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Introduction



Phase retrieval

In phase retrieval problems, we seek to recover the phase of a signal from
the magnitude of linear measurements.

X-ray crystallography

Far-field diffraction intensity

Crystal
X-ray bcmn

Figure 1: The experiment settings for X-ray crystallography. We desire to know the
molecular structure of a crystall. On the far-field we observe the diffraction intensity,
which is the magnitude of the Fourier transform of the crystal.




Phase retrieval

Quantum tomography

The quantum measurements are generally described by positive operator
valued measures (POVM'’s). That is,

A={A,-- ,An}
where each Az, R =1,--- ,m, is Hermitian positive semidefinite. The
measurement gives
A(p) = (trph, -+ ,trpAm) .

If pis a pure state, that is, p = |1) (2|, then the recovery of the state falls
into the problem of generalized phase retrieval. Moreover, if we choose to
use rank-one POVM'’s (Ax = |fe) {fx], R = 1,--- ,m), then we have

trpAr = [(¥[fi)]” -



Phase retrieval

Speech recognition

In speech recognition, sampled speech signals are first transformed to the
time-frequency domain via discrete windowed Fourier transform.

The speech signal is sampled as {x(t) : t=0,1,--- , T —1}.

The fast windowed Fourier transform is

M—1
X(k,w) = > g(tx(t + kN)e ™M k=01, —— .

t=0

In commonly used noise reduction method, we apply a nonlinear transform
on |X(k,w)| only and does not include the noisy phase. Also in some speech
recognition applications, unwrapping the phase is computationally difficult.
It is desired to do reconstruction without phase.



Scattering network

In a scattering network [Mallat], we perform linear measurements and take
absolute values consecutively.

Ya,1

]
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Figure 2: The scattering network. fis the input. y's are the outputs. For instance, y, 1
on the top right corner reads y, 1(t) = |||f* RIEX PRI g3’1| * ¢y (t).




Convolutional neural networks

The scattering network belongs to the large class of convolutional neural
networks (CNN).

1
T

Figure 3: Examples of CNN. The left one is AlexNet used in [Krizhevsky et al.], the right
one is GoogleNet used in [Szegedy et al.]

Common elements of a CNN:

- Convolution
- sparse connection, equivariance to translation
- Activation
- biological motivation, probabilistic explanation
- Pooling
- reduce the complexity, invariant to small translation



Stability

We are interested in the stability in the phase retrieval problem and
convolutional neural networks.

We look at the Lipschitz property for the respective maps.

Definition

Let (X, dx) and (Y, dy) be two metric spaces where dx and dy are the
distance functions respectively. A continuous map f: X — Y is said to be
Lipschitz continuous, or Lipschitz, if

dy (f(x1), f(x2))
o T a)

In this case, we denote

lip() = sup Jr{0).f0e))

X1,% EX dx (X1, X2)



Bi-Lipschitz

Definition

Let (X, dx) and (Y, dy) be two metric spaces where dx and dy are the
distance functions respectively. A continuous map f: X — Y is said to be
bi-Lipschitz, if there exist constants A and B, with 0 < A < B < oo, such that

Adx (x1,X2) < dy (f(x1), f(x2)) < Bdx (x1,%2)

(1) If a function fis bi-Lipschitz, then it is injective.

(2) In general the injectivity of a Lipschitz function does not imply the
bi-Lipschitz property.



Phase retrievability implies bi-Lipschitz
property



Frame

Definition
Let # be a n-dimensional Hilbert space. F = {f1,f2,...,fm} C H is a frame
for H if there exist constants A, B > 0 such that

m

Allx|I* < Z (x.fu)l* < BlIx|I?

forany x € H.



The measurement maps

Magnitude measurement map:
a:H =R alX) = (106F) Dri<ram
Square measurement map:

B:H-R, B0 = (ISl

1<k<m
There is an ambiguity of a universal phase

a(x) = a(e'*x), Vo € [0,2m) .



The measurement maps

Consider the equivalence relation ~ such that
X~y iff da,|a] =1 st y=ax
Let A denote the collection of the equivalence classes.
Magnitude measurement map:
a:H-RY, a®) = (X f)ichams XER
Square measurement map:

B:H =R ﬁ()“():<|<x,fk>\2) . xexR

1<kR<m

Definition
F is phase retrievable if a (or equivalently ) is injective.



Distance function

A stability result usually quantifies how the “output” changes with a small
change in the “input”.

