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Motivation: Compressed sensing

Source: mylittledrummerboys.blogspot.com
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Motivation: Compressed sensing

Rescale so the columns of ® have unit #2-norm:

o
d=[p1 w2 - N

The coherence is
() = max|[{pi, ).
1#)

Theorem (Donoho, Elad '03)

If ®x = y and x has no more than

(i)

nonzero entries, then x is the unique solution to the linear program

Minimize ||x|, subject to ®x = y.




Let F be either R or C. Given a dimension M and a number N > M, find
a collection of unit norm vectors ® = {¢;}¥ ; in FM with minimal possible
coherence.
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Let F be either R or C. Given a dimension M and a number N > M, find
a collection of unit norm vectors ® = {¢;}¥ ; in FM with minimal possible
coherence.

The Welch bound says that

A collection of unit vectors ® = {¢;}" | has coherence equal to the Welch
bound if and only if ® is an equiangular tight frame.



© Tight frames from group actions



Equiangular tight frames (ETFs)

Definition

Let M < N be positive integers, and let [F be either R or C. The

synthesis operator of a sequence of vectors {<p,-}f\’=1 in FM is the M x N
matrix @ with the ;'s as its columns:

|
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Equiangular tight frames (ETFs)

Definition
Let M < N be positive integers, and let [F be either R or C. The

synthesis operator of a sequence of vectors {<p,-},N=1 in FM is the M x N
matrix ® with the ;'s as its columns:

|
b= |p1 P2 - N

The sequence {¢;}V | is called an equiangular tight frame (ETF) if
@ Inner products of distinct columns of ® have constant modulus

1 i=j
Pi> Pjl = .,
(X {“ o

@ The rows of ¢ are orthogonal and equal norms: ®o* = Al




Equiangular tight frames (ETFs)

Some applications:

Compressed sensing
Quantum information theory
Wireless communication
Phase retrieval

Algebraic coding theory
Signal processing

Digital fingerprinting



The Gram matrix

Let @ be as before, then the Gram matrix is
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The Gram matrix

Let @ be as before, then the Gram matrix is
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The Gram matrix

Let @ be as before, then the Gram matrix is

(o1, 1) {p2,01) -+ {on,p1)

. (p1,02) (p2,02) -+ Kpn,p2)
q> (D = . . .

Cprony {p2,0n) -+ {on, N

The collection {¢;}¥ | is an ETF if and only if
Q o*d isa multiple of a projection .

@ ®*d has constant diagonal and constant modulus off-diagonal



© n < MmN

— 33333 3

o <

=% 3%y

N N © o™

=3 3% %R

M O N W

=R RS 3T
=R RR 3%

N M < 10 ©

— 3’333 3 3

Lo B e B e B O e B o B |

L
=
LLl
O
c
(©)
S
| -
S
T
9
o
£
%
X
LLl

Start with the DFT over Z7.




© n < M A

— 3333 3 3

© <

=3 3%y

I N © ™M

=3 3 %3%R %R

M O N W

=3NS 3
=B 3% 3%

N M < 10 ©

— 3333 3 3

L B e B e B e B o B e B

O AN M T 1O ©

.
\

L
=
LLl
O
c
(©)
S
| -
S
T
9
o
£
%
X
LLl

Start with the DFT over Z7.
Z7 <




© N < M A

— 3333 3 3

o <

=R 3R

I N © ™M

=3 3%3%R%R%

M © N W

=3NS 3%
—R33% 3%

N M & 10 ©

— 3333 3 3

o B e R o TR o TR o TR o R |

O AN M I 1O ©

Z7 <

L
=
LLl
O
c
(©)
S
| -
S
T
&
o
£
%
X
LLl

Choose some special rows.




Example: Harmonic ETF

Choose some special rows.

1 1 w w? Wl w* W W
2 1 w2 W w w wd Wb
4 1 W w W w? W W3



Example: Harmonic ETF

Choose some special rows.

1 w w? W3 W W Wb
o = 1 w? W W w W WP
1 w* w W w? W Wl

® is an ETF, as we can tell from its Gram matrix

3 x x y x y y

y 3 x x y x y

vy 3 x x y x x = wtw+uw
Pb=1| x y y 3 x x vy y = wPtwd+ub

y xyy 3 x x X

Xy x y vy 3 x

X x y x y vy 3










A1Ar = A)A; =3A0+ A1+ A
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1 = A2



Association schemes

Definition
A set of N x N matrices X = {Ao,...,Aq} with entries in {0,1} is called
an association scheme if the following three conditions hold:

e Ap =1

@ Ap+ -+ Ay = J, where J is the all 1's matrix

o of = span X forms a =%-algebra under matrix multiplication.

