε > 0 be the minimum value attained in TV-min.
There exists a ϕ ∈ C∞(Td) such that

supp(ϕ̂) ⊆ Λ

‖ϕ‖L∞ ≤ 1

|
∑

m∈Λ ϕ̂(m)F(m)| = ε

all solutions to TV-min are supported in {x ∈ Td : |ϕ(x)| = 1}.

Weilin Li On the recovery of measures without separation conditions
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Beurling super-resolution

Theorem (Bendetto and L., 2016)

Given F on the finite set Λ ⊆ Zd, let ε > 0 be the minimum value attained in the TV-min
problem and let

Γ = {m ∈ Λ: |F(m)| = ε}.
1 Suppose Γ = ∅. Then, there exists a closed set S of d-dimensional Lebesgue

measure zero such that each solution to TV-min is a singular measure supported
in S.

2 Suppose #Γ ≥ 2. For each distinct pair m, n ∈ Γ, define αm,n ∈ R/Z by
e2πiαm,n = F(m)/F(n). Define the closed set,

S =
⋂

m,n∈Γ
m 6=n

{x ∈ Td : x · (m− n) + αm,n ∈ Z},

which is an intersection of
(#Γ

2

)
periodic hyperplanes. Then, each solution to

TV-min is a singular measure supported in S.
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Beurling super-resolution

Figure : An illustration of the second statement in the theorem. The hyperplanes are represented
by the dashed lines. The vectors p = (1/4, 3/8) and q = (−1/4, 1/8) are normal to the
hyperplanes. All solutions to TV-min are supported in S, which is represented by the black dots.
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Example: #Γ ≥ 2

This example shows that the second statement of the theorem is optimal, and also
illustrates the importance of geometry when working in higher dimensions.

Suppose F(m) = µ̂(m) for all m ∈ Λ, where µ = δ(0,0) + δ(1/2,1/2) and
Λ = {−1, 0, 1}2 \ {(1,−1), (−1, 1)}.
Some calculations show that ε = 2 and Γ = {(−1,−1), (0, 0), (1, 1)}.
According to the theorem, every solution is supported in the set,

S = {x ∈ T2 : x1 + x2 = 1}.

Let σS be the surface measure of the Borel set S. We readily verify that
√

2σS is
also a solution.

For any a ∈ R and any integer N ≥ 2, the discrete measure

2
N

N−1∑
n=0

δ(
a+ n

N ,1−a− n
N

)
is also a solution.
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Example: #Γ = 1

We cannot say anything about the case #Γ = 1 because it is associated with
pathological behaviors. It is possible that there exist uncountably many discrete and
absolutely continuous solutions to TV-min.

Suppose F(m) = µ̂(m) for m ∈ Λ, where µ = δ0 + δ1/2 and Λ = {−1, 0, 1}.
Some calculations show that ε = 2 and Γ = {0}.

For any a ∈ T and any integer N ≥ 2, the discrete measure 2
N

∑N−1
n=0 δa+ n

N
is also

a solution.

For any integer N ≥ 2 and 0 < a ≤ (2N + 2)/(3N + 1), define the sequence
{an}n∈Z, where

an =


2 if n = 0,

a
(

1− |n|
N+1

)
if 2 ≤ |n| ≤ N,

0 otherwise.

The non-negative real-valued function

f (x) = 2 + 2
N∑

n=2

an cos(2πnx)

is a positive absolutely continuous solution.
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Back to minimum separation

In general, some separation assumption is necessary in order to recover a discrete
measure using TV-min.

Let Λ ⊆ Z be any finite set.

For any 0 < a < 1/2, let µa = δ0 − δa. Note that ‖µa‖TV = 2.

Suppose F(m) = µ̂a(m) for all m ∈ Λ.

Let νa be the absolutely continuous measure,

νa(x) =
∑
m∈Λ

µ̂a(m)e2πimx.

By construction, ν̂a(m) = µ̂a(m) for all m ∈ Λ. In the limit a→ 0,

‖νa‖TV =

∫
Td

∣∣∣ ∑
m∈Λ

µ̂a(m)e2πimx
∣∣∣ dx→ 0.

By taking a sufficiently small, we have ‖νa‖TV < ‖µa‖TV, so µa is not a solution to
TV-min.
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Conclusions

Summary:

Incorporated Beurling’s ideas in the development of a new theory of
super-resolution for general measures.

Constructed specific examples to show that the theorem cannot be improved
without additional assumptions on F or Λ.

Obtained a better understanding of the capabilities of the TV-min approach.

Future work:

What about the super-resolution of singular continuous measures using other
recovery techniques, such as subspace methods?

Is it possible to extend this approach to the noise case? What is a natural way to
define the error for this setting?
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