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Spectral Analysis

Let M be an n×m matrix with elements on R. Then the Singular Value
Decomposition of M is,

M = UΣV T .

Let G = MTM be an m×m symmetric matrix with elements on R.
Then the Eigen-decomposition of G is,

G = V ΛV T .

λ1 ≥ λ2 ≥ · · · ≥ λm
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Spectral Analysis

Definition (Condition Number)
We define the condition number of an n× n matrix G to be,

κ(G) =
λ1

λn
.

I If the smallest eigenvalue value is 0, we take the condition number
to be ∞.

I We shall extend this definition of condition number to apply to
non-square matrices using the singular values.

I The condition number of a n×m matrix M , is defined to be the
square-root ratio of the largest and min(n,m)th eigenvalues of
MTM .
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Frame Definition

A finite frame for Rn is a set
Φ = {ϕk}mk=1 ⊂ Rn such that
there exist positive constants
0 < A ≤ B <∞ for which

A‖f‖22 ≤
m∑
k=1

|〈f, ϕk〉|2 ≤ B‖f‖22

for all f ∈ Rn.
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Synthesis\Analysis

Synthesis Operator
Given a frame Φ ⊂ Rn, we denote, again by Φ, the n×m matrix whose
kth column is the vector ϕk. For a given set of coefficients {ck}mk=1, we
can construct/reconstruct a signal f ,

f =

m∑
k=1

ckϕk.

Analysis Operator
The adjoint of the frame ΦT denotes the analysis operator, that allows
for the decomposition of signals into frame coefficients,

C = {ck}mk=1 = {〈ϕk, f〉}mk=1.
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Dual Frames, Tight Frames, and the Frame Operator

Dual Frames
Given a frame Φ, we define the dual of Φ to be a frame Ψ such that

ΦΨT = I.

Frame Operator
Given a frame Φ, we define the frame operator to be

S = ΦΦT .

Tight Frames
A frame Φ is called tight if the frame operator is A times the identity,

S = ΦΦT = AI.
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Scalable Frames Definitions

Scalable frames were introduced in [KOPT13, KOP] as a way to create
tight frames without changing the structure of the frame itself. More
precisely:

Definition
Let m ≥ n be given. A frame Φ = {ϕk}mk=1 ⊂ Rn is scalable if there
exist a subset ΦJ = {ϕk}k∈J with J ⊆ {1, 2, . . . ,m}, and positive scalars

{xk}k∈J such that the system Φ̃J = {xkϕk}k∈J is a tight frame for Rn.
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Characterization

I We can write the analysis operator of the scaled frame as a product
of the original frame and a diagonal matrix X,

XΦT .

I The frame operator then becomes

S̃ = ΦXTXΦT = ΦX2ΦT = AI.

I We can then rescale the coefficient matrix X so that A = 1.
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Characterization (cont.)

I One can covert the equation ΦX2ΦT = AI into a linear system of
equations in m unknowns: x2

k.
I we need the following function: F : Rn → Rd (called the Reduced

Frame Transform)given by,

F (ϕ) = [F0(ϕ), F1(ϕ), . . . , Fn−1(ϕ)]T ,

F0(ϕ) =


ϕ2

1 − ϕ2
2

ϕ2
1 − ϕ2

3
...

ϕ2
1 − ϕ2

n

 , Fk(ϕ) =


ϕkϕk+1

ϕkϕk+2

...
ϕkϕn


and F0(ϕ) ∈ Rn−1, Fk(ϕ) ∈ Rn−k, k = 1, 2, . . . , n− 1, where

d := (n−1)(n+2)
2 .

I Let F (Φ) be the d×m matrix given by

F (Φ) = (F (ϕ1) F (ϕ2) . . . F (ϕm)).
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Previous Result

Proposition
[KOP, Proposition 3.7] Given a frame Φ ⊂ Rn. Φ is scalable if and only
if there exists a non-negative u ∈ kerF (Φ)\{0}. Moreover, the scaling
matrix X is a diagonal operator where the elements are the square-roots
of the solution u.
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Convex Geometry

I First consider the sets S1 and S2 given by

S1 := {u ∈ Rm |F (Φ)u = 0 , u ≥ 0 , u 6= 0},

and
S2 := {v ∈ Rm |F (Φ)v = 0 , v ≥ 0 , ‖v‖1 = 1}.