It's a commutative scheme if &7 is a commutative algebra.

,AL =

HHOHOOO
HOoOroOOoOHR
oOrocoORK
HooorHO
cocoorHOKR
coorRORO
orHOROO

A1Ar = AbA1 =3A0 + A1 + Ap
Al = A



The spectral basis

Let X = {Ao,..., Ay} be a commutative association scheme.

Big idea
Find tight frames via their Gram matrices in span X.




The spectral basis

Let X = {Ao,..., Ay} be a commutative association scheme.

Big idea
Find tight frames via their Gram matrices in span X.

—

By the spectral theorem there is a set of mutually orthogonal projections
X ={k,..., Eq}

onto the maximal eigenspaces of X.

The projections in span X are exactly the sums of E;'s.
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Schemes from group actions

Let g1 = (1,2,3,4,5,6,7) and g&» = (2,3,5)(4,7,6), and let
G ={g1,8)<S7. ltactson [7] x [7]:

g-(mn)=(g-mg-n) for g€ G and m,ne [7].



Schemes from group actions

Let g1 = (1,2,3,4,5,6,7) and g&» = (2,3,5)(4,7,6), and let
G ={g1,8)<S7. ltactson [7] x [7]:

g-(mn)=(g-mg-n) for g€ G and m,ne [7].

Light up the orbits as arrays. We get our schemel!

1234567
17011010 0]
2l0011010
3l0o001 101
41000110
5001000 11
6/ 1010001
71110100 0




Schurian schemes

Proposition

Let G be a finite group acting transitively on a set X. Let Ao, ...,Aq be
the X x X matrices that light up the orbits Op,...,Oq of G on X x X
with 1s. Then X = {Aq,...,Aq} is an association scheme, called a
Schurian scheme.




Schurian schemes

Proposition

Let G be a finite group acting transitively on a set X. Let Ao, ...,Aq be
the X x X matrices that light up the orbits Op,...,Oq of G on X x X
with 1s. Then X = {Aq,...,Aq} is an association scheme, called a
Schurian scheme.

Note: Let H be the stabilizer of a point. WLOG, X = G/H. We write
X =X(G,H).

Definition

We call (G, H) a Gelfand pair if X(G, H) is commutative.




Spherical projections for Schurian schemes

Let G be a finite group acting transitively on a set X = G/H, with H the
stabilizer of a point. The permutation character is given by

x(g) = |{kH € G/H : gkH = kH}|.
It decomposes into irreducibles

X = mix1+ -+ mMpXnp.



Spherical projections for Schurian schemes

Let G be a finite group acting transitively on a set X = G/H, with H the
stabilizer of a point. The permutation character is given by

x(g) = |{kH € G/H : gkH = kH}|.
It decomposes into irreducibles

X = mix1+ -+ mMpXnp.

Theorem

Each constituent x; determines a projection Ej in o/ = span X(G, H) by
the formula )
Xj -
(Ej)gh ke = === > xj(g " kh).
|G|
heH

Any sum of E;’s is again a projection in «/. If (G, H) is a Gelfand pair,
this accounts for all projections in < .




Frames from group actions

Corollary (I., Jasper, Mixon)

Every transitive action of a finite group determines a finite number of tight
frames through the spherical projections in X(G, H).

Discrete world Continuous world
transitive actions optimal line
of finite groups packings

I

projections with
Schurian schemes E— symmetries and
few distinct entries

@ GAP code: github.com/jwiverson/action-packings
@ Observation: Lots of these frames have optimal coherence


github.com/jwiverson/action-packings

Homogeneous frames

Let G be a finite group, and let 7 be a unitary representation of G on FM.
Suppose the orbit of a vector ¢ € FM is a frame. If

H=1{he G:n(h)p =},

then
¢ = {W(g)‘p}gHeG/H

is a homogeneous frame, or a (G, H)-frame.

Theorem (I., Jasper, Mixon)

Let G be a finite group, and let H < G. The positive semidefinite matrices
in span X(G, H) are precisely the Gram matrices of (G, H)-frames.