To measure how much the change is, we need to define reasonable distance
functions

Definition
Natural metrics: for 1< p < co and &,y € A

Dp(%,9) = mi:q lIx —ayll, -
Matrix-norm induced metrics: for 1< p < co and X, § € %

1/
(ZLW(W)D) ’ for 1<p<oo

MaXi<k<n Ok for p=o0

dp(%,9) = [IXx* = yy*[l, =

)

We are interested in D, corresponding to the Euclidean distance and d,
corresponding to the nuclear norm.



The noisy measurement

Loy

T
-t + 1 = azo) + 11

"z
- Yo = alzy) + v

?:I: BR™

Figure 4: Assume an additive noise model y = a(x) + v. Suppose we have an inverse
map w : R™ — H. Then for the reconstructed signal x; = w(y;) and x; = w(yz),
D2(%1,%2) = Dy (w(¥1), w(y2)) < Lip(w) - 1 = yall = Lip(w) - [l — v2l.



The noisy measurement

Suppose we have an invertible measurement map.
We need a reconstruction map from R™ to # that is Lipschitz.

We shall establish it in two steps.

1. For a phase retrievable map, show that it is bi-Lipschitz, that is, the
inverse map is Lipschitz continuous.

2. The inverse map can be extended to R".



Phase retrievability implies bi-Lipschitz property

Summary of results

Suppose the map is phase retrievable. The bi-Lipschitz property can be
established in all the cases as follows:

H=TR" H=C"
o | [Balan, Wang] | [Balan, Z.]
B [Balan], [Bandeira et al.]

It is relatively easy to find the upper Lipschitz bound in each case.
For «, the upper Lipschitz bound is given by the upper frame bound B.
For 8, the upper Lipschitz bound is given by B2.

The lower Lipschitz bound is more relevant to the stability of reconstruction.



Lipschitz bounds

Definition

1. The global lower and upper Lipschitz bounds, respectively:

- lla(¥) — a3 la(x) = a)ll>
Ao = inf 1AH — AVl By = sup 1 — VI,
* T ayen Dalx,y) ’ we% Da(x,y)?

2. The type [ local lower and upper Lipschitz bounds at z € A, respectively:

o) ~ o) o) ~ o)

A(z) = lim inf , B(z)=Ilim su
@) =0 xyef Da(x,y)? @) r—0 x,yea Da(x,y)?
Dy (x,2)<r Dy(x,2)<r
Da(y,2)<r Dy(y,2)<r

3. The type Il local lower and upper Lipschitz bounds at z € H, respectively:

2 2
7 : : X) —al(z = . X) — a(z
A(z) = lim inf lla() = (@)l , B =lim sup lla(x) — (2]l ,
r—0  xefl Da(x,2)? —~0 oh D(x, 2)2
salberr Dy{x,2)<r



Lipschitz bounds

Definition

1. The global lower and upper Lipschitz bounds, respectively:

_ e 1B = BWII _ 1B(x) = W5
b= x,lyefﬁ di(x, y)? 7 e Xs’yue?; di(x, y)? ’

2. The type [ local lower and upper Lipschitz bounds at z € A, respectively:

186 = BOIE EORE

a(z) =lim inf , b(z)=lim sup

r—0 X,yef:f CI‘\(X,)/)Z r=0 X,ye}:! d“(X7y)2
di(x,2)<r dq(x,2)<r
a(y,2)<r di(y,2)<r

3. The type Il local lower and upper Lipschitz bounds at z € H, respectively:

s im g B =B@I o 18() = B@)Il;
WM S ek 0 OTIR SR Tawar
di(x,z)<r di(x,z)<r



Realification

- Consider the R-linear map j : C" — R*" defined by

.| real(z)
@) = { imag(2) }

Notation: £ = j(x), n = j(y), ¢ = j(2), ¢ = i(f), 0 = j(d).
- For a frame set F = {f1,f2,- -+ ,fm}, define the symmetric operator

O = prph +Jorpr), R=1,2,---,m.

where

- Define S : R*" — Sym(R*") by

0 ,if €=0
S() = )
© { Chopero eny PREE L, T E#0



Lower Lipschitz constant in case # = C"

Theorem

Let F c C" be a phase retrievable frame for C". Let A and B denote its
optimal lower and upper frame bound, respectively. For any z € C", let
¢ = j(2) be its realification. Then

1. Forevery 0 #z € C", A(2) = An-1(S(€)) ;

2. Ao =A(0)>0;

3. Foreveryz € C", A(2) = Aan—1 (S(C) + Yz iy=o d>k) :
CA(0)=A;
. Foreveryze C", B(z) = B(z) = \ (S(C) + Xk iz fiy=0 d>k) :
6. Bo = B(0) = B(0) =B.

