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Introduction

What is super-resolution?

Broadly speaking, super-resolution is concerned with recovering fine
details (high-frequency) from coarse information (low-frequency).

There are two main categories of super-resolution:
@ Spectral extrapolation — Optical, radar, geophysics, astronomy,
medical imaging, e.g., MRI, problems;
@ Spatial interpolation — Geometrical or image-processing, e.g.,
in-painting, problems.

Remark We shall deal with spectral extrapolation, and we shall not
deal with the important role of non-uniform sampling and multiple
measurements, nor the critical setting of noisy environments.
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Introduction

Background and notation

Our super-resolution model is based on the theory of Candés and
Fernandez-Granda [4], [5] for discrete measures, and our main idea
was inspired by classical work of Beurling [2], [3].

@ TY is the d-dimensional torus group.

@ M(T?) is the space of complex Radon measures on the torus.

@ || - || is the total variation norm.

@ The Fourier transform of 1 is the function fi: Z¢ — C, defined as

jitm) = [ &727™ ().

@ A C 7Z%is a finite set.
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Introduction

The super-resolution problem

The unknown information is modeled as x € M(T9), not only discrete
measures. There are two reasons for u € M(T9):

@ Objects (images) are not necessarily supported by discrete sets;
@ Fine features can be supported in measure 0 non-discrete sets.
The given low-frequency information is modeled as spectral data,

F(n), n € A. To recover p from F, we pose the super-resolution
problem,

inf|lv| subjectto »ve M(TY and 7=F on A (SR)

Remark Using weak-x compactness arguments, we can show that
this problem is well-posed (the inf can be replaced with a min), but
not without significant theoretical and computational challenges.
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Introduction

Connection with compressed sensing

If the unknown measure v is of the form,

N—1
m=0

where x € CN, x = (xo,...,Xn_1), then
N—-1 )
p(n) = Z Xm e 27N = Fy(x)(n),
m=0

the DFT of x. This shows that Problem (SR) is a generalization of the
basis pursuit algorithm for under-sampled DFT data F:

For given F(n), n€ Q C Z/NZ, solve
min|ly|» subjectto yeCN and Fyy=F on QCZ/NZ,

For this reason, super-resolution is a continuous theory of Mt HEE GRS
compressed sensing.
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Theorems

A theorem of Candes and Fernandez-Granda, d = 1

The following theorem for d = 1 shows that one can reconstruct a
discrete measure whose support satisfies a minimum separation
condition.

Theorem, Candés and Fernandez-Granda [5]

Let Ay ={-M,—-M+1,... M} for some integer M > 128 and let
F = i on Ay, where u € M(T) is a discrete measure for which

inf [x —y| > 2
X,yesupp(), XAy - M

Then, p is the unique solution to Problem (SR) given F on Ay,.

v
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Theorems

A theorem of Candes and Fernandez-Granda, d > 1

The following theorem for d > 1 shows that one can reconstruct a
discrete measure whose support satisfies a minimum separation
condition.

Theorem, Candes and Fernandez-Granda [5]

Given S = {s;}/_; C T and 1 € M(T?) for which supp () C S. Let
Ay ={-M,—M+1,... M}9, let F be spectral data on Ay, and let
1w = F on Ay. There exist Cy, My > 0 such that if M > My and

inf ||sj — sk > Ca
1<jck<y T OKle=(T9) = T

then p is the unique solution to Problem (SR).

v
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Non-discrete measures?

Motivated by applications, we develop a super-resolution theory for
non-discrete measures. This is carried out by connecting the Candes
and Fernandez-Granda theory of super-resolution [5] with Beurling’s
theory of minimal extrapolation [2], [3]. To this end —

@ Let e be the minimum value attained by Problem (SR), i.e.,
e=¢€(N,F)=inf{||v|]: = F on A}
@ Let £ be the set of all solutions to Problem (SR), i.e.,
E=ENF)={veMTY: |v] =eand D = F on A}.