Example: Affine action on lines of F3

Let G = AGL(F3) = GL(F3) x F3. It acts transitively on X = {lines in F3}.




Example: Affine action on lines of F3

Ay = A = ]

One of the spherical projections describes a 7 x 28 real ETF.
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As be the symmetry group of the icosahedron, acting on the set

~

Let G

X of vertices.

X X —X —X X
—X
X

X —X —X

1 -1

-1

X —X —X

—X

X

X —X —X

1 -1 —x

—X

X

X —X —X

x —x -1

1 -1 —x X

—X

X

X —X —X
X —X —X

X =X —X 1 -1 —x X
x —x -1 X —x

X

1
X
x —x —1

X

X —X —X

1

Source: en.wikipedia.org/wiki/Platonic_solid
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As be the symmetry group of the icosahedron, acting on the set

~

Let G

X of vertices.

X X —X —X X
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—X

X

1 -1 —x

—X

X

X —X —X

x —x —1

1 -1 —x x

—X
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X —Xx —X 1 -1 —x X
x —x -1 X =X
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1
X
x —x —1

X

X —X —X

1

Source: en.wikipedia.org/wiki/Platonic_solid


en.wikipedia.org/wiki/Platonic_solid

Example: Projective reduction

Let G =~ Ag be the symmetry group of the icosahedron, acting on the set
X of vertices.

1 X —x —X X —x

X 1 —x x —x —x
—X —X 1 x x —x —
X =

—Xx X X 1 —x —x

X —X X —X 1 —x

—X —X —X —X —X 1

Now it's an ETF!

Sl

N

Source: en.wikipedia.org/wiki/Platonic_solid


en.wikipedia.org/wiki/Platonic_solid

Example: Mutually unbiased bases (MUBs)

Let Go < SL(2,5) be the normalizer of a Sylow-2 subgroup.



Example: Mutually unbiased bases (MUBs)

Let Go < SL(2,5) be the normalizer of a Sylow-2 subgroup.

The affine action of G := F2 x Gy on F2 is doubly transitive.

Hence, G acts transitively on

X = {(x,y) e B x F3: x # y}.
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Take some spherical projections and projectively reduce to get. ..

Three MUBs in R*:

r
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Example: A new record

The Mathieu group My; acts doubly transitively on the 12 points in the
Witt design Wio.

Take its transitive action on X = {(p,q) € Wi : p # q}.



Example: A new record

The Mathieu group My; acts doubly transitively on the 12 points in the
Witt design Wio.

Take its transitive action on X = {(p,q) € Wi : p # q}.

Adding up some of the spherical projections (and projectively reducing),
we get a tight frame of 66 vectors in R with coherence = 1/3.

It beats the record in Neil Sloane’s database!

Open problem

Prove this is the optimal coherence.




Example: Hoggar's lines

Let
01 1 0
T = [1 0] and M = {O _1] .

The Heisenberg group over Z3 is H = (T®3, M®3),
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Let
01 1 0
T = [1 0] and M = {O _1] .

The Heisenberg group over Z3 is H = (T®3, M®3),

Fix a certain subgroup Go < Ny(cs)(H) with Go = PSU(3,3). Then
(H x Go, Gp) is a Gelfand pair.



Example: Hoggar's lines

Let
01 1 0
T = [1 0] and M = {O _1] .

The Heisenberg group over Z3 is H = (T®3, M®3),

Fix a certain subgroup Go < Ny(cs)(H) with Go = PSU(3,3). Then
(H x Go, Gp) is a Gelfand pair.

Projectively reduce one of its spherical projections to get an ETF of 64
vectors in C8. (A SIC-POVM!)



9 ETFs with Heisenberg symmetry



Long-term goal: SIC-POVMs

Zauner's conjecture

For every N, the Heisenberg group over Z/N produces an ETF of N2
vectors in CV. The ETF comes from taking the orbit of a special vector in
CN under the Schrédinger representation, and then projectively reducing.

@ Fundamental problem in quantum information theory
@ Open since 1999
@ Tons of numerical evidence

@ Very little theoretical progress
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Let A be a finite abelian group of odd order, with Pontryagin dual group
A. Let K = A x A, with additive notation.
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The Heisenberg group

Let A be a finite abelian group of odd order, with Pontryagin dual group
A. Let K = A x A, with additive notation.

