Optimal coherence from finite group actions

Joseph W. Iverson

Department of Mathematics University of Maryland College Park, MD

Norbert Wiener Center Seminar November 14, 2017

Outline

Motivation

2 Tight frames from group actions

3 ETFs with Heisenberg symmetry

Coauthors

John Jasper Assistant Professor South Dakota State University

Dustin G. Mixon Assistant Professor The Ohio State University

Outline

Motivation

2 Tight frames from group actions

3 ETFs with Heisenberg symmetry

Source: mylittledrummerboys.blogspot.com

Underdetermined system:

$$\left[\begin{array}{c|c} & \Phi & \end{array} \right] \left[\begin{array}{c|c} x & = \left[\begin{array}{c} y \end{array} \right] \right]$$

Underdetermined system:

$$\left[\qquad \Phi \qquad \right] \left[\begin{array}{c} x \\ \end{array} \right] = \left[\begin{array}{c} y \\ \end{array} \right]$$

But! x has a lot of zero entries

Underdetermined system:

$$\left[\qquad \Phi \qquad \right] \left[\begin{array}{c} x \\ \end{array} \right] = \left[\begin{array}{c} y \\ \end{array} \right]$$

But! x has a lot of zero entries

Try a linear program:

Minimize
$$||x||_1$$
 subject to $\Phi x = y$

Rescale so the columns of Φ have unit ℓ^2 -norm:

$$\Phi = \begin{bmatrix} | & | & \cdots & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_N \\ | & | & \cdots & | \end{bmatrix}$$

The **coherence** is

$$\mu(\Phi) := \max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|.$$

Rescale so the columns of Φ have unit ℓ^2 -norm:

$$\Phi = \begin{bmatrix} | & | & \cdots & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_N \\ | & | & \cdots & | \end{bmatrix}$$

The **coherence** is

$$\mu(\Phi) := \max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|.$$

Theorem (Donoho, Elad '03)

If $\Phi x = y$ and x has no more than

$$\frac{1}{2}\left(1+\frac{1}{\mu(\Phi)}\right)$$

nonzero entries, then x is the unique solution to the linear program

Minimize
$$||x||_1$$
 subject to $\Phi x = y$.

Goal

Let \mathbb{F} be either \mathbb{R} or \mathbb{C} . Given a dimension M and a number $N \ge M$, find a collection of unit norm vectors $\Phi = \{\varphi_i\}_{i=1}^N$ in \mathbb{F}^M with minimal possible coherence.

Goal

Let \mathbb{F} be either \mathbb{R} or \mathbb{C} . Given a dimension M and a number $N \geq M$, find a collection of unit norm vectors $\Phi = \{\varphi_i\}_{i=1}^N$ in \mathbb{F}^M with minimal possible coherence.

The Welch bound says that

$$\mu(\Phi) \geqslant \sqrt{\frac{N-M}{M(N-1)}}.$$

Goal

Let \mathbb{F} be either \mathbb{R} or \mathbb{C} . Given a dimension M and a number $N \geq M$, find a collection of unit norm vectors $\Phi = \{\varphi_i\}_{i=1}^N$ in \mathbb{F}^M with minimal possible coherence.

The Welch bound says that

$$\mu(\Phi) \geqslant \sqrt{\frac{N-M}{M(N-1)}}.$$

A collection of unit vectors $\Phi = \{\varphi_i\}_{i=1}^N$ has coherence equal to the Welch bound if and only if Φ is an equiangular tight frame.

Outline

Motivation

2 Tight frames from group actions

3 ETFs with Heisenberg symmetry

Definition

Let $M \le N$ be positive integers, and let \mathbb{F} be either \mathbb{R} or \mathbb{C} . The **synthesis operator** of a sequence of vectors $\{\varphi_i\}_{i=1}^N$ in \mathbb{F}^M is the $M \times N$ matrix Φ with the φ_i 's as its columns:

$$\Phi = \begin{bmatrix} | & | & \cdots & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_N \\ | & | & \cdots & | \end{bmatrix}$$

Definition

Let $M \le N$ be positive integers, and let \mathbb{F} be either \mathbb{R} or \mathbb{C} . The **synthesis operator** of a sequence of vectors $\{\varphi_i\}_{i=1}^N$ in \mathbb{F}^M is the $M \times N$ matrix Φ with the φ_i 's as its columns:

$$\Phi = \begin{bmatrix} | & | & \cdots & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_N \\ | & | & \cdots & | \end{bmatrix}$$

