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DEFINITION

A frame F = {fi}i∈I in a Hilbert space H is a countable sequence

{fi} ⊆ H for which there exist A,B > 0 such that

∀f ∈ H, A‖f‖2 ≤
∑
i∈I

|〈f , fi〉|2 ≤ B‖f‖2
.

Developed by Richard Duffin and Albert Schaeffer in 1952

Generalization of orthonormal bases which allow for possibly

redundant decompositions

Frames have varied use in applications including image

processing, wireless communication, and digital signal

quantization because they are naturally robust to erasures
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FRAME BASICS

Frame operator SF : H → H by SF (f ) =
∑
i∈I
〈f , fi〉fi ,

A dual frame {f̃i}i∈I for F is a frame which satisfies

f =
∑
i∈I
〈f , fi〉f̃i =

∑
i∈I
〈f , f̃i〉fi for all f ∈ H.

By invertibility of the frame operator SF , {S−1
F fi} is a dual frame,

known as the canonical dual frame.
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In 2004, Peter Casazza and Shidong Li developed frames of

subspaces for simple constructions of frames

DEFINITION

A fusion frameW = {(Wi , ci)}i∈I in a separable Hilbert space H is a

countable sequence of closed subspaces Wi ⊆ H and a sequence of

weights {ci}i∈I ⊆ R, ci > 0 for all i ∈ I for which there exist C,D > 0

such that

∀f ∈ H, C‖f‖2 ≤
∑
i∈I

c2
i ‖PWi (f )‖

2 ≤ D‖f‖2
,

where PWi is the orthogonal projection onto Wi .
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DISTRIBUTED SENSING

Casazza, Li, and Gitta Kutyniok give an example of a sensor

network spread over a forest to measure temperature, where the

sensors are divided into smaller sub-networks for processing.

Within the fusion frame paradigm, the sub-networks form a set of

redundant subspaces, so the signals can be processed globally,

at one central processing center, or locally, at stations for each

network.

This example suggests that it’s useful to consider fusion frames

as a special case of frames rather than a generalization.
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Tight fusion frames are defined to be fusion frames for which

the bounds C and D can be chosen to be equal.

A fusion frame system {(Wi , ci , {fij}j∈Ji )}i∈I is a fusion frame

{(Wi , ci)}i∈I for which Fi = {fij}j∈Ji is a frame for Wi for each

i ∈ I, known as a local frame.
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For a fusion frameW, define the analysis operator by

TW(f ) := {ciPWi f}i∈I and its adjoint, the synthesis operator, by

T ∗W({vi}i∈I) :=
∑

i∈I civi , where f ∈ H and vi ∈Wi for each i ∈ I.

Similar to the case of frames, the fusion frame operator

SW : H → H given by SW(f ) = T ∗WTW(f ) =
∑

i∈I c2
i PWi (f ) is a

positive, self-adjoint, and invertible operator.
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PERTURBATION THEORY

Let T : X → X be a bounded linear map on a Banach space X .

‖(I − T )x‖ ≤ λ(‖x‖+ ‖Tx‖) =⇒ 1−λ
1+λ‖Tx‖ ≤ ‖x‖ ≤ 1+λ

1−λ‖Tx‖ for

λ < 1.

Paley and Wiener (1934) showed that if

‖Sx − Tx‖ ≤ λ1‖Sx‖+ λ2‖Tx‖ then their codimensions are

equal.
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FUSION FRAME PERTURBATIONS

If P and Q are orthogonal projections on H with 0 ≤ λ1, λ2 < 1

such that ‖Pf −Qf‖ ≤ λ1‖Pf‖+λ2‖Qf‖ for all f ∈ H, then P = Q.

DEFINITION

Let {Wi}i∈I and {Vi}i∈I be collections of closed subspaces in H with

{ci} a positive real sequence, and let 0 ≤ λ1, λ2 < 1 and ε > 0.