The symplectic form on K maps [, ]: K x K — Copa),

[(a1,01), (a2, 2)] = (a2, 1 a1, )™t (a,- €A a;€ A) )

The Heisenberg group over Ais H = K x Cop(a) (as a set).
Multiplication in H is given by

(u1,21) - (2, 20) = (u1 + wp, z120[ U, un]"/?) (ui€ K, zi € Coxp(ay) -
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Sp(K) = {o € Aut(K) : [o(u),o(v)] = [u, v] for all u,v e K}.
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The symplectic group

The symplectic group is

Sp(K) = {o € Aut(K) : [o(u),o(v)] = [u, v] for all u,v e K}.

It acts on the Heisenberg group H = K x Ce,p(a) by automorphisms:

o-(u,z) = (0(u),2) (0 €Sp(K), ue K, z€ Copn)) -

Theorem (I., Jasper, Mixon)
(H x Sp(K),Sp(K)) is a Gelfand pair.




Sketch of proof

Theorem (folk)

The adjacency algebra &7 = span X(H x K, K) is isomorphic to
L2(H)SP(K) under convolution.

New goal: Show that L2(H)3P(K) is commutative.
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The orbits of Sp(K) < Aut(K) on K coincide with the Aut(K)-orbits.




Sketch of proof

Theorem (folk)

The adjacency algebra &7 = span X(H x K, K) is isomorphic to
L2(H)SP(K) under convolution.

New goal: Show that L2(H)3P(K) is commutative.

The orbits of Sp(K) < Aut(K) on K coincide with the Aut(K)-orbits.

Dutta and Prasad '11: Detailed description of Aut(A)-orbits on A.
Dutta and Prasad '15: Detailed description of Sp(K)-orbits on K.
Observe that they coincide when we replace A with K in the first one. [




Sketch of proof

Let fi, f> € L2(H)SP(K) be characteristic functions of Sp(K)-orbits in H.
Then there are Sp(K)-orbits O1, 0> < K such that

fi= Y Oz (=12
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Sketch of proof

Let fi, f> € L2(H)SP(K) be characteristic functions of Sp(K)-orbits in H.
Then there are Sp(K)-orbits O1, 0> < K such that

fi= Y Oz (=12
UEO,'

Hence,

fixhr= D0 D )iz

ue01 veOsy

= Z Z 5(U+v,2122[U:V]1/2).

u€O1 VEOQ
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Sketch of proof

For (w,z) € H, we get
(A xh)(w,z) = ‘{(u, V) eO1 x Oy u+v=wand z1z[u, v]¥? = z}‘

Let o € Aut(K) be given by o(a,a) = (—a, a). It satisfies
[o(u),o(v)] = [v,u] (u,v e K).

By the lemma, there is some o’ € Sp(K) with o'(w) = o(w).
Since o restricts to bijections on 01 and O,

(h* R)(w,2) = (A = R)(0' (W), 2)
{(u,v) € O1 x Oy : o(u) + o(v) = o(w) and z1z2[0 (1), o (v)]? = 2}

‘ uv) €Oy x Oy u+v=wand z12[v, u]"/? = z}

= (h*h)(w,2). O



ETFs with Heisenberg symmetry

Let 7: H — U(L?(A)) be the Schrédinger representation. Define a
representation p of H on HS(L%(A)) through operator multiplication

[p(u,2)|(T) =m(u,z)- T (T e HS(L*(A)); (u,2) € H)



ETFs with Heisenberg symmetry

Let 7: H — U(L?(A)) be the Schrédinger representation. Define a
representation p of H on HS(L%(A)) through operator multiplication

[p(u,2)|(T) =m(u,z)- T (T e HS(L*(A)); (u,2) € H)

Theorem (I., Jasper, Mixon)

Let P be orthogonal projection of L?(A) onto the space of even functions.
After projective reduction, the orbit of P under p forms an ETF for its
span.

Moreover, the Gram matrix of the full orbit lies in the adjacency algebra
for X(H x Sp(K),Sp(K)).

Note: We get redundancy ~ 2, not a SIC-POVM.



Thanks for your attention!

@ Paper: “Optimal line packings from finite group actions”

JW.L., J. Jasper, D.G. Mixon
arXiv:1709.03558

@ GAP code: github.com/jwiverson/action-packings


 arXiv:1709.03558 
 github.com/jwiverson/action-packings 

Questions?

Source: www.sideshowtoy.com


www.sideshowtoy.com
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