The sequence $\{\varphi_i\}_{i=1}^N$ is called an **equiangular tight frame (ETF)** if

Definition

Let $M \le N$ be positive integers, and let \mathbb{F} be either \mathbb{R} or \mathbb{C} . The **synthesis operator** of a sequence of vectors $\{\varphi_i\}_{i=1}^N$ in \mathbb{F}^M is the $M \times N$ matrix Φ with the φ_i 's as its columns:

$$\Phi = \begin{bmatrix} | & | & \cdots & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_N \\ | & | & \cdots & | \end{bmatrix}$$

The sequence $\{\varphi_i\}_{i=1}^N$ is called an **equiangular tight frame (ETF)** if

ullet Inner products of distinct columns of Φ have constant modulus

$$|\langle \varphi_i, \varphi_j \rangle| = \begin{cases} 1 & i = j \\ \mu & i \neq j \end{cases}$$

Definition

Let $M \leq N$ be positive integers, and let \mathbb{F} be either \mathbb{R} or \mathbb{C} . The **synthesis operator** of a sequence of vectors $\{\varphi_i\}_{i=1}^N$ in \mathbb{F}^M is the $M \times N$ matrix Φ with the φ_i 's as its columns:

$$\Phi = \begin{bmatrix} | & | & \cdots & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_N \\ | & | & \cdots & | \end{bmatrix}$$

The sequence $\{\varphi_i\}_{i=1}^N$ is called an **equiangular tight frame (ETF)** if

ullet Inner products of distinct columns of Φ have constant modulus

$$|\langle \varphi_i, \varphi_j \rangle| = \begin{cases} 1 & i = j \\ \mu & i \neq j \end{cases}$$

• The rows of Φ are orthogonal and equal norms: $\Phi\Phi^* = A\mathbf{I}$

Some applications:

- Compressed sensing
- Quantum information theory
- Wireless communication
- Phase retrieval
- Algebraic coding theory
- Signal processing
- Digital fingerprinting

The Gram matrix

Let Φ be as before, then the Gram matrix is

$$\Phi^*\Phi = \begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle & \cdots & \langle \varphi_N, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle & \cdots & \langle \varphi_N, \varphi_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \varphi_1, \varphi_N \rangle & \langle \varphi_2, \varphi_N \rangle & \cdots & \langle \varphi_N, \varphi_N \rangle \end{bmatrix}$$

The Gram matrix

Let Φ be as before, then the Gram matrix is

$$\Phi^*\Phi = \begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle & \cdots & \langle \varphi_N, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle & \cdots & \langle \varphi_N, \varphi_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \varphi_1, \varphi_N \rangle & \langle \varphi_2, \varphi_N \rangle & \cdots & \langle \varphi_N, \varphi_N \rangle \end{bmatrix}$$

The collection $\{\varphi_i\}_{i=1}^N$ is an ETF if and only if

- $\Phi\Phi^*$ is a multiple of the identity.
- Φ*Φ has constant diagonal and constant modulus off-diagonal

The Gram matrix

Let Φ be as before, then the Gram matrix is

$$\Phi^*\Phi = \begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle & \cdots & \langle \varphi_N, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle & \cdots & \langle \varphi_N, \varphi_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \varphi_1, \varphi_N \rangle & \langle \varphi_2, \varphi_N \rangle & \cdots & \langle \varphi_N, \varphi_N \rangle \end{bmatrix}$$

The collection $\{\varphi_i\}_{i=1}^N$ is an ETF if and only if

- Φ*Φ has constant diagonal and constant modulus off-diagonal

Start with the DFT over \mathbb{Z}_7 .

```
 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 \\ 1 & \omega^2 & \omega^4 & \omega^6 & \omega & \omega^3 & \omega^5 \\ 1 & \omega^3 & \omega^6 & \omega^2 & \omega^5 & \omega & \omega^4 \\ 1 & \omega^4 & \omega & \omega^5 & \omega^2 & \omega^6 & \omega^3 \\ 1 & \omega^5 & \omega^3 & \omega & \omega^6 & \omega^4 & \omega^2 \\ 1 & \omega^6 & \omega^5 & \omega^4 & \omega^3 & \omega^2 & \omega \end{bmatrix}
```

Start with the DFT over \mathbb{Z}_7 .

Choose some special rows.

