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Nuclear Magnetic Resonance (NMR) Relaxometry

Figure: Clockwise from top left: a. Local magnetization M emerges
from alignment with magnetic field B0. b. With an RF pulse, M aligns
with the magnetic field B1 in the transversal plane. c. After the pulse,
M begins to realign with B0. d. Components Mlon(t) and Mtr (t),
characterized by decay rates T1 and T2, respectively, describe M(t) at
time t . Images courtesy of Alfredo Nava-Tudela.
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Objective

A 1-dimensional continuous NMR relaxometry signal takes the
form

y(t) =
∫ ∞

0
f (T2)e−t/T2 dT2 + n(t) (1)

where T2 is the transversal decay rate, f (T2) corresponds to the
amplitude of the associated component, and n(t) is additive
noise.

Objective:
Recover the distribution of amplitudes f (T2) present in the
signal via an inverse Laplace transform (ILT).
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Toy Example

Consider a signal

y(t) = 0.6e−t/T2,1 + 0.4e−t/T2,2 + n(t) (2)

where the exact distribution f (T2) is

f (T2) = 0.6 δT2,1(T2) + 0.4 δT2,2(T2) (3)

The recovery of f (T2) is unstable due to the sensitivity of the
inversion to noise.
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Motivation

Celik et al [1] demonstrated stabilization of the ILT through the
introduction of a second, indirect dimension.

Figure: The experimental process applied by Celik [1]. The 2D ILT
path illustrated by the solid arrows produced better resolution of
peaks in a sparse signal than the 1D ILT path (dashed arrow).
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Motivation

Figure: The experimental process applied by Celik [1]. Inversions
from 12 different noise realizations are shown, demonstrating the
stability of the 2D ILT. Top: 1D ILT. Bottom: 2D ILT projection.

Christiana Sabett ILT Regularization in NMR Relaxometry



Discrete Model

A 1D NMR signal takes discrete form

z(ti) =
K∑

j=1

F (T2,j)e−ti/T2,j (4)

In matrix form:
z = AF (5)

where

[A]ij = e−ti/T2,j (6)
zi = z(ti) (7)
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2D NMR Model

The 2D continuous NMR relaxometry signal takes the form

z̃ (̃t , t) =
∫ ∞

0

∫ ∞
0

F (T1,T2)e−t̃/T1e−t/T2dT1dT2 (8)

In discrete form,

z̃ (̃ti , tj) =
K1∑

k=1

K2∑
m=1

F (T1,k ,T2,m)e−t̃i/T1,k e−tj/T2,m (9)
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2D NMR Model

Define A1,A2, F̃ , and Z such that

[A1]ik = e−t̃i/T1,k

[A2]jm = e−tj/T2,m

[F̃ ]km = F (T1,k ,T2,m)

[Z ]ij = z̃ (̃ti , tj)
(10)

Then
Z = A1F̃AT

2 (11)

(M1 × M2) = (M1 × K1)(K1 × K2)(K2 × M2)

which becomes

vec(Z ) = (A2 ⊗ A1)vec(F̃ ) (12)
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Ordinary Least Squares

With 1D ordinary least squares (OLS), we solve

min
F∈RK

||AF − y ||22 (13)
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Ordinary Least Squares

Define the singular value decomposition of A as

A =
L∑

i=1

σiuivT
i (14)

where σi are the singular values and ui , vi are the left and right
singular vectors, respectively. Then the OLS solution is

FOLS =
N∑

i=1

uT
i y vi

σi
. (15)
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Regularization

To increase stability in the inversion, we add a penalty term
tuned by the parameter α.

The most common form is Tikhonov regularization, aka ridge
regression.

min
F∈RK

||AF − y ||22+α2||F ||22 (16)
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Regularization

Other common penalty forms include:

Lp regularization, p ≥ 1

min
F∈RK

||AF − y ||22+α||F ||p (16)

L1 regularization is known as LASSO. Lp regularization for
1 < p < 2 is called bridge regression.
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Regularization

Other common penalty forms include:

differential operator, L

min
F∈RK

||AF − y ||22+α||LF ||22 (16)
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Regularization

We will discuss Tikhonov regularization.

min
F∈RK

||AF − y ||22 + α2||F ||22 (16)

