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Graph Preliminaries

I Denote a graph by G = G (V ,E ).

I Vertex set V = {xi}Ni=1. |V | = N <∞.

I Edge set, E :

E = {(x , y) : x , y ∈ V and x ∼ y}.

I A graph is connected if for any x , y ∈ V there exists a path
(sequence of adjacent edges) from x to y .

I We consider functions on a graph defined on the vertex set, V .

f : V → C

I Since |V | = N <∞, can view f as a vector in CN
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Graph Laplacian Matrix

Definition
The pointwise formulation for the graph Laplacian acting on
f : V → R is

Lf (x) =
∑
y∼x

f (x)− f (y).

I For a finite graph, the Laplacian can be represented as a
matrix.

I D denotes the diagonal N × N degree matrix, D = diag(dx).
I A denotes the N × N adjacency matrix,

A(i , j) =

{
1, if xi ∼ xj
0, otherwise.

I Then the graph Laplacian matrix can be written as

L = D − A.
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Spectrum of the Laplacian

I L is symmetric and positive semidefinite.

I By the spectral theorem, L has real eigenvalues

λ0 ≤ λ1 ≤ · · · ≤ λN−1

and real-valued orthonormal eigenvectors {ϕk}N−1
k=0 .

I Fact: If G is connected then λ0 = 0, ϕ0 = 1/
√
N, and λk > 0

for all k ∈ {1, ...,N − 1}.
I In general the multiplicity of eigenvalue 0 gives the number of

connected components of the graph.

I The spectrum of the Laplacian is fixed but one’s choice of
eigenvectors can vary. We assume that the choice of
eigenvectors is fixed.
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Data Sets - Minnesota Road Network
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Figure : Eigenfunctions corresponding to the first six nonzero
eigenvalues. Minnesota road graph (2640 vertices, 3302 edges)

Matthew Begué (NWC//UMCP) Expedition in Data and Harmonic Analysis on Graphs



Graph Preliminaries and the Laplacian Graph Time-Frequency operators Support of eigenvectors

Data Sets - Sierpinski gasket graph approximation
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Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Level-8 graph approximation to Sierpinski gasket (9843 vertices)
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Data Sets - Sierpinski gasket graph approximation
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Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Level-8 graph approximation to Sierpinski gasket (9843 vertices)
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Graph Fourier Transform

Shuman, D.I., Ricaud, B., and Vandergheynst, P., “Vertex-frequency analysis on graphs”, Applied and

Computational Harmonic Analysis, 2016, vol. 40(2), pp.260-291.

I The Fourier transform on R is given by

f̂ (ξ) =

∫
R
f (t)e−2πiξt dt = 〈f , e2πiξt〉.

This is precisely the inner product of f with an eigenfunction
of the Laplace operator.

I Analogously, we define the graph Fourier transform of a
function, f : V → R, as

f̂ (λk) = 〈f , ϕk〉 =
N∑

n=1

f (n)ϕ∗k(n).
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Graph Modulation and Graph Convolution

I Motivated by modulation in R, Mk = e2πikx f (x) we define
graph modulation by

Mk f = ϕk f .

I Motivated by the identity in R, f̂ ∗ g(ξ) = f̂ (ξ)ĝ(ξ), we define
graph convolution by

f ∗ g = (f̂ ĝ)∨
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Nice Properties

I Parseval’s Identity: 〈f , g〉 = 〈f̂ , ĝ〉
I Plancherel’s Identity: ‖f ‖ =

∥∥∥f̂ ∥∥∥
I Commutativity, associativity, and distributivity of graph

convolution:
f ∗ g = g ∗ f ,

(f ∗ g) ∗ h = f ∗ (g ∗ h),

f ∗ (g + h) = f ∗ g + f ∗ h
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Graph Translation

I Translation by vector u in R can be viewed as convolution
with δu.

Tuf (x) = f (x − u) = f ∗ δu

I δu has Fourier transform δ̂u(ξ) = e−2πiξu= ϕξ(u)

Definition
For f : V → R the graph translation operator, Ti , is defined as

Ti f = (f̂ Φ̂i )
∨,

where Φi is the vector

Φi = [ϕ0(i), ϕ1(i), · · · , ϕN−1(i)]>.
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Not nice properties of graph translation

I Ti is generally not isometric. ‖Ti f ‖`2 6= ‖f ‖`2 .

I The graph translation operators do not form a group like in
the classical Euclidean setting.

TiTj 6= Ti+j

Theorem
Graph translation is a semigroup, i.e., TiTj = Ti•j for some
semigroup operator • : {1, ...,N} × {1, ...,N} → {1, ...,N}, only if
the eigenvector matrix Φ = (1/

√
N)H, where H is a Hadamard

matrix.

