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Introduction

Shift-invariant Spaces on R

@ A shift-invariant space V is a closed subspace of L?(R) that is
invariant under integer translation,
ie,ifgp e V,thenvop = ¢(- — k) € V,Vk € Z.

@ Define the mapping 7 : L?(R) — L3(T, (3(Z)) as
TH(X) = {F(x + k) }kez-

Then V is shift-invariant < 7V is closed under integer modulation.
Where modulation by k is define as ex(x)a(x) = €2 X (x).
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Introduction

Shift-invariant Spaces on R

@ A shift-invariant space V is a closed subspace of L?(R) that is
invariant under integer translation,
ie,ifgp e V,thenvop = ¢(- — k) € V,Vk € Z.

@ Define the mapping 7 : L?(R) — L3(T, (3(Z)) as
TH(X) = {F(x + k) }kez-

Then V is shift-invariant < 7V is closed under integer modulation.
Where modulation by k is define as ex(x)a(x) = €2 X (x).

@ Q: Can we extend this result to LCA groups?
A: YeS. Ngrber‘[ ZNlener Center
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Introduction

Definition

The sequence {u;}ic is a frame for the Hilbert space # with constants
A>0and B> 0if
Allfl12 < SSF, u)|? < BJ|f||?, for all f € H.
i€l
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Introduction

Intro (cont’d)

Theorem [Benedetto & Li (1994)]
Let ¢ € L?(RY) and let

V = Span{r¢ : k € 29}

be a closed subspace of L2(RY). The sequence {7x¢} is a frame for V if
and only if there are positive constants A and B such that

A< d(y) < Bae.on T\ N,

where ®(7) = 3 |d(y+ m)2and N = {y € T? : d(y) = 0}.

mezd
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Preliminary

Assumptions and Notations

@ G is a second countable, locally compact abelian, Hausdorff group.

@ A uniform lattice H in G is a discrete subgroup of G such that the
quotient group G/H is compact.
Note: We only consider countable uniform lattice.

@ A section of G/H is a set of representatives of this quotient.
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Preliminary

Assumptions and Notations (cont'd)

@ Dual group of G,

N

G=T ={v:G— C: ~iscontinuous character of G}.

Where a character is a function such that |y(x)| = 1,vx € G and
YX+y) =) (y), VX, y € G.

@ Denote (x,v) = vy(x).

@ Annihilator of H,

A={yerl:(h~)=1,Yhe H}.

A is a countable uniform lattice in I'. -

;;;;;;;




Preliminary

Example

If we consider the group to be R, we have:

G/H=T
[/A=T

H=7
A=7

Norbert Wiener Center

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

10/36



Preliminary

Haar Measure on LCA Groups

@ A Haar measure exists for each G.
@ There exist a Borel measurable section of G/H.

@ [P(G) can be defined as
LP(G) = {f: G— C: f is measurable and/ [f(x)|[Pdmg(x) < co}.
G

@ We focus on L?(G).
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Preliminary

Fourier Transform

Definition

Given f € L'(G), the Fourier transform is
f ’Y) = fG f(X)(X, _V)de(X)v'y S r

@ The Haar measure of I' and G can be chosen that the following
inversion formula holds for certaln class of functions

= Jr T )dme().

@ the Fourier transform on L' (G) N L2(G) can be extended to a unitary
operator from L2(G) onto L?(T).

o y € G, then ,f(y) = (v, —)(v).
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Preliminary

Hiloert Space Properties of L2(Q)

@ Fix Q a Borel section of '/ A.

@ Define na(v) = (h, —7)xa(7),
then {nx}ren is an orthogonal basis for L2().

@ my and mr,a can be chosen such that

my 0
lalleeqry = ({9}51/2 | Z annn||iz()
heH

for each a = {ap}hen € 2(H).
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Shift-Invariant Spaces

H-invariant Spaces

Definition
A closed subspace V C L2(G) is H-invariant if

feV=mfeV YheH,

where 7, f(x) = f(x — y) denotes the translation of f by an element y of
G.