Choose some special rows.

```
 \begin{bmatrix} 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 \\ 1 & \omega^2 & \omega^4 & \omega^6 & \omega & \omega^3 & \omega^5 \\ 1 & \omega^4 & \omega & \omega^5 & \omega^2 & \omega^6 & \omega^3 \end{bmatrix}
```

Choose some special rows.

$$\Phi = \left[egin{array}{ccccccc} 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 \ 1 & \omega^2 & \omega^4 & \omega^6 & \omega & \omega^3 & \omega^5 \ 1 & \omega^4 & \omega & \omega^5 & \omega^2 & \omega^6 & \omega^3 \end{array}
ight]$$

Φ is an ETF, as we can tell from its Gram matrix

$$\Phi^*\Phi = \begin{bmatrix} 3 & x & x & y & x & y & y \\ y & 3 & x & x & y & x & y \\ y & y & 3 & x & x & y & x \\ x & y & y & 3 & x & x & y \\ y & x & y & y & 3 & x & x \\ x & y & x & y & y & 3 & x \\ x & x & y & x & y & y & 3 \end{bmatrix}$$

$$x = \omega + \omega^2 + \omega^4$$

$$y = \omega^3 + \omega^5 + \omega^6$$

$$= \overline{x}$$

$$x = \omega + \omega^2 + \omega^4$$

$$y = \omega^3 + \omega^5 + \omega^6$$

$$= \overline{x}$$

$$x = \omega + \omega^2 + \omega^4$$
 $y = \overline{x} = \omega^3 + \omega^5 + \omega^6$

$$\Phi^*\Phi = \begin{bmatrix} 3 & x & x & y & x & y & y \\ y & 3 & x & x & y & x & y \\ y & y & 3 & x & x & y & x \\ x & y & y & 3 & x & x & y \\ y & x & y & y & 3 & x & x \\ x & y & x & y & y & 3 & x \\ x & x & y & x & y & y & 3 \end{bmatrix}$$

$$x = \omega + \omega^2 + \omega^4$$
 $y = \overline{x} = \omega^3 + \omega^5 + \omega^6$

$$\Phi^*\Phi = \begin{bmatrix} 3 & x & x & y & x & y & y \\ y & 3 & x & x & y & x & y \\ y & y & 3 & x & x & y & x \\ x & y & y & 3 & x & x & y \\ y & x & y & y & 3 & x & x \\ x & y & x & y & y & 3 & x \\ x & x & y & x & y & y & 3 \end{bmatrix}$$

$$A_0 = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \end{bmatrix}, A_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 & 0 & \mathbf{1} & 0 & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & 0 & 0 & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & 1 & 0 & 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$x = \omega + \omega^2 + \omega^4$$
 $y = \overline{x} = \omega^3 + \omega^5 + \omega^6$

$$\Phi^*\Phi = \begin{bmatrix} 3 & x & x & y & x & y & y \\ y & 3 & x & x & y & x & y \\ y & y & 3 & x & x & y & x \\ x & y & y & 3 & x & x & y \\ y & x & y & y & 3 & x & x \\ x & y & x & y & y & 3 & x \\ x & x & y & x & y & y & 3 \end{bmatrix}$$

$$A_1 A_2 = A_2 A_1 = 3A_0 + A_1 + A_2$$

 $A_1^T = A_2$

Association schemes

Definition

A set of $N \times N$ matrices $\mathfrak{X} = \{A_0, \dots, A_d\}$ with entries in $\{0, 1\}$ is called an **association scheme** if the following three conditions hold:

- $A_0 = I$
- $A_0 + \cdots + A_d = J$, where J is the all 1's matrix
- $\mathscr{A} = \operatorname{span} \mathfrak{X}$ forms a *-algebra under matrix multiplication.

It's a *commutative* scheme if \mathscr{A} is a commutative algebra.

$$A_0 = \begin{bmatrix} \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} \end{bmatrix}, A_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 & 0 & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ 1 & 0 & 0 & 0 & \mathbf{1} & 0 & \mathbf{1} \\ 1 & 1 & 0 & 0 & 0 & \mathbf{1} & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$A_1 A_2 = A_2 A_1 = 3A_0 + A_1 + A_2$$

 $A_1^T = A_2$

The spectral basis

Let $\mathfrak{X} = \{A_0, \dots, A_d\}$ be a commutative association scheme.

Big idea

Find tight frames via their Gram matrices in span \mathfrak{X} .