{(Wi , ci)} is a (λ1, λ2, ε)−perturbation of {(Vi , ci)} if

‖(PWi − PVi )f‖ ≤ λ1‖PWi f‖+ λ2‖PVi f‖+ ε‖f‖

for all f ∈ H.

Only the sub-stations are changed, not the weights.
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PERTURBATION FUSION FRAME BOUNDS

PROPOSITION (CASAZZA, LI, KUTYNIOK)

Let {(Wi , ci)}i∈I be a fusion frame for H with bounds C,D. Let

{(Vi , ci)}i∈I be a (λ1, λ2, ε)−perturbation of {(Wi , ci)}i∈I where

0 ≤ λ1, λ2 < 1, ε > 0, and (1− λ1)
√

C − ε(
∑

i∈I c2
i )

1/2 > 0. Then

{(Vi , ci)}i∈I is a fusion frame of H with fusion frame bounds

[ (1− λ1)
√

C − ε(
∑

i∈I c2
i )

1/2

1 + λ2

]2
and

[ (1 + λ1)
√

D + ε(
∑

i∈I c2
i )

1/2

1− λ2

]2
.
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In the case of a fusion frame system, we can also perturb the

local frames:

For {fi}i∈I and {gi}i∈I are sequences in H and 0 ≤ λ1, λ2 < 1,

{gi}i∈I is a (λ1, λ2)-perturbation of {fi}i∈I if

‖
∑
i∈I

ai(fi − gi)‖ ≤ λ1‖
∑
i∈I

ai fi‖+λ2‖
∑
i∈I

aigi‖ for all {ai}i∈I ∈ `2(I).

Useful lemma: Let W = spani∈I{fi} and V = spani∈I{gi}, then

‖PW PV (f )‖ ≥
(

1−λ1
1+λ2

− λ1
1+λ2
1−λ1

− λ2

)
‖PV (f )‖ for all f ∈ H.
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THEOREM 1

THEOREM (CASAZZA, LI, KUTYNIOK)

Let {(Wi , ci , {fij}j∈Ji )}i∈I be a fusion frame system for H with fusion

frame bounds C,D. Choose 0 ≤ λ1, λ2 < 1 and ε > 0 such that

(1− λ1)
√

C − ε(
∑

i∈I c2
i )

1/2 > 0 and 1− ε2

2 = 1−λ1
1+λ2

− λ1
1+λ2
1−λ1

− λ2. For

every i, let {gij}j∈Ji be a (λ1, λ2)-perturbation of {fij}j∈Ji and let

Vi = span{gij}j∈Ji . Then {(Vi , ci , )}i∈I is a fusion frame for H with

fusion frame bounds[√
C − ε

(∑
i∈I

c2
i
)1/2

]2
and

[√
D + ε

(∑
i∈I

c2
i
)1/2

]2
.
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THEOREM 1 PROOF

1 Use the useful lemma to get two estimates:

‖(I − PVi )(PWi f )‖
2 ≤ ε2

2 ‖PWi f‖
2 and vice versa.

2

‖(PWi−PVi )f‖
2 = 〈(PWi−PVi )

2f , f 〉 = 〈(PWi−PVi PWi+PVi−PWi PVi )f , f 〉 ≤

≤ ‖(I − PVi )(PWi f ) + (I − PWi )(PVi f )‖ · ‖f‖ ≤

≤ ε2

2
‖PWi f‖ · ‖f‖+

ε2

2
‖PVi f‖ · ‖f‖ ≤ ε

2‖f‖2
.

3 Hence,W is a (0,0, ε)-perturbation of V.
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FUSION FRAME DUAL

Canonical fusion frame dual is W̃ = {(S−1
W Wi , ci‖S−1

W |Wi‖)}i∈I ,

where S−1
W |Wi is the inverse of the fusion frame operator

restricted to Wi .
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WEIGHTED FUSION FRAME PERTURBATION

DEFINITION

Let µ > 0 and letW = {(Wi , ci)}i∈I and V = {(Vi ,di)}i∈I be fusion

frames on H. V is said to be a µ−perturbation ofW if

‖TW − TV‖ ≤ µ, where TW and TV are the analysis operators ofW

and V, respectively.