@ For a subset A C L?(G), denote
Ey(A) ={m¢: ¢ € A he H} and S(A) = spanEy(A).

Call S(.A) the H-invariant space generated by A.
@ If A contains only one element ¢, then we call S(A) = S¢ a
principle H-invariant space.
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Shift-Invariant Spaces

Fiber Map

@ [2(Q,/?(A)) is the space of all measurable functions ® : Q — (2(A)
such that
Joo 19() 22y I () < 0.

Proposition

The mapping 7 : L2(G) — L?(Q,¢?(A)) defined as
Tf(w) = {f(w+9)}sen,
is an isomorphism that satisfies || 7|2 = ||f||2(c)-

@ Trpf(w) = (h, —w)T f(w).
I:!Sar}sirz Z/nhener Ce(nter
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Shift-Invariant Spaces

Range Function

Definition
A range function is a mapping,

J: Q — {closed spaces of (?(A)}.

The subspace J(w) is called the fiber space associated to w.

Note:
@ This concept was first developed by Helson in [6] .
@ Denote the orthogonal projection onto J(w), P,, : 2(A) — J(w).

@ Jis a measurable range function if and only if for all & € L2(Q, £2(A))
and all b € 2(A), w +— (P, (®(w)), b) is measurable.
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Shift-Invariant Spaces

Orthogonal Projection

@ Define the set M, as

My = {® c L3(Q,2(A)) : d(w) € J(w) aeweQ}.

Proposition

Let J be a measurable range function and P,, the associated orthogonal
projections. Denote by P the orthogonal projection onto M. Then,
(PO)(w) = P,(®(w)), a.e.w € Q, Vb € L3(Q, 2(A)).

Norbert Wiener Center
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Shift-Invariant Spaces

Proof of Proposition

@ Define Q: L2(Q,2(A)) — L3(Q,£2(A)) as (Q9)(w) = P,(®(w)),
Claim: Q = P.
@ Qs a well defined and has norm < 1 since

10918 = [ 1PLO)IEqamr() < 013

@ Q satisfies 9?2 = Q and Q* = Q by definition
= It is an orthogonal projection.

@ M := Ran(Q) equals M, = Q is orthogonal projection onto M,.
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Shift-Invariant Spaces

Main Result

Theorem 1 [Cabrelli & Paternostro (2010)]

Let V C L?(G) be a closed subspace. Then V is H-invariant if and only if
there exist a measurable range function J such that

V={fecl?G): Tflw) cJw) aewcQ}

If two range functions which are equal almost everywhere are identified,
the correspondence is one-to-one and onto.

If V = S(A) where A is a countable subset of L2(G), then

J(w) = Span{To(w) : ¢ € A}.
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Shift-Invariant Spaces

Proof of Theorem 1

We will need the following lemma:

If J and K are two measurable range functions such that M, = Mk, then
J(w) = K(w) a.e.w € Q.

Proof:

@ Denote P, and Q,, projections correspond to J, K;
‘P the orthogonal projection onto M, = M.

® Pu(®(w)) = (PP)(w) = Qu(®(w)).
@ P, and Q, map basis of /2(A) onto same image.
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Shift-Invariant Spaces

Proof of Theorem 1

(=) L?(G) is separable, then 3.A countable such that V = S(A).
Define J(w) = span{T ¢(w) : ¢ € A}.

Step 1: V= {f e [3(G) : Tf(w) € J(w) a.e.w € Q}
@ Need: M =TV = M,.
@ Ford e M,
3{g;}jen C spanEy(A) such that 7g; = ®; — @ in L2(Q, 2(A)).
®j(w) € J(w) = P(w) € J(w).

Norbert Wiener Center
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Shift-Invariant Spaces

Proof of Theorem 1

@ Suppose there exists a non-zero ¥ € L2(Q, 2(A)) orthogonal to M.
Since V is H-invariant, forany ¢ e TAC M

0= [ (h=)(®(). V() (aycmr()
V(w) L J(w)a.e. weQ, thus¥v L M,.