The spectral basis

Let $\mathfrak{X} = \{A_0, \dots, A_d\}$ be a commutative association scheme.

Big idea

Find tight frames via their Gram matrices in span \mathfrak{X} .

By the spectral theorem there is a set of mutually orthogonal projections

$$\hat{\mathfrak{X}} = \{E_0, \dots, E_d\}$$

onto the maximal eigenspaces of $\mathfrak{X}.$

The projections in span $\mathfrak X$ are exactly the sums of E_j 's.

Example: The spectral basis for our scheme

$$A_0 = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{bmatrix}, A_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$E_{0} = \frac{1}{7} \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix}, E_{1} = \frac{1}{7} \begin{bmatrix} \mathbf{3} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{3} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{y} \\ \mathbf{y} & \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf{3} & \mathbf{y} & \mathbf{y} & \mathbf{x} \\ \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf{3} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{3} & \mathbf{y} \\ \mathbf{y} & \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{3} & \mathbf{y} \\ \mathbf{y} & \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{3} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{3} \end{bmatrix}$$

$$\Phi^*\Phi = 3 A_0 + x A_1 + y A_2 = 7E_1$$

Schemes from group actions

Let $g_1=(1,2,3,4,5,6,7)$ and $g_2=(2,3,5)(4,7,6)$, and let $G=\langle g_1,g_2\rangle\leqslant S_7$. It acts on $[7]\times[7]$:

$$g \cdot (m, n) = (g \cdot m, g \cdot n)$$
 for $g \in G$ and $m, n \in [7]$.

Schemes from group actions

Let
$$g_1=(1,2,3,4,5,6,7)$$
 and $g_2=(2,3,5)(4,7,6)$, and let $G=\langle g_1,g_2\rangle\leqslant S_7$. It acts on $[7]\times[7]$:

$$g \cdot (m, n) = (g \cdot m, g \cdot n)$$
 for $g \in G$ and $m, n \in [7]$.

Light up the orbits as arrays. We get our scheme!

	1	2	3	4			7	
1	Γ0	1	1	0	1	0	0	1
1 2 3	0			1	0	1	0	I
	0	0	0	1	1	0	1	ı
4	1	0	0	0	1		0	l
5	0		0			1		
6	1		1		0	0	1	l
7	1	1	0	1	0	0	0	

Schurian schemes

Proposition

Let G be a finite group acting transitively on a set X. Let A_0, \ldots, A_d be the $X \times X$ matrices that light up the orbits $\mathcal{O}_0, \ldots, \mathcal{O}_d$ of G on $X \times X$ with 1s. Then $\mathfrak{X} = \{A_0, \ldots, A_d\}$ is an association scheme, called a **Schurian scheme**.

Schurian schemes

Proposition

Let G be a finite group acting transitively on a set X. Let A_0, \ldots, A_d be the $X \times X$ matrices that light up the orbits $\mathcal{O}_0, \ldots, \mathcal{O}_d$ of G on $X \times X$ with 1s. Then $\mathfrak{X} = \{A_0, \ldots, A_d\}$ is an association scheme, called a **Schurian scheme**.

Note: Let H be the stabilizer of a point. WLOG, X = G/H. We write $\mathfrak{X} = \mathfrak{X}(G, H)$.

Definition

We call (G, H) a **Gelfand pair** if $\mathfrak{X}(G, H)$ is commutative.

Spherical projections for Schurian schemes

Let G be a finite group acting transitively on a set X = G/H, with H the stabilizer of a point. The **permutation character** is given by

$$\chi(g) = |\{kH \in G/H : gkH = kH\}|.$$

It decomposes into irreducibles

$$\chi = m_1 \chi_1 + \cdots + m_n \chi_n.$$

Spherical projections for Schurian schemes

Let G be a finite group acting transitively on a set X = G/H, with H the stabilizer of a point. The **permutation character** is given by

$$\chi(g) = |\{kH \in G/H : gkH = kH\}|.$$

It decomposes into irreducibles

$$\chi = m_1 \chi_1 + \cdots + m_n \chi_n.$$

Theorem

Each constituent χ_j determines a projection E_j in $\mathscr{A} = \operatorname{span} \mathfrak{X}(G,H)$ by the formula

$$(E_j)_{gH,kH} = \frac{\chi_j(1)}{|G|} \sum_{h \in H} \chi_j(g^{-1}kh).$$

Any sum of E_j 's is again a projection in \mathscr{A} . If (G, H) is a Gelfand pair, this accounts for all projections in \mathscr{A} .