(€2 I

Now we prove Part 1and 2.

(For Part 3 & 5, the calculation is similar to Part 1. Part 4 & 6 are easy cases.)



Proof of Part 1

Denote
() = aW)II*

Dy XyeC, X#7.

px,y) ==
Then
p(x,y) = P(&m)

Yo (k€ €) + (Prn, 1) — 24/ (®k€, €) (e, 1) .

IEN* + lmll* = 24/ €, m)* + (€, Jm)?

Fixr> 0. Take & n € B(¢,r). Let p = &% and v = &2,

20



Proof of Part 1

P(&;n) = Ppp, p) + (Prv,v) — Prp, ) + (Prv, v))? — 4{( Prp, v)° |-
(& m) >« )+ ¢ ) (« )+ ( ))? ( )

k=1

=
(HMHZ I = \ll + I — 2118l 1P + 4 <wu>2)

> (3 (Ouin) + @) = (@) + (@) = 4 (@upa)? )

kidp, ¢ 0
—1
2 2
(Wl 1 = /il o = 2 P 17
1

= T 2 (@) + (@) - V(@ 1) + (@pr, 1)) — & (Dppa, 1)?
VIF kopcso

2
= ST (@ )+ (Gh ) — (O ) (w Gihd) _  (0000) >+o<\|uu“)

20017 2,0 (Ot ) (Do, 1)’

(®rp, v)°
= o e T o(llvII*)
ragero (Pt ) NIl
1

llw11?

(S(wv,v) +O(lIvII*) -

21



Proof of Part 1

Examine p and v we have (J¢,v) = 0 and

2 (- ) v

OB > (8P, Pl + (1)

1 n n r’ 2
> W <S(,u)P,MV, P,uz/> (1 _ HMHQ) +o(P)
> (1 o ) X1 (S()) + O(P) -

HPjtl/

Consequently

Take r — 0, by the continuity of eigenvalues with respect to matrix entries
we have that
A(2) = Xan-1(S(Q)) -

22



Proof of Part 1

Take E;n—1 to be the unit-norm eigenvector correspondent to Azn—1(S(¢)).
Foreach r > 0, take &€ = { + SExn—1 and n = ¢ — SExn—1. Then

p(x,y) = P(&,n) = Aan-1(S(C)) -

Hence
A(2) < Aana(S(C)) -

Combining both directions we have

A(2) = Aan—1(S(Q)) -

23



Proof of Part 2

Proof by contradiction, compactness argument:

Assume Ag = 0. Then forany N € N, 3 xy,yy € C" s.t.

_ llaw) — aym)l® _
p(Xn,yn) = W =N

WLOG assume 1= x|l > [lyw]| , VN.

By compactness of the closed ball B,(0) = {x € H: ||x|| < 1} in C", there
exist convergent subsequences of {xy}nen and {yn}nen.

We write {Xy}nen — Xo € C" and {yn}nen — yo € C".

From Part 1, A(xo) > 0. Also, Da(xw, yn) < 2. So

llaxn) —alyw)ll = 0 and  fla(x0) — ayo)ll = 0

By injectivity, xo = yo € C". Hence p(xw,yn) > A(Xo) — 1/N > 1/N for large N.
Contradiction.

Q.E.D.

24



Global stable reconstruction



Extend the inverse map to R™

Recall:
We need a reconstruction map from R™ to # that is Lipschitz.

We shall establish it in two steps.

1. For a phase retrievable map, show that it is bi-Lipschitz, that is, the
inverse map is Lipschitz continuous.

2. The inverse map can be extended to R".

As we shall see in the following slides, the Kirszbraun Theorem provides
some conditions for an extend-able Lipschitz map.

25



Kirszbraun Theorem

Definition (The Kirszbraun Property (K))

Let X and Y be two metric spaces with metric dx and dy respectively. (X, Y)
is said to have Property (K) if for any pair of families of closed balls
{B(xi, ri) = i €1}, {B(yi, ri) : i € I}, such that dv(y;,y;) < dx(x;, x;) for each
I,j € I, it holds that

ﬂB(X,’,f,‘) #@ = ﬂB(y,‘,I’,’) 75 0.

i€l i€l

Theorem (Wells and Williams, Ch. 10)
Suppose X and Y are Hilbert spaces and dx and dy are the metrics induced
by the inner products in each space respectively. Then (X,Y) has Property

(K).