Norbert Wiener Center
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Shift-Invariant Spaces

Proof of Theorem 1

Step 2: J is measurable
@ Let 7 be identity mapping on L2(Q, (2(A));
P L2(Q,¢?(A)) — M be the orthogonal projection onto M.
@ ForV € [2(Q,2(A)),(T — P)V(w) L J(w), a.e. w € Q, then
P.(Z = P)V(w)) = Pu(V(w) = P¥(w)) =0
0 P,(V(w)) = PV¥(w).
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nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

24/36



Shift-Invariant Spaces

Proof of Theorem 1

(<)
@ We need: V := 7~'(M,) is H-invariant.

@ Forany f e V, T(mf)(w) = (h,—w)T f(w) for almost every w € Q
= (h,—w)TH(w) € J(w).

@ T(rhf) € My = pf € T71(MJ).

Norbert Wiener Center
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Shift-Invariant Spaces

Shift-invariant Spaces on L?(R)

Theorem [Helson (1964)]

The doubly invariant subspaces of L3, are precisely the subspace M,,
where J is a measurable range function.

The correspondence between J and M, is one-to-one, under the
convention that range functions are identified if they are equal almost
everywhere.
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Shift-Invariant Spaces

From Shift-invariant Spaces to Frames

Theorem [Bownik (2000)]

Suppose A C L?(R") is countable. Then the following are equivalent:
@ Eu(A)is a frame for its close span S(.A) with constants A and B.

@ Forae. xeT", {Té(w): ¢ € A} C (3(Z") is a frame for its closed
span with constants A and B.

Theorem [Gol & Tousi (2008)]

Let ¢ € L2(G). En{¢} form a Parseval frame for the space S¢ if and only
if |[To(w)]2 =1 a.e. on Q\N where N = {w € Q : ||T¢(w)|2 = 0}.
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Frames of H-invariant Spaces

Characterization of Frames for H-invariant Spaces

Theorem 2 [Cabrelli & Paternostro (2010)]

Let A be a countable subset of L?(G), J the measurable range function
associated, and A < B positive constants. Then the following are
equivalent:

@ The set E(A) is a frame for its closed span S(.A) with contants A
and B.

@ Forae. wec Q,the set {To(w): ¢ € A} C 2(A) is a frame for J(w)
with constants A and B.

Norbert Wiener Center
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Frames of H-invariant Spaces

Proof of Theorem 2

@ Assuming either (i) or (ii), we have

3D e, Dz P

¢eAhcH

= 51 [ (T TR madme @ (1)
¢€A hcH

= 3 [ 176, T o () @
oA

Norbert Wiener Center
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Frames of H-invariant Spaces

Proof of Theorem 2

(i) = (/)
o We need: A[f|2 < 3> 3= [(tho, F)i2(q)? < BI|f||? for f € S(A).
¢pc A heH

@ Forany f € S(A), we have Tf € J(w), then

AITHW)IZ < Y- T o(w), THw))? < BITH(w)|%.
peA

@ T is an isometry, by (1), we get (ii) = (/).
Norbet W St
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Frames of H-invariant Spaces

Proof of Theorem 2

(i) = (if)
@ Let D be a dense countable subset of 2(A),
then (ii) is equivalent to: For all d € D,

AlP.d|? < Y (Té(w), P.d)? < B|P.d|P, aew e Q.
peA

@ Suppose above statement is not true, then 3dy € D such that either

> (T é(w), Pudo)? > (B+ €)||Pudbl? (3)
PEA

or
> UTd(w), Pudo)? < (A—e€)l|Pco|®
PpeA
NSar}JirE Z/nhener Ce(nter

monic Analysis s Applications
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Frames of H-invariant Spaces

Proof of Theorem 2

@ Suppose (3) holds,
take f € S(A) such that Tf(w) = xw(w)P. db.
@ By (i) and (1),

AITH|? < Z/ (T o(w), THwW)) ey 2dmr(w) < B|TF|?
peA
@ Integrate (3) we get
> / (T d(w), xw(w) P o) 2(a) P dmr(w) > (B + €)|| T
peA’ L

This gives a contradiction.
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