Frames from group actions

Corollary (I., Jasper, Mixon)

Every transitive action of a finite group determines a finite number of tight frames through the spherical projections in $\mathfrak{X}(G, H)$.

- GAP code: github.com/jwiverson/action-packings
- Observation: Lots of these frames have optimal coherence

Homogeneous frames

Let G be a finite group, and let π be a unitary representation of G on \mathbb{F}^M . Suppose the orbit of a vector $\varphi \in \mathbb{F}^M$ is a frame. If

$$H = \{ h \in G : \pi(h)\varphi = \varphi \},\$$

then

$$\Phi = \{\pi(g)\varphi\}_{gH\in G/H}$$

is a **homogeneous frame**, or a (G, H)-frame.

Theorem (I., Jasper, Mixon)

Let G be a finite group, and let $H \leq G$. The positive semidefinite matrices in span $\mathfrak{X}(G,H)$ are precisely the Gram matrices of (G,H)-frames.

Example: Affine action on lines of \mathbb{F}_2^3

Let $G = AGL(\mathbb{F}_2^3) = GL(\mathbb{F}_2^3) \ltimes \mathbb{F}_2^3$. It acts transitively on $X = \{\text{lines in } \mathbb{F}_2^3\}$.

Example: Affine action on lines of \mathbb{F}_2^3

One of the spherical projections describes a 7 \times 28 real ETF.

Example: Affine action on lines of \mathbb{F}_2^3

Example: Projective reduction

Let $G \cong A_5$ be the symmetry group of the icosahedron, acting on the set X of vertices.

$$x = \frac{1}{\sqrt{5}}$$

Source: en.wikipedia.org/wiki/Platonic_solid

Example: Projective reduction

Let $G \cong A_5$ be the symmetry group of the icosahedron, acting on the set X of vertices.

$$x = \frac{1}{\sqrt{5}}$$

Source: en.wikipedia.org/wiki/Platonic_solid

Example: Projective reduction

Let $G \cong A_5$ be the symmetry group of the icosahedron, acting on the set X of vertices.

$$E = \frac{1}{4} \begin{bmatrix} 1 & x & -x & -x & x & -x \\ x & 1 & -x & x & -x & -x \\ -x & -x & 1 & x & x & -x \\ -x & x & x & 1 & -x & -x \\ x & -x & x & -x & 1 & -x \\ -x & -x & -x & -x & -x & 1 \end{bmatrix}$$

$$x = \frac{1}{\sqrt{5}}$$

Now it's an ETF!

Example: Mutually unbiased bases (MUBs)

Let $G_0 \leqslant SL(2,5)$ be the normalizer of a Sylow-2 subgroup.

Example: Mutually unbiased bases (MUBs)

Let $G_0 \leqslant SL(2,5)$ be the normalizer of a Sylow-2 subgroup.

The affine action of $G:=\mathbb{F}_5^2\rtimes G_0$ on \mathbb{F}_5^2 is doubly transitive.

Hence, G acts transitively on

$$X = \{(x,y) \in \mathbb{F}_5^2 \times \mathbb{F}_5^2 : x \neq y\}.$$

Example: Mutually unbiased bases (MUBs)

Take some spherical projections and projectively reduce to get...

Three MUBs in \mathbb{R}^4 :

$$\begin{bmatrix} 2 & 0 & 0 & 0 & - & + & + & + & - & - & - & - \\ 0 & 2 & 0 & 0 & - & - & + & - & + & - & - & + \\ 0 & 0 & 2 & 0 & - & - & - & + & + & + & - & - \\ 0 & 0 & 2 & 0 & - & - & - & + & + & + & - & - \\ 0 & 0 & 0 & 2 & - & + & - & - & + & - & + & - \\ - & - & - & - & 2 & 0 & 0 & 0 & - & + & + & + \\ + & - & - & + & 0 & 2 & 0 & 0 & - & - & + & - \\ + & + & - & - & 0 & 0 & 2 & 0 & - & - & - & + \\ + & - & + & - & 0 & 0 & 0 & 2 & - & + & - & - \\ - & + & + & + & - & - & - & - & 2 & 0 & 0 & 0 \\ - & - & - & + & + & + & - & - & 0 & 0 & 2 & 0 \\ - & - & - & + & + & + & - & - & 0 & 0 & 0 & 2 \end{bmatrix}$$