26



Kirszbraun Theorem

Theorem (Kirszbraun Theorem)

Let X and Y be two metric spaces and (X, Y) has Property (K). Suppose U is a
subset of X and f: U — Y is a Lipschitz map. Then there exists a Lipschitz
map F : X — Y which extends f to X such that

Flu=f
and
Lip(F) = Lip(f) -

Unfortunately, (Rm.,fl) does not have Property (K).

27



General idea

RS

KB HE

SYO(H)

P — M = B()

R™

Kirszbraun

A

Sym(H)
28



The map 7 : Sym(H) — S"0(H)
Lemma

Consider the spectral decomposition of any self-adjoint operator A in
Sym(#H), say A = me Am(k)Pr, Wwhere Xy > X\ > -~ > \p are the n
eigenvalues including multiplicities, and Ps,...,P4 are the orthogonal
projections associated to the d distinct eigenvalues. Additionally, m(1) =1
and m(k + 1) = m(R) + r(R), where r(R) = rank(Py) is the multiplicity of
eigenvalue A\n . Then the map

7 Sym(H) — S"U(H) , w(A) = (M — \)P
satisfies the following two properties:

1. for1 < p < oo, mis Lipschitz continuous from (Sym(#), ||-]|,) to
(S"°(H), |1-I,,) with Lipschitz constant Lip(r) < 3+ 2"*5;
2. w(A) = Afor all A € S"°(H).

Note: numerical experiments suggest a smaller Lip(w) is smaller. However,
we can find an example with Lip(w) = 2, so Lip(w) > 2.

29



Let A, B € Sym(#) where A= 3"9_ \,xPr and B = Zg;zw Hm(rr)Qrr . We now
show that
1
lw(A) = =(B)ll, < (3+2""7) A~ B, -

WLOG, 0 < A1 — X2 < i1 — pp (other cases are easy).
(M =X)P1— (1 = 2)Q = (M =) (P — Q1)+ (M — 1 — (N2 — 12))Q1
1Pl = 1@l =1 = IIP = Qill, <1 = 1P —Qill, <27
Weyl's inequality = |\ — | < [|JA—BJ|, foreach .
= |\ —ml+[x —pe <2[A-B|, <2[A- B,
Letg:= XM — X, 6:=[A— B,

Iw(A) — 7(B)ll, < g |IPy — Qill, +25 < 27 g + 265 .

If0 < g < (2+277)3, then ||(A) — w(B)||, < (2% + 3)d. Done.

P

30



Case:g > (2+ 27%)6.
§<g/2 = |M—m| <g/2and |X; — 2| < g/2

Use holomorphic functional calculus to rewrite:

= 77‘%RACIZ Q= fRBdZ
2l

where Ry = (A—2z)~", Rs = (B — zI)~", and v = ~(t) is the contour

y

As A1

31



Ao A

IPr = Qull, < % /IH(RA — Re)(v(t)Il, 1 (B)ldit.
(Ra—Re)(2) = Ra(2)=(I+Ra(2)(B-A)T'Ra(2) = D (=1)"(Ra(2)(B—A))"Ra(2)

n>1

) 20 2

— —_—— < =< — <1,
IRMD(B = Alloe < IRk 1B = All, < Groz—oss ol
Therefore

1A 8| .
I(Ra = RV (DN, < D IRa(v()IIZ (14— Bl (27 +1)

e diStz('y(t),U(A))



Therefore,
1 A — B 1
Pi— il < (2F 427 "/, "(t)|dt
1P - Qill, < ( — | stemem "
A—B
- (@F +2*1)L o 2m
™ g
1 0
- " +1)2.
( )g
Recall
[m(A) —7(B)Il, < glIP1—Qill, +24 .
We have

Im(A) = 7(B)ll, < (3 +2"3)5 .

QE.D.

53



Global stable reconstruction

kg

RS

SYO(H)

B

P — M = B()

R™

Kirszbraun

A

Sym(H)
34



Global stable reconstruction

Need ¢, which is a composition of ¢ and an embedding ko (for ) or kg

(for B).

Hl—HXX* if x#0

Kot H — S"UH) CSym(H) , ka(X) = { O F ox=0

kg H — S"O(H) C Sym(H) , rp(x) = xx™.

Ko IS bi-Lipschitz; kg is an isometry.

According to the picture to combine all the maps, plus change of norms, we
have a theorem.

