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The discrete periodic ambiguity function

Given u : Z/NZ→ C.
The discrete periodic ambiguity function,

A(u) : Z/NZ× Z/NZ −→ C,

of u is

A(u)(m,n) =
1
N

N−1∑
k=0

u[m + k ]u[k ]e−2πikn/N .



CAZAC sequences

u : Z/NZ −→ C is
Constant Amplitude Zero Autocorrelation (CAZAC) if

∀m ∈ Z/NZ, |u[m]| = 1, (CA)
and

∀m ∈ Z/NZ \ {0}, A(u)(m,0) = 0. (ZAC)

Are there only finitely many non-equivalent CAZAC sequences?
”Yes” for N prime and ”No” for N = MK 2,
Generally unknown for N square free and not prime.



Björck CAZAC discrete periodic ambiguity function

Let A(bp) be the Björck CAZAC discrete periodic ambiguity function
defined on Z/pZ× Z/pZ.

Theorem (J. and R. Benedetto and J. Woodworth)

|A(bp)(m,n)| ≤ 2
√

p
+

4
p

for all (m,n) ∈ Z/pZ× Z/pZ \ (0,0).

The proof is at the level of Weil’s proof of the Riemann hypothesis
for finite fields and depends on Weil’s exponential sum bound.
Elementary construction/coding and intricate
combinatorial/geometrical patterns.
The Welch bound is attained.
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Figure: Absolute value of the ambiguity functions of the Alltop (non-CAZAC)
and Björck (CAZAC) sequences with N = 17.



Modeling for multi-sensor environments

Multi-sensor environments and vector sensor and MIMO
capabilities and modeling.
Vector-valued DFTs
Discrete time data vector u(k) for a d-element array,

k 7−→ u(k) = (u0(k), . . . ,ud−1(k)) ∈ Cd .

We can have RN → GL(d ,C), or even more general.



Ambiguity functions for vector-valued data

Given u : Z/NZ −→ Cd .

For d = 1, A(u) : Z/NZ× Z/NZ −→ C is

A(u)(m,n) =
1
N

N−1∑
k=0

u(m + k)u(k)e−2πikn/N .

Goal
Define the following in a meaningful, computable way:

Generalized C-valued periodic ambiguity function
A1(u) : Z/NZ× Z/NZ −→ C
Cd -valued periodic ambiguity function Ad (u).

The STFT is the guide and the theory of frames is the technology to
obtain the goal.



Preliminary multiplication problem

Given u : Z/NZ −→ Cd .
If d = 1 and en = e2πin/N , then

A(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k)enk 〉.

Preliminary multiplication problem

To characterize sequences {ϕk} ⊆ Cd and compatible multiplications
∗ and • so that

A1(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ ϕn•k 〉 ∈ C

is a meaningful and well-defined ambiguity function. This formula is
clearly motivated by the STFT.



A1(u) for DFT frames

Given u : Z/NZ −→ Cd ,d ≤ N.
Let {ϕk}N−1

k=0 be a DFT frame for Cd , let ∗ be componentwise
multiplication in Cd with a factor of

√
d , and let • = + in Z/NZ.

In this case A1(u) is well-defined by

A1(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ ϕn•k 〉

=
d

N2

N−1∑
k=0

N−1∑
j=0

〈ϕj ,u(k)〉〈u(m + k), ϕj+nk 〉.



A1(u) for cross product frames

Take ∗ : C3 ×C3 −→ C3 to be the cross product on C3 and let {i , j , k} be
the standard basis.

i ∗ j = k , j ∗ i = −k , k ∗ i = j , i ∗ k = −j , j ∗ k = i , k ∗ j = −i ,
i ∗ i = j ∗ j = k ∗ k = 0. {0, i , j , k ,−i ,−j ,−k , } is a tight frame for C3 with
frame constant 2. Let

ϕ0 = 0, ϕ1 = i , ϕ2 = j , ϕ3 = k , ϕ4 = −i , ϕ5 = −j , ϕ6 = −k .

The index operation corresponding to the frame multiplication is the
non-abelian operation • : Z/7Z× Z/7Z −→ Z/7Z, where
1 • 2 = 3, 2 • 1 = 6, 3 • 1 = 2, 1 • 3 = 5, 2 • 3 = 1, 3 • 2 = 4, etc.

Thus, u : Z/7Z −→ C3 and we can write u × v ∈ C3 as

u × v = u ∗ v =
1
22

6∑
s=1

6∑
t=1

〈u, ϕs〉〈v , ϕt〉ϕs•t .

Consequently, A1(u) is well-defined.

Generalize to quaternion groups, order 8 and beyond.