I S1 is a subset of the null space of F (Φ), and each u ∈ S1 is
associated a scaling matrix Xu, defined as

Xu := (Xij)u =

{√
ui if i = j
0 otherwise.

I S2 ⊂ S1 ∩B`1 , where B`1 is the unit ball under the `1 norm.
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Generating Frame Scalings through Optimization

Theorem
Let Φ = {ϕk}mk=1 ⊂ Rn be a frame, and let g : Rm → R be a convex
objective function. Then the program

minimize: g(u)

subject to:F (Φ)u = 0

‖u‖1 = 1

u ≥ 0

has a solution if and only if the frame Φ is scalable.
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Proof Sketch

Proof.
Any feasible solution u∗ is contained in the set S2, which itself is
contained in S1, and thus corresponds to a scaling matrix Xu.

Conversely, any u ∈ S1 can be mapped to a v ∈ S2 by appropriate scaling
factor. This provides an initial feasible solution, and so there must exist a
minimizer on S2.
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Gaussian Frames
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Sparse Results

Figure: Results on two random Gaussian frames before and after scaling.
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Barrier Results

Figure: Results on two random Gaussian frames before and after scaling.
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Spectral Analysis of Frames

I We can relate the scaling weights to the spectrum of the frame

I We can also view the scaling weights as analogs of the spectrum

Theorem (Spectral Frame Decomposition)
Let Φ be a frame in Rn with m elements, and assume Φ is scalable with
diagonal scaling matrix X. Furthermore, let V be an m×m matrix of the
right singular vectors of Φ, such that the singular value decomposition is,

Φ = UΣV T .

Then there exists an m× n sub-block of V (denoted Ṽ ) such that

Ṽ TX2Ṽ = Λ−1.
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Proof Sketch

ΦX2ΦT = I.

Using a singular value decomposition of Φ, we have

UΣV TX2V ΣTUT = I.

We can simplify this system by performing left and right matrix
multiplications of UT and U respectively.

ΣV TX2V ΣT = I.

ΣTΣV TX2V ΣTΣ = ΣT IΣ,[
Λ 0
0 0

]
V TX2V

[
Λ 0
0 0

]
=

[
Λ 0
0 0

]
.

ΛṼ TX2Ṽ Λ = Λ,

Ṽ TX2Ṽ = Λ−1ΛΛ−1,

Ṽ TX2Ṽ = Λ−1.
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Spectral Analysis of Frames

Corollary (Spectral Frame Decomposition)
Let Φ be a frame in Rn with m elements, and assume Φ is scalable with
diagonal scaling matrix X. Furthermore, let V be an m×m matrix of the
right singular vectors of Φ, such that the singular value decomposition is

Φ = UΣV T .

Then the inverse of each eigenvalue of the frame operator S = ΦΦT can
be written as the sum of squares of the right singular vectors (vi)k = vik
and the scaling weights Xkk = xk,

1

λi
= 〈vi � vi, x� x〉 =

m∑
k=1

(vikxk)2 for i = 1, . . . , n.

Frames and Graph Structure



Preliminaries Frame Spectrum Graph Structure Nonlinear Structure References

Perturbed Spectral Analysis of Frames

I It will often occur that a frame will not be exactly scalable

I We can bound approximately scalable frames

I We present worst-case bounds for non-exact scalings
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Perturbed Spectral Analysis of Frames

Theorem (Perturbed Spectral Decomposition)
Let Φ be a frame in Rn with m elements. Also, let Ṽ denote an m× n
sub-block of V . Given a non-trivial, non-negative diagonal matrix Y , we
shall write the general scalability equality as

ΦY 2ΦT = I + E,

with an error matrix, E, bounded by

E � δ11T ,

for some δ > 0. Then the following inequality holds,∥∥∥Ṽ TY 2Ṽ
∥∥∥

2
≤ 1 + δn

λn
.