B85



Global stable reconstruction

Theorem

Let F = {f1,...,fm} be a phase retrievable frame for the n dimensional
Hilbert space H Let Ao and ao denote the lower Lipschitz constant for e and
B, respectively. Then

1. there exists a Lipschitz continuous function w : R™ — # s.t. w(a(x)) = x
forall x € H. Forany 1< p,q < oo, w has a Lipschitz constant Lip(w)p.q
between (R™, ||-||,) and (¥, Dq) bounded by:

I 2577 . max(1,m?"F)  forq <2
Lip(w)p,q < 3+

7 ~max(1,m% %) forq > 2.

2. there exists a Lipschitz continuous function ¢ : R™ — # s.t. ¢(B8(x)) = x
forallx € H. Forany 1< p,q < oo, ¥ has a Lipschitz constant Lip(t),.q
between (R", ||-[|,) and (%, dg) bounded by:

_ 3%-2f%-max(1,m%*%) forg <2
Lip(¥)p.q < 1+ 11
32T max(1,m2"») forq > 2. 36
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A framework of CNN for stability
analysis




Why stability analysis

Figure 5: The adversarial examples given in [Szegedy et al.]. In each group (row) of
pictures, the picture on the left is correctly labeled by AlexNet, the picture on the right
is labeled wrong as “ostrich”, and the picture in the middle show their difference.

[Szegedy et al.] compute the frame bound for each layer of AlexNet, and
conclude that the upper bound is large in each layer.

37



Why stability analysis

Scattering networks are mathematically shown to be stable, but its filters
are not subject to learning.

Case study:

A
-y
T PN N PO

Figure 6: The structure of the scattering network for our case study. x is the input
signal; h/k’s are the convolutional filters taken to be the dilation of a Morlet wavelet
with trained scales; g is the pooling function followed by a downsampling factor L; the

feature y goes through a linear SVM to generate the classification result.
38



Why stability analysis

The optimization problem for learning is
1 N
. 5 .
)r‘nvlvr; 5 llw[|* + C UE:W [(Vn, Qn; W, b) ,

where
l(yaa; w, b) = maX(O,’] - Cl(b + <W7y>)) )

and y is the vector composed of the following vectors:

Yo= X*x0,;
yQ: X*hg*g,'lgjg?ﬁ
o= Pl ) xg. 1<) <0

where

Pt ) =ty @vy (t 1) = X N (X t)$(X ) -

39



Why stablility analysis

error Class0 | Class1 | Class2 | Class3 | Class4 | Class5 | Class6 | Class7 | Class8 | Class9
rate (%)
stochastic
gradient 11.5 2.75 32.87 49.88 39.12 42.63 21.62 38.5 38.37 41
descent
deterministic
%mdwnl 1.87 1.12 6 8.25 55 10.25 4.5 8 12 10.87
escent
libSVM 3 1.62 6.25 7.5 4.87 9.37 5.25 7.75 10.87 10
Square
(determini 1.63 1.25 6.12 7.88 4.25 10.62 3.62 5.75 10.13 9.38
stic)

Figure 7: The classification results for MNIST. The error rate shows the percentage of
data correctly labeled. The first row shows the results using the stochastic gradient
descent method, the second row shows the results using the deterministic gradient
descent method, the third row shows the results using libSVM, the fourth row shows
the results where |-| is replaced by |-|%.

Want: a general framework for studying stability properties.

40



General structure of a CNN

Output Input Output Input 0:([’ ‘;‘ Input
nodes for nodes for nodes for nodes for n&i:scor nodes for
Layer | Layer2 Layer2  Layer3 (M{” Layer M
*— —O——0— —~Oo—e— —O0—0—
Input
Layer 1 Layer 2 LR Layer M
nodes . .. R
o— >O—@—| —~O—@— —0—0—
Output Output Output

Figure 8: The detail of an M-layer ConvNet. The signals at output nodes are identical
as at input nodes in the next layer. There may or may not be output in each layer.

41



Pooling filters —— Outputs (Feature)

Detection &
Pooling/ |~ Output nodes
Merge

Convolutional Downsample /
filters Dilation

Input nodes

1. The input nodes are signals from the output nodes in the previous layer
(it is the input of the whole network for the first layer).

2. The convolutional filters are the filters that perform convolution with
the signal from the input nodes.

3. The detection / merge operations are nonlinear operations applied
pointwise to the output of the convolutional filters.

4. The pooling filters lower the dimensionality to generate the outputs.

5. The output nodes are signals that are passed to the next layer. The
signal on the output nodes is identical to that on the input nodes of the

next layer. 42



Signals are taken from L2(RY).

