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Introduction

A/D Conversion for Signals

Theorem (Classical Sampling Theorem)

Givenf e PW_1/21/9, i-e., f, T € L3(R), and supp(f)  [-1/2,1/2]. Then
for any g satisfying

@ g(w)=1o0n[-1/2,1/2]
@ g(w)=0for|w| >1/2+¢,
andforany T € (0,1 —2¢),t € R,
f(ty=T> f(nT)g(t—nT) (1)
nez

where the convergence is both uniform on compact sets and in L.

Remark

f has a continuous representative, so it makes sense to -
evaluate f at points.
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Introduction

Frequency Domain Plot for f and g

Figure: Black: Signal f, Red: Reconstruction Kernel g

@ In particular, it is only necessary to store {f(nT)} ez to
reconstruct f.

@ Computers cannot store real numbers, so instead  omer wiener cener
{Gn}nez C < is considered where «f is a finite subset of R.
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Introduction

Pulse Coding Modulation (PCM) Quantization

Naive Approach: Pulse Coding Modulation (PCM)
Given a finite alphabet &7 C R, define Q: R — o/ by

Q(x) = argmin |x — q| (2)
qess

For a bandlimited function f € PW_4 2 1 2, its reconstructed
function via PCM will be

f(ty=T> _Q(f(nT))g(t — nT) (3)

nez

In practice, mid-rise uniform quantizer is often used. That is,

d:{(k+1/2)5k:—N ,,,, N_1} (4) ot
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Pulse Coding Modulation (PCM) Quantization

Reconstruction Error Estimate of PCM

For the mid-rise uniform quantizer, the reconstruction error is

#(t) — (1) = T\Z( nT)))g(r—nTn

neZ

<5-TY |g(t—nT) (5)

nez

Cy, 7 — |lgllt @as T — 0T, so oversampling doesn’t improve the
reconstruction significantly.

Zenter
Applications



Signal Quantization

Introduction

Pulse Coding Modulation (PCM) Quantization

Caveat of PCM: Imperfect Quantizers

Consider the following imperfect base quantizer

0 if X<f—e
Qi(x)=4 1 if x>3+e (6)
Oor1 if XG(%—E,%—}—&)

For x € (0,1),Let

k
Q
QF(x) = ;(,,X) (7)
n=1
where Qu(x) = Q; (2" "(x — 2;1 QZ(SX)))-

Norbert Wlener Center
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Pulse Coding Modulation (PCM) Quantization

07

Approximation with Imperfect Quantizer
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Figure: lllustration of Imperfect Quantization

For x € (% =% % +€), |@*(x) — x| > € in worst case scenario,
and we cannot improve such issue by adding more bits.

Approximation Level

Center
plications
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Alternative Scheme: YA and Noise Shaping

Alternative Option: XA Quantization

Introduce auxiliary variable {un},cz and the recursive equation
Untt1 = Up + f(NT) — gn (8)

where g, = Q(up + f(nT)) for each n.

Proposition (Uniform Boundedness of {up})

With the choice of mid-rise uniform quantizer

o ={(k+1/2)0: k=—=N,...,N—1}, ||u]|oo < 0 if
sup |f(nT)| < (N —1)0.

We call such scheme a stable XA quantization scheme.

Norbelt Wlener Center
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Alternative Scheme: YA and Noise Shaping

Reconstruction Error for “A Quantization

Consider the reconstructed signal
f(ty=T> ang(t—nT) (9)
nez
Then the reconstruction error is

|f(t) = F(t)| = IT > _(f(nT) — gn)g(t — nT)|

nez
1T S (tnet — gt — T))
nez
=|T> un(g(t—nT)—g(t— (n—1)T))| (10)
nez
_|TZun/ g'(t — u) du
neZ
< T”U”oo”g |+ =0 asT—0 NorbertW1enerCenter
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Alternative Scheme: YA and Noise Shaping

Robustness of XA Against Imperfect Quantizer

@ For A quantization, the scheme is

Unt1 = Upn+f(NT) — qn (11)

@ Imperfect quantizer Q gives a larger sup-norm for {up}. In
particular, it now changes to ||ul|o < 0 + €.

@ However, the scheme can still be stable, and the
reconstruction error is still

If = Flloo < Tlulloollgll1 (12)

Norbert Wlener Center
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Alternative Scheme: YA and Noise Shaping

r-th Order XA Quantization
It is now a natural step to consider the following scheme:
y—q=A"u (13)

Existence of a stable scheme of such kind is proven in [6,
Daubechies & DeVore (2003)].