Frames and Graph Structure



Preliminaries Frame Spectrum Graph Structure Nonlinear Structure References

Proof Sketch

ΦY 2ΦT = I + E,

(UΣV T )Y 2(UΣV T )T = I + E,

Ṽ TY 2Ṽ = Λ−1ΛΛ−1 + Λ−1/2UTEUΛ−1/2,

Ṽ TY 2Ṽ = Λ−1 + Λ−1/2UTEUΛ−1/2.

‖Ṽ TY 2Ṽ ‖2 = ‖Λ−1 + Λ−1/2UTEUΛ−1/2‖2,

‖Ṽ TY 2Ṽ ‖2 ≤
1

λn
+
δn

λn
.
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Approximate Spectral Analysis of Frames

Corollary (Approximate Spectral Decomposition)
Let Φ be a frame in Rn with m elements. Also, let Ṽ denote an m× n
sub-block of V . Given a non-trivial, non-negative diagonal matrix Y , we
shall write the general scalability equality as

ΦY 2ΦT = I + E,

with an error matrix, E, bounded by

E � δ11T ,

for some δ > 0. If Φ is scalable with scaling matrix X, and the difference
between X and Y is denoted D2 := X2 − Y 2, then the following
inequality holds, ∥∥∥Ṽ TD2Ṽ

∥∥∥
2
≤ δn

λn
.
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Scalability Projections
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Graph Background

I Denote a graph by G := (V, E), where V := {ν1, ν2, . . . , νn} is a set
of vertices on the graph.

I E := {e1, e2, . . . , em} is the ordered set of edge pairs that denotes a
connection between two nodes.

I A weight 0 ≤ ωij ≤ 1 denotes the similarity between two nodes
(νi, νj), and ωij = 0 if the nodes are not connected.

I The matrix of these weights is referred to as the adjacency matrix
W .

I We denote the degree of a node, νi, as di :=
∑n
j=1 ωij .

I The degree matrix D is then a diagonal matrix with entries Dii = di
for i = 1, . . . , n.
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Graph Background

I We now define the Lapalcian matrix on the graph as

LG := L = D −W. (1)

I The incidence matrix, B = [b1, b2, . . . , bm], is defined as an n×m
matrix where every column in B represents an edge (νi, νj) in E .

I For a column in the incidence matrix, bk, we have

bk(i) :=


√
ωij : (νi, νj) ∈ E , i < j
−√ωij : (νi, νj) ∈ E , i > j
0 : else

. (2)

I The Laplacian can now be defined as L := BBT .
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Graph Conditioning

Definition (Graph Condition Number)

κ(LG) :=
λ1

λr
for λ1 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0. (3)

I This function is simply the condition number of L (ignoring the zero
eigenvalues).

I Where λi = 0 can lead to numerically unstable solutions for linear
systems, λi = 0 in this setting, disconnects the graph.

I Scaling leads to the well-conditioned graphs, as sets of complete
sub-graphs.

I This encourages the use of the incidence matrix B as the frame Φ,
which leads to the Laplacian L as the frame operator S.
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Graph Conditioning

Definition
Let G(V, E , ω) be a graph with incidence matrix B, and Laplacian matrix
L = BBT . Then B is scalable if there exists a non-negative, non-zero
diagonal matrix X, such that the graph condition number κ(L̃) of the

scaled Laplacian L̃ = BX2BT is equal to 1,

λ̃1 = · · · = λ̃r > λ̃r+1 = . . . λn = 0. (4)

Proposition
Let G(V, E , ω) be a complete graph with incidence matrix B, and
Laplacian matrix L = BBT . Then B is scalable with scaling weights

xk =
1
√
wij

, such that,

L̃G = BX2BT = nI − 11T ,

and κ(L̃G) = 1.
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Proof Sketch

I The graph is complete, and if we scale all of the edges to have
weight 1, the degree of each node will be equal to n− 1, and the
resulting graph will be complete.