Three MUBs in \mathbb{C}^2 :

```
 \begin{bmatrix} 2 & 0 & -1+i & 1+i & -1-i & -1-i \\ 0 & 2 & -1-i & 1-i & 1+i & -1-i \\ -1-i & -1+i & 2 & 0 & -1+i & 1+i \\ 1-i & 1+i & 0 & 2 & -1+i & -1-i \\ -1+i & 1-i & -1-i & -1-i & 2 & 0 \\ -1+i & -1+i & 1-i & -1+i & 0 & 2 \end{bmatrix}
```

Example: A new record

The Mathieu group M_{11} acts doubly transitively on the 12 points in the Witt design W_{12} .

Take its transitive action on $X = \{(p, q) \in W_{12} : p \neq q\}.$

Example: A new record

The Mathieu group M_{11} acts doubly transitively on the 12 points in the Witt design W_{12} .

Take its transitive action on $X = \{(p, q) \in W_{12} : p \neq q\}.$

Adding up some of the spherical projections (and projectively reducing), we get a tight frame of 66 vectors in \mathbb{R}^{11} with coherence $\mu=1/3$.

It beats the record in Neil Sloane's database!

Open problem

Prove this is the optimal coherence.

Example: Hoggar's lines

Let

$$T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

The Heisenberg group over \mathbb{Z}_2^3 is $H = \langle T^{\otimes 3}, M^{\otimes 3} \rangle$.

Example: Hoggar's lines

Let

$$\mathcal{T} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

The Heisenberg group over \mathbb{Z}_2^3 is $H = \langle T^{\otimes 3}, M^{\otimes 3} \rangle$.

Fix a certain subgroup $G_0 \leq N_{U(\mathbb{C}^8)}(H)$ with $G_0 \cong PSU(3,3)$. Then $(H \rtimes G_0, G_0)$ is a Gelfand pair.

Example: Hoggar's lines

Let

$$\mathcal{T} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

The Heisenberg group over \mathbb{Z}_2^3 is $H = \langle T^{\otimes 3}, M^{\otimes 3} \rangle$.

Fix a certain subgroup $G_0 \leqslant N_{U(\mathbb{C}^8)}(H)$ with $G_0 \cong PSU(3,3)$. Then $(H \rtimes G_0, G_0)$ is a Gelfand pair.

Projectively reduce one of its spherical projections to get an ETF of 64 vectors in \mathbb{C}^8 . (A SIC-POVM!)

Outline

Motivation

2 Tight frames from group actions

3 ETFs with Heisenberg symmetry

Long-term goal: SIC-POVMs

Zauner's conjecture

For every N, the Heisenberg group over \mathbb{Z}/N produces an ETF of N^2 vectors in \mathbb{C}^N . The ETF comes from taking the orbit of a special vector in \mathbb{C}^N under the Schrödinger representation, and then projectively reducing.

- Fundamental problem in quantum information theory
- Open since 1999
- Tons of numerical evidence
- Very little theoretical progress

The Heisenberg group

Let A be a finite abelian group of odd order, with Pontryagin dual group \hat{A} . Let $K = A \times \hat{A}$, with additive notation.

The Heisenberg group

Let A be a finite abelian group of odd order, with Pontryagin dual group \hat{A} . Let $K = A \times \hat{A}$, with additive notation.

The **symplectic form** on K maps $[\cdot,\cdot]$: $K \times K \to C_{\exp(A)}$,

$$[(a_1,\alpha_1),(a_2,\alpha_2)] = \langle a_2,\alpha_1 \rangle \langle a_1,\alpha_2 \rangle^{-1} \qquad \left(a_i \in A, \alpha_i \in \hat{A}\right).$$

The Heisenberg group

Let A be a finite abelian group of odd order, with Pontryagin dual group \hat{A} . Let $K = A \times \hat{A}$, with additive notation.