Filters are taken from B = {f € S'(R%),

]ACHOo < oo}

uonegdai33e wrou-d

Figure 9: The three types of merge. Type | is taking sum of the inputs, Type Il is taking
p-norm aggregation, Type Il is taking pointwise product.

43



Pooling

Pooling

T

Figure 10: A toy example that shows how pooling works. The left image is subdivided
into nine regions. The pooling operation outputs one value for each region. We take
the top right corner for example. In the case of max pooling, we have

¢ = max{ci1,C12,C,1,C22}; In the case of average pooling, we have
c=(ag+a2+cn+0p)/4

44



o

uoryeSoi8Se T

Figure 12: Average pooling modeled as Type | aggregation.
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Details of the m-th layer

Output

Dy ot
———>0 N,Iml

A Dty Tmt2

0N

P

w.: Im, Lik1

Detection /
Merge /
Pooling

Output

o N’

m,n,

Figure 13: The detail of one layer. N's are the input nodes, N’’s are the output nodes.
¢'s and g's are the filters, D's are the dilation factors. o's are the nonlinearities. 46



Details of the m-th layer

For each filter gm n.r, we define the associated multiplier Iy n in the
following way: suppose gm,n € G, v, let K = |Gy, n,\ denote the cardinality
of Gy, . Then

K ,ifgm’n;;?EﬁUﬁ

e =
m,n;R Kmax{O,Z/P_1} , if Am,nik € T2

We define the 1st type Bessel bound for the node N, to be

}?m,n
—d A 2
+ E :lmm:f?Dm,n;h ‘gm,ﬂ:/?| )
k=1

~ 2
\qsm,n

the 2nd type Bessel bound to be

Rm,n

B%,)n = Z [m,n;kD;,,dn;h |@m,n;k‘2 )
k=1

and the generating bound to be
2

~

Bg,)n - ¢7m,n

oo

47



Details of the m-th layer

Then we define the 1st type Bessel bound for the m-th layer to be

M _ 0
B’ = Max Bmn,

the 2nd type Bessel bound to be

@ _ @)
Bn' = max Bmn

and the generating bound to be

(3) _ (3)
B’ = 1 Enn B

48



Lipschitz bound

For any input signalfandf Let fy be the output for f from the node N, and
fN be the output forffrom the node N. Let V be the collection of all nodes.
We say L is a Lipschitz bound for the CNN if

> e <A1,
NeVv

Define the map & : L2(RY) — [L2(RD)]"! by
O(f) = (fw)nev -

Then a norm ||| - ||| defined on [L2(R)]"! by

1/2
[ ¢mer|[| = (Z |f~|§>

is well defined and v/L is a Lipschitz constant in the sense that

o700 < -7

2

49



Lipschitz bounds for CNN




Lipschitz bound

Theorem

Consider a CNN with M layers and in the m-th layer it has 1st type Bessel
bound BW, 2nd type Bessel bound B%) and generating bound BS?,). Then the
CNN implies a nonlinear map that is Lipschitz continuous, and its Lipschitz
bound is given by the optimal value of the following linear program:

M
max sz

m=1
S.t yo:1

Ym +2Zn <BDym_1, 1<m<M—1
Y < BPym_1, 1<m<M—1
Zm < BQym—1, 1<m<M

Ym,Zm > 0, forall m

50



Proof

ouput frm,1

D)

Om,151

hina
Non2

Om,1;2

ouput frm e

ik

Om, Lk T

am,nm@

Um,nm*,..,um’

Detection /
Merge /
Pooling
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Study three types of merging:

2

K
o =oll5 = ||>_ o) — or(F)
k=1 D)
K
< KD llow(ye) — or(@)ll5
k=1
<

K
K> e — ill3 -
k=1
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o
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<
o
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K K
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ifp>2,

[lyo

~ 12
—¥oll

IN

IN

— Yo

k=1 k=1 2
‘ 1/p
() = o))
k=1 2
K . 12|°
( o) = w7
k=1 2

Z 1Ye = Fell5 -

HUre yi) — or(@e)l; <
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K K
lvo = ¥oll, = HH oR(VR) — H or(¥R)
k=1 k=1 2
K K=1 J K K
= H IT ort) + 32 [ = T ertr) TT ore) + H Tk Vk) H ok @) = TI ok
k=1 J=1 k=1 k=J+1 =l k=J+1 k=1

K—1 K—=1J—1

k=1 =2 k=1

K—1 K—=1J=1
< TT llertp)l
k=1

loo * llox k) — ax @, + Z IT llorOpl
=2 k=1
“lleron) = a1l

K
I okl oo
k=2

K K
< S lloplp) — or@ll, < X0 e — el
k=1 k=1

and thus [lyo — Joll; < K3y Ik = Fell;.