I As the complete graph has Laplacian eigenvalues λi = n for
i = 1, . . . , n− 1, the graph has condition number 1.
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Problem Formulation

I As every complete graph is trivially scalable, we move on to more
complicated graphs

I We can cast the problem of scaling a graph as finding a
non-negative solution to the following:

F (B)u = [0,−1]T ,

1
Tu ≥ 1,

u ≥ 0,

minimize: g(u)

subject to: F0(B)u = 0,

1
Tu ≥ 1,

u ≥ 0.

Frames and Graph Structure



Preliminaries Frame Spectrum Graph Structure Nonlinear Structure References

Graph Examples I

Two-Complete Graphs Spectrum
original g1 g2 g3

σmax 3.4396 3.4396 3.3977 3.1623
σmin 0.4112 0.4112 0.4089 3.1623
κ(LG) 8.3648 8.3648 8.3094 1.0000
xk - 0.0101 0.0112 0.0090
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Graph Examples II

Outlier Complete Graph Spectrum
original g1 g2 g3

σmax 3.1623 3.0000 3.1623 3.0927
σmin 1.0000 3.0000 1.0000 0.9909
κ(LG) 10.000 1.0000 10.000 9.7412
xk - 0.2000 0.0286 0.0000
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Low-Rank Embeddings and Pre-Image Problems

I Principal Component Analysis (PCA) is a standard tool for data
analysis and low-rank approximations [Jol02, LV07].

I Viewing the eigenvalues as variance indicators is a clear and concise
explanation of the projection, and when data’s true manifold is
linear/affine, PCA is optimal in its representation.

I For notation, and for connections with later notions, we shall denote
PCA as an eigen-value/vector problem of a data matrix M ,

MTMV = V Λ,

where the eigen-decomposition of the gram matrix MTM is,

MTM = V ΛV T .
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Low-Rank Embeddings and Pre-Image Problems

I The assumption of linearity on the manifold is generally violated for
complex datasets.

I Nonlinear dimension reduction techniques were designed to alleviate
this drawback.

I The canonical example being Kernel PCA [SSM97, LV07].

I Instead of analyzing the data directly, kernel methods analyze the
relationship between data points.
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Low-Rank Embeddings and Pre-Image Problems

I In [HLMS04, BDLR+04], various non-linear dimension reduction
methods (Isomap [TDSL00], Laplacian Eigenmaps [BN03], Locally
Linear Embeddings [SR00], etc.) are shown to fall under the Kernel
PCA model.

I The Kernel PCA problem for a dataset M , with respect to a kernel
K(M) = KM , shall be denoted,

KMV = V Λ.

I The embedding Θ of this dataset, shall be denoted,

Θ = Λ
1
2V T ,
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Robust Principal Component Analysis [RPCA]

I We have at our disposal, sparsity methods, and spectral methods.

I Both are useful signal processing techniques when dealing with large
datasets.

I Robust Principal Component Analysis was devised as a technique to
take advantage of sparsity and low intrinsic dimensionality of
datasets.
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Robust Principal Component Analysis [RPCA]

I Standard practice, when dealing with search over such a large space,
is to formulate an optimization problem

I Given a data matrix Φ̃, we want a sparsity E and low-rank Φ
decomposition.

minimize: rank(Φ) + γ‖E‖0
subject to: Φ + E = Φ̃
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`1 Norm Approximation

I Let’s first consider minimizing ‖E‖0.

I This problem is NP-hard, so the standard approach is to find a
convex relaxation that approximately solves the problem.

I The well known convex relaxation is the `1 norm.
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Nuclear Norm Approximation

I Now consider minimizing rank(Φ).

I We first notice that minimizing the rank of a matrix is also NP-hard.

