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Introduction

Machine learning (by Arthur Samuel - 1959)

Neural Networks: Set of transformations

σ(x) =
1

1 + exp(−x)
(1)
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Universal approximation theorem [Cybe89]

Let ϕ(·) be a non constant, bounded, and monotonically-increasing
continuous function. Let Im denote the m-dimensional unit hypercube
[0, 1]m. The space of continuous functions on Im is denoted by C (Im).
Then, given any function f ∈ C (Im) and ε > 0, there exists an integer N,
real constants vi , bi ∈ R and real vectors wi ∈ Rm, where i = 1, · · · ,N
such that we may define:

F (x) =
N∑
i=1

viϕ
(
wT
i x + bi

)
(2)

as an approximate realization of the function f where f is independent of
ϕ; that is,

|F (x)− f (x)| < ε (3)

for all x ∈ Im. In other words, functions of the form F (x) are dense in
C (Im).
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Definition

Generative probabilistic model (GPM)

Application: recognition, classification,
and generation

Restricted Boltzmann machine
(RBM) [LeBe08]

2-layer GPM
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Definition

Generative probabilistic model (GPM)

Application: recognition, classification,
and generation

Restricted Boltzmann machine
(RBM) [LeBe08]

2-layer GPM

Deep belief network (DBN) [HiOT06]

Multilayer GPM
First two layer form an RBM
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Deep Belief Network

Let hi represent the vector of hidden variable at layer i . The model is
parametrized as follows:

P(h0,h1,h2, . . . ,hl) = P(h0|h1)P(h1|h2) . . .P(hl−2|hl−1)P(hl ,hl−1). (4)

The hidden layer hi is a binary random vector with elements hij and

P(hi |hi+1) =

ni∏
j=1

P(hij |hi+1). (5)

The element hij is a stochatic neuron or whose binary activation is 1:

P(hij = 1|hi+1) = σ

(
bij +

ni+1∑
k=1

W i
jkh

i+1
k

)
. (6)
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Universal approximator (DBN)

Let p∗ be an arbitrary distribution over binary vectors of n bits. A deep
belief network that has p∗ as its marginal distribution over h0 is said to be
a universal approximator.

This means that for any binary vector x of n bits, there exist weights and
biases such that given ε > 0:

|P(h0 = x)− p∗(x)| < ε (7)

8 / 29



Sutekever and Hinton’s Method 2008 [SuHi08]

Define an arbitrary sequence (ai )1≤i≤2n of binary vectors in {0, 1}n.

The goal is to find appropriate weights and biases such that the marginal
distribution over the set of outputs to our DBN is the same as the
probability distribution over the vectors (ai )1≤i≤2n .

In the next few slides I will consider the following example for n = 4:

a1 = 1011, p∗(a1) = 0.1 (8)

a2 = 1000, p∗(a2) = 0.05 (9)

a3 = 1001, p∗(a3) = 0.01 (10)

a4 = 1111, p∗(a4) = 0.02 (11)
... (12)
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Sutekever and Hinton’s Method 2008 [SuHi08]

Consider two consecutive layers h and v of size n, with Wij the weight
linking unit vi to unit hj , bi the bias of unit vi and w a positive scalar.

For every positive scalar ε (0 < ε < 1), there is a weight vector Wi ,: and a
real bi such that P(vi = hi |h) = 1− ε.

Indeed, setting:

Wii = 2w

Wij = 0 for i 6= j

bi = −w
yields a total input to unit vi of:

I (vi ,h) = 2whi − w (13)

Therefore, if w = σ−1(1− ε), we have P(vi = hi |h) = 1− ε.
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Sutekever and Hinton’s Method 2008 [SuHi08]

Wii = 2w

Wij = 0 for i 6= j

bi = −w

With I (vi ,h) = 2whi − w and w = σ−1(1− ε):

P(vi = 1|hi = 1) = σ(w) = 1− ε. (14)

P(vi = 0|hi = 0) = 1− P(vi = 1|hi = 0) (15)

= 1− σ(−w) (16)

= σ(w) = 1− ε. (17)
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Transfer of Probability

This is what Sutskever and Hinton call transfer of probability.
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Transfer of Probability

Number of parameters:

We need 3(n + 1)22n parameters or 3× 2n layers.
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Le Roux and Bengio’s Method 2010 [LeBe10]: Gray Codes

Gray codes [Gray53] are sequences (ai )1≤i≤2n such that:

∪k{ak} = {0, 1}n

∀k s.t. 2 ≤ k ≤ 2n, ‖ak − ak−1‖H = 1 where ‖ · ‖H is the Hamming
distance

Example for n = 4:

a1 = 0000 a5 = 0110 1100 1010
a2 = 0001 a6 = 0111 1101 1011
a3 = 0011 a7 = 0101 1111 1001

a4 = 0010
... 0100 1110 1000
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Theorem 1

Let at be an arbitrary binary vector in {0, 1}n with its last bit equal to 0
and p a scalar. For every positive scalar ε (0 < ε < 1), there is a weight
vector Wn,: and a real bn such that:

if the binary vector h is not equal to at , the last bit remains
unchanged with probability greater than or equal to 1− ε, that is
P(vn = hn|h 6= at) > (1− ε).

if the binary vector h is equal to at , its last bit is switched from 0 to
1 with probability σ(p).
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Parameters for Theorem 1

With the following the weights and
biases the result in Theorem 1 is
achievable:

Wnj = w , 1 ≤ j ≤ k

Wnj = −w , k + 1 ≤ j ≤ n − 1

Wnn = nw

bn = −kw + p

Number of parameters:

We need n22n parameters or 2n

layers.
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Simultaneous Transfer of Probability

1 vector at a time. N vectors at a time.

We need n2n parameters or 2n

n layers.
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Arrangement of Gray Codes

Let n = 2t . There exist n sequences of vectors of n bits Si , 0 ≤ i ≤ n − 1
composed of vectors Si ,k , 1 ≤ k ≤ 2n

n satisfying the following conditions:

1 {S0, . . . ,Sn−1} is a partition of the set of all vectors of n bits.

Example for n = 4:

S0 S1 S2 S3

0000 0100 1000 1100
0001 0110 1001 1110
0011 0111 1011 1111
0010 0101 1010 1101
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Arrangement of Gray Codes

Let n = 2t . There exist n sequences of vectors of n bits Si , 0 ≤ i ≤ n − 1
composed of vectors Si ,k , 1 ≤ k ≤ 2n

n satisfying the following conditions:

1 {S0, . . . ,Sn−1} is a partition of the set of all vectors of n bits.

2 Every sub-sequence Si satisfies the second property of Gray codes:
The Hamming distance between Si ,k and Si ,k+1 is 1.

3 For any two sub-sequences Si and Sj the bit switched between
consecutive vectors (Si ,k and Si ,k+1 or Sj ,k and Sj ,k+1) is different
unless the Hamming distance between Si ,k and Sj ,k is 1.

Example for n = 4:

S0 S1 S2 S3

0000 0100 1000 1100
0001 0110 1001 1110
0011 0111 1011 1111
0010 0101 1010 1101
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End Game

Can we retain the universal
approximation property of DBN
by transferring probability to n
vectors at a time?

For any binary vector x of
length n, can we still find
weights and biases such that
P(h0 = x) = p∗(x)?

N vectors at a time.
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Lemma

Let p∗ be an arbitrary distribution over vectors of n bits, where n is again
a power of two. A DBN with 2n

n + 1 layers such that:

1 for each i , 0 ≤ i ≤ n− 1, the top RBM between layers h
2n

n and h
2n

n
−1

assigns probability
∑

k p
∗(Si ,k) to Si ,1 .

2 for each i , 0 ≤ i ≤ n − 1 and each k, 1 ≤ k ≤ 2n

n − 1, we have

P(h
2n

n
−(k+1) = Si ,k+1|h

2n

n
−(k) = Si ,k) =

∑ 2n

n
t=k+1 p

∗(Si ,t)∑ 2n

n
t=k p

∗(Si ,t)
(18)

P(h
2n

n
−(k+1) = Si ,k |h

2n

n
−(k) = Si ,k) =

p∗(Si ,k)∑ 2n

n
t=k p

∗(Si ,t)
(19)