If v € &, then we say v is a minimal extrapolation from A.
@ Our theory depends essentially on the set,

Norbert Wiener Center
for Harmonic Analysis ans Applications

[=T(AF)={meA: |F(m)] =e}.

John J. Benedetto and Weilin Li Super-resolution by means of Beurling minimal extrapolation



Theorems

Theorem

Theorem [1]

Let A C 79 be a finite set and let F be spectral data defined on A.

(a) Suppose I' = (. Then, there exists a closed set S of
d-dimensional Lebesgue measure zero such that each minimal
extrapolation is a singular measure supported in S.

(b) Suppose #I' > 2. For each distinct pair m, n € T, define
amn € R/Z by e2™emn = F(m)/F(n). Define the closed set,

S= () {xeT x-(m-n)+amns€Z},
m,ner
m#n

which is an intersection of (*) periodic hyperplanes. Then, each
minimal extrapolation is a singular measure supported in S. Senter

plications
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[llustration of the theorem
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Figure: An illustration of the second case of the theorem. The hyperplanes in
the theorem are represented by the dashed lines. The vectors p = (1/4,3/8)
and q = (—1/4,1/8) are normal to the hyperplanes and their lengths
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Theorems

The role of uniqueness

Why uniqueness is important:

@ If u € E(A, F) is unique, then any numerical solution to Problem
(SR) approximates .

@ Without uniqueness, even if u € E(A, F), it is possible that a
numerical solution to Problem (SR) does not approximate .
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Examples

Uniqueness and super-resolution reconstruction

Let A ={-1,0,1}. Define F in the following ways.
@ F(0) =0, F(£1) = 2. Define u = o — 912 € M(T). T = {—1,1}.
@ F(0)=0,F(x1) =1=£1i. Define u = do — 61,4 € M(T).
r={-1,1%L
® F(-1)=0, F(0)=1+¢e"/3 F(1) =1+ e ™"/3. Define
uw=20do+ e”’/361/3 S M(T) M= {0, 1 }
In each case i can be proved to be the unique minimal extrapolation,

and so super-resolution reconstruction of u from the values of F on A
is possible.

Norbert W1ener Center
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Cantor measures and #I" = 1

Cq = Ni=o Caq.k, integer g > 3, is the middle 1/q-Cantor set, where

C C
Cq,O = [0,1] and Cq1k+1 = %k U('] _q)_|_ %k,

and let o4 be the continuous singular Cantor-Lebesgue measure with

ag(m) = (—=1)" [ cos(zmgq™*(1 - q)),

k=1
VneZ\ {0}, oq(q") #0 takes the same constant value.

Let A C Z be finite, assume 0 € A, and suppose F defined on A
satisfies F(0) = 1, noting 54(0) = |ogl| = 1. If 0q € E(A, F), then
#I =1, and our present theory does not determine if o4 is the unique

Norbert Wiener Center
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Non-uniqueness: . = dg + 012 € M(T) and #I = 1

@ Given A ={-1,0,1}and F(0) =2, F(£1)=0. If
p =00+ 0172 € M(T), then zz = F on A.
@ u is a minimal extrapolation, e = 2, and I' = {0}.

@ There are uncountably many discrete minimal extrapolations. In
fact, x € T and any integer N > 2 define the discrete measure

2 N—-1
U = 5 D Ox g
n=0
and each vy x is a minimal extrapolation.
Ngrbert W}enet Center
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= 0 + 012 € M(T) and #I" = 1, continued

@ There are also uncountably many positive absolutely continuous
minimal extrapolations. In fact, for any integer N > 2 and
constant 0 < ¢ < (2N +2)/(3N + 1), extend F on A to the
sequence {(awn.c)n}nez, Where

2 if n=0,
(anen =4 c(1- ) f2<|n <N,
0 otherwise.