I We need a convex relaxation of the rank function.
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Nuclear Norm Approximation

I Using an analogous approximation from the `0-`1 derivation, the
Nuclear Norm becomes the convex relaxation

‖Φ‖∗ := σ1 + σ2 + σ3 + · · ·+ σn.
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The Complete Formulation

Original Problem

minimize: rank(Φ) + γ‖E‖0
subject to: Φ + E = Φ̃
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The Complete Formulation

Original Problem

minimize: rank(Φ) + γ‖E‖0
subject to: Φ + E = Φ̃

Convex Relaxation

minimize: ‖Φ‖∗ + γ‖E‖1
subject to: Φ + E = Φ̃
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Robust Manifold Learning

I The natural extension of PCA is to compare similarities between
nonlinear transformations of the dataset in the form of kernels
(KPCA).

I In this same vein, we may wish to add a notion of robustness to
KPCA by employing an error regularizing term.

I This motivates the introduction of the Robust Manifold Learning
(RML) problem,

minimize: rank(K(Φ)) + γ‖E‖0
subject to: Φ + E = Φ̃,
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Robust Manifold Learning

minimize: rank(K(Φ)) + γ‖E‖0
subject to: Φ + E = Φ̃,

I As with many formulations, we shall study the convex relaxation of
this problem,

minimize: ‖K(Φ)‖∗ + γ‖E‖1
subject to: Φ + E = Φ̃.

I Much of the intuition behind this approach can be gleamed from an
understanding of robust PCA and its variations.
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Inverse Mapping

I This brings us to the major issue with nonlinear methods; there is in
general no well-defined inverse for an embedding obtained from
KPCA.

I The kernel matrix K is computed, and an embedding is formed and
thresholded for the kernel.

I Once the threshold has been applied, an inverse operation is
performed as follows,

ϕk =
∑

i∈Ω(θk)

a

‖θk − θi‖22
ϕi. (5)
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RML Algorithm

Before presenting the algorithm, we define following operators.

Definition (Spatial Shrinkage Operator)
We denote by Sγ the Spatial Shrinkage Operator, which performs a soft
thresholding on a given n×m matrix by subtracting positive constant, γ,
from each element and thresholding all negative values to 0:

Sγ [A] = max{A− γ11T , 0},

where we use the entry-wise max function.

Definition (Spectral Shrinkage Operator)
We denote by Ŝµ the Spectral Shrinkage Operator, which performs a soft
thresholding on a given n×m matrix by subtracting positive constant, µ,
from each singular value and thresholding all negative values to 0:

Ŝµ[A] = U ·max{Σ− µI , 0} · V T ,

where A = UΣV T .
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RML Algorithm

Definition (Embedding Operator)
Define E as the embedding operator such that,

Θ = E [K(Φ)],

where K(Φ) is the kernel matrix on the dataset Φ.

Definition (Inverse Operator)
Define E−1 as the embedding operator such that,

Φ = E−1[Θ],

where Θ is an embedding formed from a kernel matrix. The inverse is
performed using the interpolation formula presented previously.

Frames and Graph Structure



Preliminaries Frame Spectrum Graph Structure Nonlinear Structure References

RML Algorithm

while not converged do:

1. K ← K(Φ̃− E)

2. K ← Ŝµ[K]

3. Θ← E [K]

4. Φ← E−1[Θ]

5. E ← Sγ [Φ̃− Φ]

end while
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Circle Embeddings

I We start with a clear example of when standard RPCA fails by
adding sparse noise to an embedding of a circle.

I We sample sine and cosine functions m = 1000 times using n = 4
frequencies for each, resulting in a dataset Φ of size 2n-by-m.

I Sparse noise E is then added to the dataset by randomly selecting
80 indices and biasing the location.
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Circle Embeddings
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Circle Embeddings
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Circle Embeddings

Figure: This figure shows the embeddings obtained after the various techniques
are employed. From left to right, we present the final results after our robust
manifold learning technique, kernel PCA, standard PCA, and standard robust
PCA.
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Inpainting Background

I Image inpainting interpolates
across corrupted of missing
data in an image

I Sapiro and Bertalmio 2000

I Igehy and Pereira 1997
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Inpainting
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Inpainting
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Extra Slides: Error Analysis

G̃f̃ −Gf = 0

(G+ E)f̃ −Gf = 0

G(f̃ − f) = −Ef̃

f̃ − f = −G−1Ef̃

‖f̃ − f‖2 = ‖G−1Ef̃‖2
‖f̃ − f‖2 ≤ ‖G−1‖2‖E‖2‖f̃‖2
‖f̃ − f‖2
‖f̃‖2

≤ ‖G
−1‖2‖E‖2‖G‖2
‖G‖2

‖f̃ − f‖2
‖f̃‖2

≤ (‖G−1‖2‖G‖2)
‖E‖2
‖G‖2

.
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Extra Slides: Error Analysis (cont.)