The symplectic form on K maps $[\cdot,\cdot]$: $K \times K \to C_{\exp(A)}$,

$$[(a_1,\alpha_1),(a_2,\alpha_2)] = \langle a_2,\alpha_1 \rangle \langle a_1,\alpha_2 \rangle^{-1} \qquad \left(a_i \in A, \alpha_i \in \hat{A}\right).$$

The **Heisenberg group** over A is $H = K \times C_{\exp(A)}$ (as a set). Multiplication in H is given by

$$(u_1, z_1) \cdot (u_2, z_2) = (u_1 + u_2, z_1 z_2 [u_1, u_2]^{1/2}) \qquad (u_i \in K, z_i \in C_{\exp(A)}).$$

The symplectic group

The symplectic group is

$$\mathsf{Sp}(K) = \{\sigma \in \mathsf{Aut}(K) : [\sigma(u), \sigma(v)] = [u, v] \text{ for all } u, v \in K\}.$$

The symplectic group

The **symplectic group** is

$$\mathsf{Sp}(K) = \{\sigma \in \mathsf{Aut}(K) : [\sigma(u), \sigma(v)] = [u, v] \text{ for all } u, v \in K\}.$$

It acts on the Heisenberg group $H = K \times C_{exp(A)}$ by automorphisms:

$$\sigma \cdot (u, z) = (\sigma(u), z)$$
 $(\sigma \in \operatorname{Sp}(K), u \in K, z \in C_{\exp(A)}).$

The symplectic group

The symplectic group is

$$\mathsf{Sp}(K) = \{ \sigma \in \mathsf{Aut}(K) : [\sigma(u), \sigma(v)] = [u, v] \text{ for all } u, v \in K \}.$$

It acts on the Heisenberg group $H = K \times C_{exp(A)}$ by automorphisms:

$$\sigma \cdot (u, z) = (\sigma(u), z)$$
 $(\sigma \in \operatorname{Sp}(K), u \in K, z \in C_{\exp(A)}).$

Theorem (I., Jasper, Mixon)

 $(H \rtimes \operatorname{Sp}(K), \operatorname{Sp}(K))$ is a Gelfand pair.

Theorem (folk)

The adjacency algebra $\mathscr{A}=\operatorname{span}\mathfrak{X}(H\rtimes K,K)$ is isomorphic to $L^2(H)^{\operatorname{Sp}(K)}$ under convolution.

New goal: Show that $L^2(H)^{\operatorname{Sp}(K)}$ is commutative.

Theorem (folk)

The adjacency algebra $\mathscr{A} = \operatorname{span} \mathfrak{X}(H \rtimes K, K)$ is isomorphic to $L^2(H)^{\operatorname{Sp}(K)}$ under convolution.

New goal: Show that $L^2(H)^{Sp(K)}$ is commutative.

Lemma

The orbits of $\operatorname{Sp}(K) \leqslant \operatorname{Aut}(K)$ on K coincide with the $\operatorname{Aut}(K)$ -orbits.

Proof.

Theorem (folk)

The adjacency algebra $\mathscr{A} = \operatorname{span} \mathfrak{X}(H \rtimes K, K)$ is isomorphic to $L^2(H)^{\operatorname{Sp}(K)}$ under convolution.

New goal: Show that $L^2(H)^{Sp(K)}$ is commutative.

Lemma

The orbits of $Sp(K) \leq Aut(K)$ on K coincide with the Aut(K)-orbits.

Proof.

Dutta and Prasad '11: Detailed description of Aut(A)-orbits on A.

Dutta and Prasad '15: Detailed description of Sp(K)-orbits on K.

Observe that they coincide when we replace A with K in the first one.

Let $f_1, f_2 \in L^2(H)^{\operatorname{Sp}(K)}$ be characteristic functions of $\operatorname{Sp}(K)$ -orbits in H. Then there are $\operatorname{Sp}(K)$ -orbits $\mathcal{O}_1, \mathcal{O}_2 \subset K$ such that

$$f_i = \sum_{u \in \mathcal{O}_i} \delta_{(u, z_i)} \qquad (i = 1, 2).$$

Let $f_1, f_2 \in L^2(H)^{\operatorname{Sp}(K)}$ be characteristic functions of $\operatorname{Sp}(K)$ -orbits in H. Then there are $\operatorname{Sp}(K)$ -orbits $\mathcal{O}_1, \mathcal{O}_2 \subset K$ such that

$$f_i = \sum_{u \in \mathcal{O}_i} \delta_{(u, z_i)} \qquad (i = 1, 2).$$

Hence,

$$\begin{split} f_1 * f_2 &= \sum_{u \in \mathcal{O}_1} \sum_{v \in \mathcal{O}_2} \delta_{(u, z_1) \cdot (v, z_2)} \\ &= \sum_{u \in \mathcal{O}_1} \sum_{v \in \mathcal{O}_2} \delta_{(u+v, z_1 z_2[u, v]^{1/2})}. \end{split}$$