3 for each k , 1 ≤ k ≤ 2n

n − 1, we have

P(h
2n

n
−(k+1) = a|h

2n

n
−(k) = a) = 1 if a /∈ ∪iSi ,k (20)

has p∗ as its marginal distribution over h0.
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Proof of the Lemma

Let x be an arbitrary binary vector of
n bits; there is a pair (i , k) such that
x = Si ,k . We need to show that:

P(h0 = Si ,k) = p∗(Si ,k). (21)

Example for n = 4: if x = S22

P(h0 = S22) = p∗(S22). (22)
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Proof of the Lemma

The marginal probability of h0 = Si ,k is therefore equal to:

P(h0 = Si ,k) = P(h
2n

n
−1 = Si ,1) (23)

·
k−1∏
t=1

P
(
h

2n

n
−(t+1) = Si ,t+1|h

2n

n
−t = Si ,t

)
(24)

· P
(
h

2n

n
−(k+1) = Si ,k |h

2n

n
−k = Si ,k

)
(25)

·

2n

n
−1∏

t=k+1

P
(
h

2n

n
−(t+1) = Si ,k |h

2n

n
−t = Si ,k

)
(26)
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Proof of the Lemma

By replacing each of those probabilities by the ones given in the Lemma
we get:

P(h0 = Si ,k) =

2n

n∑
u=1

p∗(Si ,u) (27)

·
k−1∏
t=1

∑ 2n

n
u=t+1 p

∗(Si ,u)∑ 2n

n
u=t p

∗(Si ,u)
(28)

·
p∗(Si ,k)∑ 2n

n
u=k p

∗(Si ,u)
(29)

· 1
2n

n
−1−k (30)

= p∗(Si ,k) (31)

The last result comes from the cancellation of consecutive terms in the
product. This concludes the proof.
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Theorem 4

If n = 2t , a DBN composed of 2n

n + 1 layers of size n is a universal
approximator of distributions over vectors of size n.

Proof of Theorem 4: Using Lemma, we now show that it is possible to
construct such a DBN.

First, Le Roux and Bengio (2008) showed that an RBM with n hidden
units can model any distribution which assigns a non-zero probability to at
most n vectors. Property 1 of the Lemma can therefore be achieved.
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Proof of Theorem 4

All the subsequent layers are as follows.

At each layer, the first t bits of hk+1 are copied to the first t bits of
hk with probability arbitrarily close to 1. This is possible as proven
earlier.

At each layer, n/2 of the remaining n − t bits are potentially changed
to move from one vector in a Gray code sequence to the next with
the correct probability (as defined in the Lemma).

The remaining n/2− t bits are copied from hk+1 to hk with
probability arbitrarily close to 1.

Such layers are arbitrarily close to fulfilling the requirements of the second
property of the Lemma. This concludes the proof.

27 / 29



Proof of Theorem 4

All the subsequent layers are as follows.

At each layer, the first t bits of hk+1 are copied to the first t bits of
hk with probability arbitrarily close to 1. This is possible as proven
earlier.

At each layer, n/2 of the remaining n − t bits are potentially changed
to move from one vector in a Gray code sequence to the next with
the correct probability (as defined in the Lemma).

The remaining n/2− t bits are copied from hk+1 to hk with
probability arbitrarily close to 1.

Such layers are arbitrarily close to fulfilling the requirements of the second
property of the Lemma. This concludes the proof.

27 / 29



Proof of Theorem 4

All the subsequent layers are as follows.

At each layer, the first t bits of hk+1 are copied to the first t bits of
hk with probability arbitrarily close to 1. This is possible as proven
earlier.

At each layer, n/2 of the remaining n − t bits are potentially changed
to move from one vector in a Gray code sequence to the next with
the correct probability (as defined in the Lemma).

The remaining n/2− t bits are copied from hk+1 to hk with
probability arbitrarily close to 1.

Such layers are arbitrarily close to fulfilling the requirements of the second
property of the Lemma. This concludes the proof.

27 / 29



Conclusion

Deep belief networks are compact universal approximators:

Sutskever and Hinton method (2008)

Transfer of probability
We need 3(n + 1)22n parameters or 3× 2n layers.

LeRoux and Bengio improvements (2009)

Gray codes
Simultaneous transfer of probability
We need n2n parameters or 2n

n layers (given n is a power of 2).
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