I The relative error in the approximate solution is bounded by the
error matrix E, but also properties of the matrix G.

I The matrix norms of G and G−1 are the largest and reciprocal
smallest eigenvalues respectively,

‖G‖2 = λ1 , ‖G−1‖2 =
1

λn
.
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Extra Slides: Spectral Frame Decomposition

ΦX2ΦT = I.

Using a singular value decomposition of Φ, we have

(UΣV T )X2(UΣV T )T = I,

UΣV TX2V ΣTUT = I.

We can simplify this system by performing left and right matrix
multiplications of UT and U respectively.

UTUΣV TX2V ΣTUTU =UT IU,

ΣV TX2V ΣT = I.

We shall now perform left and right matrix multiplications by ΣT and Σ
respectively. In this case, we obtain block matrices where the upper-left
n× n block is a diagonal matrix of non-zero eigenvalues Λ and all other
blocks are zero matrices.
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Extra Slides: Spectral Frame Decomposition (cont.)

ΣTΣV TX2V ΣTΣ = ΣT IΣ,[
Λ 0
0 0

]
V TX2V

[
Λ 0
0 0

]
=

[
Λ 0
0 0

]
.

We write V in block form as well,[
Λ 0
0 0

] [
V1 V2

V3 V4

]T [
X1 0
0 X2

]2 [
V1 V2

V3 V4

] [
Λ 0
0 0

]
=

[
Λ 0
0 0

]
.

Given this structure, we shall further simplify the system by removing the
zero matrices and obtain the result,

ΛṼ TX2Ṽ Λ = Λ,

Ṽ TX2Ṽ = Λ−1ΛΛ−1,

Ṽ TX2Ṽ = Λ−1.
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Extra Slides: Perturbed Spectral Decomposition

ΦY 2ΦT = I + E,

(UΣV T )Y 2(UΣV T )T = I + E,

UΣV TY 2V ΣTUT = I + E,

UTUΣV TY 2V ΣTUTU =UT IU + UTEU,

IΣV TY 2V ΣT I =UTU + UTEU,

ΣV TY 2V ΣT = I + UTEU,

ΣTΣV TY 2V ΣTΣ = ΣT IΣ + ΣTUTEUΣ,

ΛṼ TY 2Ṽ Λ = Λ + Λ1/2UTEUΛ1/2,

Ṽ TY 2Ṽ = Λ−1ΛΛ−1 + Λ−1/2UTEUΛ−1/2,

Ṽ TY 2Ṽ = Λ−1 + Λ−1/2UTEUΛ−1/2.
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Extra Slides: Perturbed Spectral Decomposition (cont.)

Taking the norm of both sides of the equation, and applying the bound,
we have on the error matrix E,

‖Ṽ TY 2Ṽ ‖2 = ‖Λ−1 + Λ−1/2UTEUΛ−1/2‖2,

‖Ṽ TY 2Ṽ ‖2 ≤‖Λ−1‖2 + ‖Λ−1/2UTEUΛ−1/2‖2,

‖Ṽ TY 2Ṽ ‖2 ≤‖Λ−1‖2 + ‖Λ−1/2UT (δ11T )UΛ−1/2‖2,

‖Ṽ TY 2Ṽ ‖2 ≤
1

λn
+

δ

λn
‖UT (11T )U‖2,

‖Ṽ TY 2Ṽ ‖2 ≤
1

λn
+

δ

λn
‖11T ‖2,

‖Ṽ TY 2Ṽ ‖2 ≤
1

λn
+
δn

λn
.
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Examples
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