For $(w, z) \in H$, we get

$$(f_1 * f_2)(w, z) = \left| \{(u, v) \in \mathcal{O}_1 \times \mathcal{O}_2 : u + v = w \text{ and } z_1 z_2 [u, v]^{1/2} = z\} \right|.$$

For $(w, z) \in H$, we get

$$(f_1 * f_2)(w, z) = \left| \{ (u, v) \in \mathcal{O}_1 \times \mathcal{O}_2 : u + v = w \text{ and } z_1 z_2 [u, v]^{1/2} = z \} \right|.$$

Let $\sigma \in Aut(K)$ be given by $\sigma(a, \alpha) = (-a, \alpha)$. It satisfies

$$[\sigma(u),\sigma(v)]=[v,u] \qquad (u,v\in K).$$

For $(w, z) \in H$, we get

$$(f_1 * f_2)(w, z) = \left| \{ (u, v) \in \mathcal{O}_1 \times \mathcal{O}_2 : u + v = w \text{ and } z_1 z_2 [u, v]^{1/2} = z \} \right|.$$

Let $\sigma \in Aut(K)$ be given by $\sigma(a, \alpha) = (-a, \alpha)$. It satisfies

$$[\sigma(u),\sigma(v)] = [v,u] \qquad (u,v \in K).$$

By the lemma, there is some $\sigma' \in \operatorname{Sp}(K)$ with $\sigma'(w) = \sigma(w)$.

For $(w, z) \in H$, we get

$$(f_1 * f_2)(w, z) = \left| \{ (u, v) \in \mathcal{O}_1 \times \mathcal{O}_2 : u + v = w \text{ and } z_1 z_2 [u, v]^{1/2} = z \} \right|.$$

Let $\sigma \in Aut(K)$ be given by $\sigma(a, \alpha) = (-a, \alpha)$. It satisfies

$$[\sigma(u), \sigma(v)] = [v, u] \qquad (u, v \in K).$$

By the lemma, there is some $\sigma' \in \operatorname{Sp}(K)$ with $\sigma'(w) = \sigma(w)$. Since σ restricts to bijections on \mathcal{O}_1 and \mathcal{O}_2 ,

$$(f_1 * f_2)(w, z) = (f_1 * f_2)(\sigma'(w), z)$$

$$= \left| \{ (u, v) \in \mathcal{O}_1 \times \mathcal{O}_2 : \sigma(u) + \sigma(v) = \sigma(w) \text{ and } z_1 z_2 [\sigma(u), \sigma(v)]^{1/2} = z \} \right|$$

$$= \left| \{ (u, v) \in \mathcal{O}_1 \times \mathcal{O}_2 : u + v = w \text{ and } z_1 z_2 [v, u]^{1/2} = z \} \right|$$

$$= (f_2 * f_1)(w, z).$$

ETFs with Heisenberg symmetry

Let $\pi\colon H\to U(L^2(A))$ be the Schrödinger representation. Define a representation ρ of H on $\mathcal{HS}(L^2(A))$ through operator multiplication

$$[\rho(u,z)](T) = \pi(u,z) \cdot T$$
 $(T \in \mathcal{HS}(L^2(A)); (u,z) \in H)$

ETFs with Heisenberg symmetry

Let $\pi\colon H\to U(L^2(A))$ be the Schrödinger representation. Define a representation ρ of H on $\mathcal{HS}(L^2(A))$ through operator multiplication

$$[\rho(u,z)](T) = \pi(u,z) \cdot T \qquad (T \in \mathcal{HS}(L^2(A)); (u,z) \in H)$$

Theorem (I., Jasper, Mixon)

Let P be orthogonal projection of $L^2(A)$ onto the space of even functions. After projective reduction, the orbit of P under ρ forms an ETF for its span.

Moreover, the Gram matrix of the full orbit lies in the adjacency algebra for $\mathfrak{X}(H \rtimes \mathsf{Sp}(K), \mathsf{Sp}(K))$.

Note: We get redundancy \approx 2, not a SIC-POVM.

Thanks for your attention!

Paper: "Optimal line packings from finite group actions"
 J.W.I., J. Jasper, D.G. Mixon
 arXiv:1709.03558

GAP code: github.com/jwiverson/action-packings

Questions?