Proposition (Error decay for high order £ A)

Let f and f as before, except that {q,} now comes from (13).
Suppose the kernel g € C', then

If = Flloo < T l|ulloollg™loo (14)

Again, both ||ul|« and ||g\"||« are independent of sampling
period T.
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Alternative Scheme: YA and Noise Shaping

Noise Shaping Feature of XA Quantization

o |

i‘“?f‘«W* b w"""MMW e HW' "

d frequer v(vs/ 91

Figure: Classical noise shaping via XA modulation[5, Chou, Gunturk,
Krahmer, Saab, Yilmaz (2015)]

Black Fourier spectra of a bandlimited signal
Red Quantization error signals using PCM
Pink Error signal for 1st order XA quantization e e S

Blue Error signal for 2nd order XA quantization
14/37
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Alternative Scheme: YA and Noise Shaping

Generalization: Noise Shaping Quantization

Instead of difference operator A, consider the following
scheme:

y—q=hxu (15)
where
Q@ h={hp}peNhas hy =1, and
Q (hxu)n =m0 hmtn-m
[8, Gunturk, 2003] constructed a family of h to achieve
exponential decay, with sub-optimal exponent.

Norbert Wlener Center
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Q Adaptation to Finite Dimensional Space
@ Quantization on Frame Setting
@ Modification on Dual Frame
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Adaptation to Finite Dimensional Space

Quantization on Frame Setting

Finite Frame and Quantization

For a given space F¥ where F = R or C, suppose {e,}™_, C FX
is a spanning set and let the rows of E € F™X be {e*}, the
conjugate transpose of {en}.

Then for any dual F € Fk*™ we have

FE = Ik (16)
In particular, if F = (f; | --- | fn), then for any x € FX,
m
x:§:<x,en>f,7 (17)
n=1

where f, € FX. Then the quantized version x shall be

- E q n f n NOIbOI( ;lxlgr)er Center
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Adaptation to Finite Dimensional Space

Quantization on Frame Setting
First Order XA Quantization for Finite Frames
Consider the following scheme:
y—q=Au (19)

Then the reconstruction error || x — X||2 is

m
I = Xll2 = | > (< X, €0 > —qn)full2

n=1
m
= 1w — v 1))l
n:1 (20)
- || Z Un(fn - fn+1) + Umfm||2
n=1
m
< HUHOO(Z 1fo = fastll2 + [|fmll2) Norbert Wiener Center
pw forHarmonic Analyss ne Applications
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Adaptation to Finite Dimensional Space

Quantization on Frame Setting

Frame Analogy of XA Quantization[1]

Definition (Frame Variation)

Let E = {e,,}’" be a finite frame for R¥, and p a permutation of
{1,2,...,N}. The variation of the frame E with respect to p is

m—1

o(E, p) Z Hep (n) — €p(n+1) ll2 (21)

n=1

v

Theorem ([1], Benedetto, Powell, Yilmaz, 2006)

Suppose E = {en}, is a zero-sum FUNTF with frame bound
m/k. Then the reconstruction error ||x — X||o satisfies

. K 5(E, p) if m iseven
. < 2m0( ! &
Ix Xllz_{ ok (o(E,p)+1) if m isodd &

m 1
V.
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Adaptation to Finite Dimensional Space

Modification on Dual Frame

Noise Shaping Scheme

Definition

Let £ be the unit ball centered around origin of F.

Amap Q: & — /™ is a stable noise shaping scheme if 3H:
lower triangular, {u,} uniformly bounded by ¢ such that

y—q=Hu (23)

where g = Q(y) and we use X = Fq as the reconstruction
vector for x. )

@ Stability: [4, Chou, Gunturk, 2016] gives a sufficient
condition for such scheme to work

@ Recursiveness: Requires H to be lower triangular Nombert Wiener Center
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Adaptation to Finite Dimensional Space

Modification on Dual Frame

Reconstruction Frame/ Kernel F

Many choices. Depends on H in quantization scheme
(Ix = Fqll = [|F(y — )|l = [[FHul)
@ Canonical dual: Ef
@ V-dual: (VE)'V such that VE is still a frame.
@ Sobolev dual [2]: (A~'E)TA~" achieves minimum 2-norm
for FA.
© Alternative dual: (H~1E)TH!
© Beta dual: (V3E)V;, Vs to be specified later.

How does the choice of V affect our reconstruction?

Norbelt Wlener Center
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Adaptation to Finite Dimensional Space

Modification on Dual Frame

De-Noising Aspect of Dual Frame

im(H'E) im(VE)
Alt. Dual Noise Shaping
-1
F* A E Fm A Fm v FP
Noise
u

Figure: Error Cutoff Procedures for Different Quantization Schemes

For M € F**K injective, ker(M') = (M(F¥))™.
Norbert W}&Eﬁr genter

for Harmonic Anal lications
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Adaptation to Finite Dimensional Space

Modification on Dual Frame

canonical dual 1st order Sobolev dual
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Figure: Different alternative duals for the 15th roots-of-unity frafig i<
R [5]
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e Distributed Noise Shaping: Beta Dual
@ Main Result

@ Setting of Distributed Noise Shaping
@ Beta Dual for Unitarily Generated Frames
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Distributed Noise Shaping: Beta Dual

Main Result

Theorem (Chou, Gunturk)

Given a unitarily generated frame & with generator 2, a k x k
Hermitian matrix with {vs}X_, being a basis of orthonormal
eigenvectors and ¢ € FX. Suppose the eigenvalues are all
distinct modulo | where | > k, then we have

2|VLI=mif F =
||X_qu||2<7e<n77+1>0(¢o)'{ \L/—_rg/\//_J ;'f F:]é(é
(24)

where ’
c(¢o) = (1r<nsi2k] <o Vs> )~ (25)

v

Norbon Wlener Cenier
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Distributed Noise Shaping: Beta Dual

Setting of Distributed Noise Shaping

Setup of Distributed Noise Shaping (DNS)

Definition (V-dual)

Let E € R™*K be a frame, m > k. Fy € RK*™ is a V-dual of E if

Fy = (VE)'V (26)

where V € RP*™M such that VE is still a frame.