The non-negative real-valued function

-2 N

fN,c(X) =2+ Z (aN,c)n eZm'nx + Z(aN,c)n eZm'nx
n=—N n=2
Norbert Wiener Center
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Optimality in higher dimensions

In higher dimensions, geometry plays an important role.
@ LetA={-1,0,1}2\{(1,-1),(=1,1)} and let
1= 60,0) + 0(1/2,1/2) € M(T?).
@ Then, p is a minimal extrapolation, e = 2, and
r=1{(0,0),(1,1),(-1,-1)}.
@ We can construct other discrete minimal extrapolations. For any
x € R and any integer N > 2, define the measure

=

=z

VN,X = (S(

x+ﬁ,1—x—%)'

S
Il
o

Then, each vy x is a minimal extrapolation.
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Optimality in higher dimensions, continued

@ We can also construct a continuous singular minimal
extrapolation. According to the theorem, each minimal
extrapolation is supported in the set,

S:{XGTZ:X1+X2:1}.

Let o = V205, where o is the surface measure of the Borel set
S. We readily verify that o is indeed a minimal extrapolation.

This example shows that the second statement of our theorem is
optimal.
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Final remarks

@ Our theory shows that I provides significant information about
the minimal extrapolations. In particular, when #I" # 1, they are
always singular measures, but when #I" = 1, they could be
absolutely continuous.

@ We have not discussed how to solve Problem (SR)
computationally. Candés and Fernandez-Granda provided an
algorithm that potentially fails, but this occurs only if I # .
Hence, our theorem is capable of computing analytical solutions
even when it is impossible to compute a numerical
approximation.

@ The theorem opens up the possibility of the super-resolution of
continuous singular measures. Since we are concerned with
Fourier samples, medical imaging is a natural application of this
theory. Mpbetiiieser Conjer
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Final remarks, continued

@ Our theorem does not require additional assumptions on
w € M(T9) or on the finite subset A C Z9. Since the theorem also
describes the support set of the minimal extrapolations of x from
A, it is useful for determining whether a given 1 can be recovered
by solving the super-resolution problem.

@ The second statement of the theorem provides sufficient
conditions for when the minimal extrapolations are supported in a
lattice. As we have seen, such measures correspond to vectors
solving the discrete compressed sensing problem. Thus, our
theorem is a continuous-discrete correspondence result.

@ Our results are closely related to Beurling’s work on minimal
extrapolation. He dealt with R instead of T9, so our theorem is
an adaptation to the torus and a generalization to higher
dimensions. There are non-trivial technical differences b%t bertqm%er Conter
working with R' and T¢. e Harmoni Al o4 onlcaions
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Pre-dual of the super-resolution problem

The strategy is to analyze an appropriate dual formulation. As such,
we define the pre-dual problem:

max‘ Z amF(m)‘ subjectto Vx e TY, ’ Z ay,€2Timx

men men

<1.

(SR’)
If {@m}men solves Problem (SR’), then for all v € £(A, F),

:1}.

Remark Problem (SR’) can be recast as a semi-definite program. It is
unknown whether Problem (SR) can be.

supp(v) C {x eT: ‘ > ape” X
men
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Admissibility range

A numerical approximation of ¢ can be obtained by solving Problem
(SR'), but its exact value is typically unknown. On the other hand, if
we are given finite A C Z9, spectral data F on A, and p € T9, then

sup [F(m)| < e(A, F) < |-

men

@ If the lower bound is attained, then I # (). Our theory is
particularly strong for large #Tr.

@ The upper bound € = ||| is a necessary condition for
unigueness of the super-resolution of i from F.
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On minimum separation

In view of the CFG theorem, it natural to ask whether separation is
necessary in order to recover a discrete measure. We show that if
two Dirac masses are too close, super-resolution is impossible.

@ Let A C Z9 be a finite set and let u, = do — J, for some non-zero

y €T
@ Let v, be the absolutely continuous measure,
_ Z ﬁ;(m)eZﬂm-x.
meA

By construction, 7, = i, on A. As y — 0,

|Vy|| _/ ‘ Z /Jy 27rim~x

For |y| sufficiently small, we see that 1, & £.

dx — 0.
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