Frame multiplication

Definition (Frame multiplication)

Let H be a finite dimensional Hilbert space over C, and let
Φ = {ϕj}j∈J be a frame for H. Assume • : J × J → J is a binary
operation. The mapping • is a frame multiplication for Φ if there exists
a bilinear product ∗ : H×H → H such that

∀j , k ∈ J, ϕj ∗ ϕk = ϕj•k .

The existence of frame multiplication allows one to define the
ambiguity function for vector-valued data.
There are frames with no frame multiplications.



Harmonic frames

Slepian (1968) - group codes.
Forney (1991) - geometrically uniform signal space codes.
Bölcskei and Eldar (2003) - geometrically uniform frames.
Han and Larson (2000) - frame bases and group representations.
Zimmermann (1999), Pfander (1999), Casazza and Kovacević
(2003), Strohmer and Heath (2003), Vale and Waldron (2005),
Hirn (2010), Chien and Waldron (2011) - harmonic frames.
Han (2007), Vale and Waldron (2010) - group frames, symmetry
groups.



Harmonic frames

(G, •) = {g1, . . . ,gN} abelian group with Ĝ = {γ1, . . . , γN}.
N × N matrix with (j , k) entry γk (gj ) is character table of G.
K ⊆ {1, . . . ,N}, |K | = d ≤ N, and columns k1, . . . , kd .

Definition

Given U ∈ U(Cd ). The harmonic frame Φ = ΦG,K ,U for Cd is

Φ = {U
(
(γk1 (gj ), . . . , γkd (gj ))

)
: j = 1, . . . ,N}.

Given G,K , and U = I. Φ is the DFT − FUNTF on G for Cd . Take
G = Z/NZ for usual DFT − FUNTF for Cd .



Group frames

Definition

Let (G, •) be a finite group, and let H be a finite dimensional Hilbert
space. A finite tight frame Φ = {ϕg}g∈G for H is a group frame if there
exists

π : G → U(H),

a unitary representation of G, such that

∀g,h ∈ G, π(g)ϕh = ϕg•h.

Harmonic frames are group frames.



Abelian results

Theorem (Abelian frame multiplications – 1)

Let (G, •) be a finite abelian group, and let Φ = {ϕg}g∈G be a tight
frame for H. Then • defines a frame multiplication for Φ if and only if
Φ is a group frame.



Abelian results

Theorem (Abelian frame multiplications – 2)

Let (G, •) be a finite abelian group, and let Φ = {ϕg}g∈G be a tight
frame for Cd . If • defines a frame multiplication for Φ, then Φ is
unitarily equivalent to a harmonic frame and there exists U ∈ U(Cd )
and c > 0 such that

cU
(
ϕg ∗ ϕh

)
= cU

(
ϕg
)

cU (ϕh) ,

where the product on the right is vector pointwise multiplication and ∗
is defined by (G, •), i.e., ϕg ∗ ϕh := ϕg•h.



Remarks

Given u : G −→ H, where G is a finite abelian group and H is a
finite dimensional Hilbert space. The vector-valued ambiguity
function Ad (u) exists if frame multiplication is well-defined for a
given tight frame for H.
There is an analogous characterization of frame multiplication for
non-abelian groups (T. Andrews).
It remains to extend the theory to infinite Hilbert spaces and
groups.
It also remains to extend the theory to the non-group case, e.g.,
our cross product example.





Ambiguity function and STFT

Woodward’s (1953) narrow band cross-correlation ambiguity
function of v ,w defined on Rd :

A(v ,w)(t , γ) =

∫
v(s + t)w(s)e−2πis·γds.

The STFT of v : Vw v(t , γ) =
∫

v(x)w(x − t)e−2πix·γdx .
A(v ,w)(t , γ) = e2πit·γVw v(t , γ).

The narrow band ambiguity function A(v) of v :

A(v)(t , γ) = A(v , v)(t , γ) =

∫
v(s + t)v(s)e−2πis·γds



Björck CAZAC sequences

Let p be a prime number, and ( k
p ) the Legendre symbol.

A Björck CAZAC sequence of length p is the function bp : Z/pZ→ C
defined as

bp[k ] = eiθp(k), k = 0,1, . . . ,p − 1,

where, for p = 1 (mod 4),

θp(k) = arccos
(

1
1 +
√

p

)(
k
p

)
,

and, for p = 3 (mod 4),

θp(k) =
1
2

arccos
(

1− p
1 + p

)
[(1− δk )

(
k
p

)
+ δk ].

δk is the Kronecker delta symbol.



Problems and remarks

For given CAZACs up of prime length p, estimate minimal local
behavior |A(up)|. For example, with bp we know that the lower
bounds of |A(bp)| can be much smaller than 1/

√
p, making them

more useful in a host of mathematical problems, cf. Welch
bound.
Even more, construct all CAZACs of prime length p.
Optimally small coherence of bp allows for computing sparse
solutions of Gabor matrix equations by greedy algorithms such
as OMP.