This implies ‖ciPWi − diPVi‖ ≤ µ for every i ∈ I.

In finite dimensions, when the sequences of weights are the

same, both definitions are equivalent.
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THEOREM 2

THEOREM (KUTYNIOK, PATERNOSTRO, PHILIPP)

LetW = {(Wi , ci)}i∈I be a fusion frame for H with frame bounds

A ≤ B and let V = {(Vi ,di)}i∈I be a µ−perturbation ofW, where

0 < µ <
√

A. If there exists τ > 0 such that τ is a lower bound for both

{ci}i∈I and {di}i∈I , then the canonical fusion frame dual Ṽ of V is a

Cµ−perturbation of the canonical fusion frame dual W̃ ofW, where

C =
α2 + β2

A

[1 + (A−1 + B)2
√

A

(√2
τ

+ αβ2)+ β2(1 + α2β2)
]

with α := 2
√

B + µ and β := (
√

A− µ)−1.
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Perhaps only one or a few subspaces are perturbed.

What about when an entire subspace is erased? Major strength

of frames is robustness to erasure.

Robert Calderbank, Taotao Liu, Gitta Kutyniok, and Ali Pezeshki

considered conditions for finite fusion frames that optimize

recovery.
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FINITE FUSION FRAMES

For the rest of the talk, all finite dimensional real Hilbert spaces

H = RM .

We also want to consider equally weighted spaces to simplify the

problem.

Let mi denote the dimension of subspace Wi .
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MODEL OF VECTOR RECOVERY

zi = UT
i x + ni , for i = 1, . . . ,N is the fusion frame measurement

at each subspace.

x is a random zero-mean vector with variance σ2
x , ni is a

realization of an additive white noise vector with variance σ2
n

Ui is a left orthogonal N ×mi -matrix such that UT
i Ui = Imi and

UiUT
i = PWi .
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MEAN-SQUARED RECOVERY ERROR

Want to minimize mean-squared error (MSE) in linearly

estimating x from zi .

Let MSEk denote the MSE when k subspaces are erased.

Minimum is achieved when fusion frame is tight, given by

MSE0 =
Mσ2

nσ
2
x

σ2
n +

Lσ2
x

M

.
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ONE ERASURE, MSE1

We consider where mi = m is constant for all i , since MSE1

naturally increases with mi .

MSE1 = MSE0 + Erasure Term

MSE1 is then a function of m which has a maximum at m∗

m∗ =


mmin, if mmax ≤ m̃ or

if mmin ≤ m̃ ≤ mmax and MSE(mmin) ≤ MSE(mmax),

mmax , otherwise.
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TWO ERASURES, MSE2

MSE2 = MSE1 + Cross Term from mixed projections PWi PWj

Want to minimize the trace of PWi PWj , which is equivalent to

minimizing eigenvalues

Define principal angles θk (i , j) for 1 ≤ k ≤ M as inverse cosines

of eigenvalues and chordal distance between Wi and Wj , as

dc(i , j) :=
(∑M

k=1 sin2 θk (i , j)
)1/2

MSE2 is minimized when MSE1 is minimized and chordal

distance is maximized
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MORE THAN TWO ERASURES

For equidistant tight fusion frame with constant m∗ dimension,

MSEk = MSE3 for k ≥ 3.

It is not known if such a fusion frame exists. If it does, it’s an

optimal Grassmannian packing of m∗-dimensional subspaces in

RN .
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HETEROGENEOUS DATA FUSION

We want to combine heterogenous information, not

homogeneous like in distributed processing example.

How do we combine different information to make up for gaps in

knowledge of one?

Studying stability explains the applicability of fusion frames as a

data fusion model.
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