Christiana Sabett ILT Regularization in NMR Relaxometry



Regularized Least Squares

The regularized problem can be expressed as a normal least
squares problem

min
F∈RK

||ÃF − ỹ ||22 (17)

where

Ã =

[
A
αIK

]
ỹ =

[
y

0K

]
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Regularized Least Squares

For an appropriate choice of α,

FTikh =
N∑

i=1

fi
uT

i y vi

σi
(18)

where, in the case of Tikhonov regularization, the filter factors fi
take the form

fi =
σ2

i

α2 + σ2
i
. (19)
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Regularization Parameter

The choice of regularization parameter α strongly influences
the character of the solution.
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Methods to Choose the Regularization Parameter

Numerous methods have been proposed to choose the ideal
regularization parameter. We will consider the following:

Discrepancy Principle
Generalized Cross Validation
L-Curve Method

Christiana Sabett ILT Regularization in NMR Relaxometry



Discrepancy Principle

The discrepancy principle attempts to minimize the residual
based on a prespecified error bound ε, such that

||AFα − y || = ε (20)

for the optimal α.

Disadvantages:
Requires a priori knowledge of the error
Often oversmooths the solution
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Generalized Cross Validation

Generalized Cross Validation (GCV) extends the idea of
“leave-one-out” cross-validation, minimizing the function

G(α) =
||AFα − y ||2

(τ(α))2 (21)

with
τ(α) = trace(I − A(AT A + α2LT L)−1AT ). (22)

where L is a differential operator or the identity matrix (Hansen).

Disadvantages:
G(α) is difficult to minimize numerically due to its flatness
Does not perform well with correlated errors
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The L-Curve

Introduced by P.C. Hansen in 1993, the L-curve was originally
used as an analytical tool.

It plots the residual ||AFα − y ||2 against the size of the solution
||Fα||2 as a function of α.
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L-Curve Method

The L-curve method was proposed by Hansen and O’Leary as
a means of choosing the regularization parameter α. Idea: Find
the “corner” of the L-curve.

Advantages over the other methods:
Well-defined numerically
Requires no prior knowledge of the errors
Not heavily influenced by large correlated errors when
considered on a log scale
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L-Curve Method

When GCV performs well, the chosen α value is close to the
value chosen by the L-curve method.
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L-Curve Method (Hansen, O’Leary)

Let (ρ, η) define a point on the L-curve in log scale.

FINDCORNER

1. Calculate several points (ρi , ηi) on each side of the corner.
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L-Curve Method (Hansen, O’Leary)
Let (ρ, η) define a point on the L-curve in log scale.

FINDCORNER

2. Fit a 3-dimensional cubic spline to those points (ρi , ηi , αi) after
first performing local smoothing.
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L-Curve Method (Hansen, O’Leary)
Let (ρ, η) define a point on the L-curve in log scale.

FINDCORNER

3. Compute the point of maximum curvature and find the
corresponding regularization parameter α0.
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L-Curve Method (Hansen, O’Leary)
Let (ρ, η) define a point on the L-curve in log scale.

FINDCORNER

4. Solve the regularized problem and add the new point
(ρ(α0), η(α0)) to the L-curve.
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L-Curve Method (Hansen, O’Leary)

Let (ρ, η) define a point on the L-curve in log scale.

FINDCORNER

5. Repeat until convergence.
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Model Extensions

Characterize the “optimal” choice of penalty term using the
L-curve method to optimize the regularization parameter.

L2 penalty:
min

F∈RK
||AF − y ||22 + α||F ||22

L1 penalty:
min

F∈RK
||AF − y ||22 + α||F ||1

Elastic Net:

min
F∈RK

||AF − y ||22 + α1||F ||1 + α2||F ||2

Lp penalty:
min

F∈RK
||AF − y ||22 + α||F ||p
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Conclusion

An NMR relaxometry signal can be inverted via an inverse
Laplace transform. The measurement of an additional, indirect
dimension provides increased stability in the inversion.

Regularization
Form a least-squares problem.
Add a Tikhonov regularization term for stability.

L-Curve
Critical to the quality of the inversion is the choice of
regularization parameter α.
Use parametric plot of ||AFα − y ||2 versus ||Fα||2 to find the
optimal α.
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