[T oktr) - (k) = ok 0) + 32 T o) - (030 = o) - TT o) + (101) = @10 - T @)

K K

k=/+1 k=2

2

H lor@ll o - ||yt = oy, +
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NGy S
[0 -0 ox
= 51 [ 200 -7200] ox
H -7

Combine the above and compare with the definition of B™M, we have

o7

2
2

/

m 2

- 2 Im .
2 [ = B[, + 20 Wi ~Fnalls < 8 [imn =B
Also
Nm+1 " P n;n . 9
Z ‘ hm+1,n - hm-M,n = Z h:n,n - h;n,m
n=1 4 n=1
Therefore,

2

2 2 56

Nm1 . ;  m . Mm - 2
; Hhm+1,n — Pimsrn 2+;Hfm,n—fm,n < B&P;Hhm,n—hm,n



Similarly,

and

Nm
3 thm+Ln—-hm+mn
n=1

Nm
> |lfmr = Fone
n=1

2 ! 2
. ~
2 S Bﬁn) ;:1 Hhm,n - hmw" 3 )

2 m " 2
< B> ||mn — |
n=1

Now to determine a Lipschitz bound, we just need to solve the linear

program

Q.E.D.

s.t.

M

Yo =1

Y +Zm < BDYmo1, 1<mM <M1
Ym < BQym—1, 1<mM<M—1
Zn < BDYmo1, 1<mM<M

Ym,Zm >0, forall m
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An easy estimate

Corollary

Consider a CNN with M layers and in the m-th layer it has st type Bessel
bound Bﬂ). Then the CNN induces a nonlinear map that is Lipschitz
continuous, and its Lipschitz bound is given by

M
[T max{1,8%3 .
m=1

Moreover, if B(nl) = BES) for each m, then this bound coincide with the output
of the linear program.
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Note that if {ym x;g and {zm}ff‘;g are the maximums of the linear program,
then
Zn < BSYm1—Ym, 1<mM<M-1,

and
Zm < B/(\J))/M—L

Take the sum over all m’s (denote yy = 0),
M M M—1 M—1 M—1
Sz < S By = 3By = B0+ (8~
m=1 m=1 m=0 m=1 m=1
Also, ym < Bfﬁ)ym,1 implies y, < Bf;)ym,q, o)

M
D>z
m=1

IN

M—1 m
B+ "(max{1,B0,,} = 1) - T] max{1,8)}
m=1

m’=1

M
[ max{1,80} .
m=1

Q.E.D.
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Implication for stationary processes

Theorem

Assume there is no dilation in CNN. Let X and Y be Strict-sense-stationary
processes with finite second-order moments. Then

E (mcb(X) - <I>(Y)m2) <L-E(K-YP),

where L is the Lipschitz constant associated with the CNN. In particular,
IOQOIIE < L-E (1x7).
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Example: a four-layer scattering network

Y31 Ya,1

H
s
E—
K
.
H
:
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Example: a four-layer scattering network

We consider the 1D case and the wavelet given by the Haar wavelets

ot 1, ifo<t<1/2
, Ifo<t< i
(1) = A and P(t) =4 -1, if1/2<t<1
0, otherwise .
0, otherwise

we have a four-layer convolutional network for which the filters are given by
G, b €{1,2,3} gaps € {1,--- ,9} and g3, 3 € {1,--- , 27}, where

), if mod ((,3) =1,
Imi = § 1, if mod ([,3) =2;
Py,—2, if mod ([,3)=0.

Also, for the output generation, g1 = ¢n = ¢3 = ¢y, = 22(27).
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Example: a four-layer scattering network

We use three approaches to estimate the Lipschitz constant.