Recall that a stable noise shaping scheme has

y—q=Hu (27)

Norbert Wlener Center
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Distributed Noise Shaping: Beta Dual

Setting of Distributed Noise Shaping

Setup of DNS (Cont'd)

In the setting of DNS, V € RP*™ and H € R™*™ are block

matrices

Vi H;
Va

Vi

where V; € RP>Mi H; ¢ RM>*Mi with >~ p; =

H>
Hs

H,
(28)
p.>_ mi=m

Norbert Wlener Center
nd Applications
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Distributed Noise Shaping: Beta Dual

Setting of Distributed Noise Shaping

£-Dual

Definition (5-dual)

A g-dual Fy = (VE)'V has V = Vg m, where B = [B4, ..., B]]!
and m=[my, ..., my!, is a I-by-m block matrix such that
Vi=[67,672....6,™ eR>M, ie. | =p.

@ {p;} satisfies 5; > 1 for every 1 < i </, whose choice is
limited by a technical lemma.

@ Under this setting, each H; is chosen to be a m; x m; matrix
with unit diagonal entries and —3; sub-diagonal entries.

Norbelt Wlener Center
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Distributed Noise Shaping: Beta Dual

Setting of Distributed Noise Shaping

B-Dual (Cont'd)

1
-Bi 1
2...~m1 0 =B 1
= (87187287 o (29)
—Bi 1
=0 o0 ... 0 5™
where 5; > 1, so it effectively reduced the size of error.

Norbert Wlener Center
onic nd Applications
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Distributed Noise Shaping: Beta Dual

Setting of Distributed Noise Shaping

Reconstruction Error Estimate for 5-Dual

Lemma (Chou, Gunturk, 2016)

Given a B-dual V, suppose VE is a frame, then the
reconstruction error is

X — Fvallz = [[FvHUll2 < [|FyvH| co—2llU]le
1
omin(VE)

< VT sglm

- Um,'n(VE)

| Ella—oce(1 + Lm//J)\ﬂL_(Lm//J+1)
omin(VE)

< flulloo [ VH||oo2

<

(30) et

v
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Distributed Noise Shaping: Beta Dual

Beta Dual for Unitarily Generated Frames

Proof of Theorem][3]

@ Assume that m// € N for simplicity.
@ Assumption: Eigenvalues {\s} are distinct modulo /.

@ onmin(VE) can be controlled uniformly for all m in such
setting. || E||2— - is easily seen to be uniformly bounded.

Given a k x k Hermitian matrix Q and ¢y € FX, consider

U= ¢p=Un¢p, n=0,....m—1 (31)

Set E to be the collection of such elements, that is,

*
%o E;
E = ; =1 : (32)
* N io! tWe ! C te:
o E

31/37
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Distributed Noise Shaping: Beta Dual

Beta Dual for Unitarily Generated Frames

Proof (Cont’d)

Then,
Vi Eq
VE = : (33)
VIE
where
m/l
(ViE)* = B "¢(¢-1ym/irn € F" (34)
n=1

Norbert Wiener Center
i lysis and Appl
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Beta Dual for Unitarily Generated Frames

Now, let {vs} be an ONB of eigenvectors with respect to Q with
eigenvalue {)\s}. Then

m/l
(VE Vs > = Zﬂ < U= m//+n¢0, Vs >

m/I

225_"<¢0,Uwv3> (35)

where

Ws = Z (5 - 927”)\5/ m) " Norber(%@!)er Center

or Harmonic Analysis sns Applications
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Distributed Noise Shaping: Beta Dual

Beta Dual for Unitarily Generated Frames

m/l
- 1— B_m/IGZM)‘S/I 1— 5—1
IWSI—IZ A/ M) =

1 _6—1 e2mAs/m =z 1 +/8—1
(37)

Norbert Wiener Center

for Harmonic Analysis an Applications
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Distributed Noise Shaping: Beta Dual

Beta Dual for Unitarily Generated Frames

Then, for any x € FX,

!
IVEX|z =" |ViEx|?

Jj=1
/ k
=D < (ViE) Ve >< X, Vs > 2
j=1 s=1
k k /
= ZZ <X, Vs >< Vi, X >< ¢0, Vs >< Vg, ¢0 > Wswtz esz(j—ﬂ(Ay—As)//
s=1 t=1 j=1
k
= IZ| <X, Vs > ‘2| < ¢o, Vs > |2‘Ws‘2
s=1
1\ 2
> (3555 ) min, | < dovs > Pl
(38)
if A\s — At are integers and nonzero modulo /. e e S
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