1. Backpropagation: backtrack from outputs and estimate toward inputs
~ ) . 2 ~2
l16() = DI = 3 Wiy = Fni 3 < 50 £ =F|
m,lm

2. Use the theorem: By = B, = B3 = B, = 1, we have

lleo) - oMIIF < |l -7

3. Alower bound is derived by considering only the output y;,1 from the
input layer. Obviously

o) — oDIIF > ||~ 7= 1]
Thus

~ 2
o) = SPIP [o=Dxel, 0
- P ~112 -
e
Therefore, 1is the exact Lipschitz bound (and Lipschitz constant) in our
example.

sup
74 ‘

2
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Example: a general CNN

y2.1

92,2

z22

- 22,4
-------
F -l 924
21‘2'\
N T H -

y2,2
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Example: a general CNN

First approach: backpropagation from the outputs

llow = e[ = 3 1mc = 3mt
m,l

< [l (ol + vl ot +

(grall + llgrally + llgrell)* el +
lgnal gzl sl + (lgnally (lgz.lly + llgz.l)+

N

2
(19121l + Nlgr3lly + lgaall)(N1g2,61l, + \|92,5\|w)> H¢3H$) :

65



Example: a general CNN

Second approach:

Y2,2
1st layer 2nd layer 3rd layer 4th layer
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Example: a general CNN

Second approach:

= A 2o IA B LA P A2 Nk
B = (1G] + 1G1.2)" + 1G,3]" + |Grs]” + |n

[ee]

bl

= 2 2
B, =max{1, ‘ ‘

|Qz,1|2 iy |Q2,2|2 r \@2,3|2 + )éz

~ ~ |12
Bs :max{Z, qu53Hoo};
- ~ 12
By :max{tH@Hw}.

Then the Lipschitz constant is given by (B:1B,B:B,)"?, that is,

\Q2,4|2 + \Q2,5|2 + ‘032

)

oo

ot - e[| < BiaBB -7, - 1)
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Example: a general CNN

Define F(w) = exp(4w’/(4w® — 1)) - X(~1/2,0(w), and G(w) = F(—w). The
filters are defined in the Fourier domain to be

@W)IHW+U+M1M)+GW—U
= Flw+3)+ (W) + G(w +2) + Flw — 2) + x,3)(w) + Gw —3)
= Fw+5)+ —iy(w) + G(w + 4) + F(w — 4) + x5 (w) + G(w — 5)
= Flw+7)+ —6)(w) + G(w + 6) + F(w — 6) + x(6,7)(w) + G(w —7)
= Flw+9) + x(—9,—8)(w) + G(w + 8) + F(w — 8) + x(8,9)(w) + G(w — 9)

(
(
(
(
= Flw+2) + x(—2,2)(w) + G(w —2)
= Flw+4) + x(—4,—3)(w) + G(w + 3) + F(w — 3) + x@,4)(w) + G(w — 4)
= F(w+6) + x(—6,—5)(w) + G(w + 5) + F(w — 5) + Xx(5,6)(w) + G(w — 6)
( )
(
(
(

Flw +8) + x(—s8,—n(w) + G(w + 7) + F(w — 7) + x@7,8)(w) + G(w — 8)

= F(w+5) + x(=5,-3)(w) + G(w + 3) + F(w — 3) + x3,5)(w) + G(w — 5)
= F(w+8) + X(-s,—6)(w) + G(w + 6) + F(w — 6) + Xx(6,8)(w) + G(w — 8)
)

Flw 4 9) + x(=9,9)(w) + G(w = 9)
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Example: a general CNN

Define the filters as in the previous slide. Then we have the Lipschitz
constant in the first approach is

M =311
and in the second approach is

=12

Numerical experiment suggests that the constant is about

M3 =1.1937
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Example: a general CNN

Using the same network, define

. bow? + bw + 1 (@) + (@) + ex bw? — bw 41 @)
4 + bew X(—1,—1/2)(w X(—1/2,1/2)(wW p ? — e X(1/2,1)(w

With that done, we define the filters in the Fourier domain to be
(W) = Fw)
@w(w) = Flw+2—1/2) + F(w — 2+ 1/2) j=1,2,3,4.

R b’ + 12w + 9
ex —_—
4w? + 2w + 8

exp <M>X(3/z.z)(w)
4w? — Rw + 8 ’
02j(w) = Fw+2) + Flw —2)) j=1,2,3.
G4(w) = Fw+2)+ Flw —2)
92,5(w) = Flw+5)+ Flw—=15)
. . (4w2+20w+25

Flw) =

) X(-2,-3/2)(w) + X(=3/2.3/2)(w)+

pEE 24) X(=3,-5/2) (W) + X(=5/2,5/2)(w)+

. 4w? — 20w + 25 (@)
e ——— w) .
ha? — 20w + 25 ) X6/2)
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Example: a general CNN

For this setting,
BY) = 2exp(—1/3)

B =g =1
for each m.

The linear program outputs the optimal Lipschitz bound
L =2.2992 M =+/L = 15163
the Lipschitz bound given by the corollary is

Le = 8[exp(—1/3)]> = 2.9430 e = vLc = 1.7155

l



Thank you!
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