Matthew Begué (NWC//UMCP) Expedition in Data and Harmonic Analysis on Graphs
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Invertibility of Translation operator Ti

I Ti need not be injective.

Theorem
The graph translation operator Ti is invertible if and only if
ϕk(i) 6= 0 for all k = 1, ...,N − 1.
Furthermore, the nullspace of Ti has a basis equal to those
eigenvectors that vanish on the ith vertex.

This theorem stresses the importance of characterizing vertices in
which eigenvectors of the Laplacian vanish.
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The Fiedler vector: ϕ1

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1

I The first nonzero eigenvalue, λ1, is called the algebraic
connectivity.

I The eigenvector ϕ1 corresponding to λ1 is called the Fiedler
vector.

I The Fiedler vector is of great importance in nonlinear
dimension reduction techniques, image segmentation, and
graph drawing.
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Spectral graph drawing
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Hall, K. “An r -dimensional quadratic placement algorithm”, Management science, 1970, vol 17(3), pp. 219–229.
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Characteristic vertices

I For a Fiedler eigenvector ϕ1, decompose the vertieces into
disjoint subsets

V = V+ ∪ V− ∪ V0.

I V+ is the set of vertices x ∈ V where ϕ1(x) > 0.

I V− is the set of vertices x ∈ V where ϕ1(x) < 0.

I V0 is the set of vertices x ∈ V where ϕ1(x) = 0.
V0 is known as nodal set, or characteristic vertices.

I We wish to describe the size and structure of V0.
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Support of Fiedler vector

It is perhaps a misconception that the Fiedler vector must have
(near) full support.
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Arbitrarily many characteristic verties possible

It was shown in 1998 that the set V0 may be arbitrarily large.
Bapart, R. and Pati, S. “Algebraic connectivity and the characteristic set of a graph”, Linear and Multilinear

Algebra, 1998, vol. 45(2-3), pp. 247–273.
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Arbitrarily large and connected V0

We can show that the family of generalized ladders can have an
arbitrarily large characteristic set that is also connected.
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Can there exist a vertex x ∈ V0 with 3 or more neighbors also in
V0?
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Graph balls

Definition
A graph ball centered at vertex x ∈ V with radius r is defined as

Br (x) = {y ∈ V : d(x , y) ≤ r}.

Matthew Begué (NWC//UMCP) Expedition in Data and Harmonic Analysis on Graphs



Graph Preliminaries and the Laplacian Graph Time-Frequency operators Support of eigenvectors

Question

Restate the orginal question as

Can there exist a graph ball B1(x) ⊆ V0 with |B1(x)| ≥ 4?

Answer:

I Yes, it is possible in general.

I The result is not possible for planar graphs
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Planar graphs

Definition
A planar graph is a graph whose vertices and edges can be
embedded in R2 with edges intersection only at vertices.

Planar graphs Nonplanar graphs
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Characterizing Planar Graphs

Definition
Contracting an edge (u, v) entials deleting edge e and identifying u
and v as the same vertex. A graph H, formed by a contraction of
G , is known as a minor of G .

Theorem (Wagner’s Theorem)

G is a planar graph if and only if it does not contain a K5 or K3,3

as a minor.

K5 K3,3
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Main Theorem

Theorem
Let G (V ,E ) be a planar graph with Fiedler vector ϕ1. Then V0

contains no balls of radius 1 with more than 3 vertices.

Strategy: Proof by contradiction.
Suppose V0 contains such a ball and demonstrate that the graph
G will contain one of the forbidden minors.
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Lemma
Every vertex x ∈ V0 either has

1. all neighbors in V0 or

2. at least one neighbor in V+ and one in V−.
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Lemma: Connectedness of V+ and V−

1975: Miroslav Fiedler proves V+ ∪ V0

forms a connected subgraph.
Fiedler, M. “A property of eigenvectors of nonnegative symmetric ma-

trices and its applications to graph theory.”, Czechoslovak Mathemat-

ical Journal, 1975, vol. 25(4), pp. 619–633
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2014: John Urschell proves that V+

forms a connected subgraph.
Urschel, J.C., Zikatanov, L.T., “Spectral bisection of graphs and con-
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Nonplanar graphs with large balls contained in V0

I For N ≥ 3, we construct a family of graphs called the barren
graph, Barr(N), with |V | = N + 7.

I Barr(N) has characteristic set V0 that is a graph ball of radius
1 and |V0| = N + 1.

I Let {Vi}6
i=1 denote distinct vertex sets with given cardinalities

{|Vi |}6
i=1 = {N, 1, 2, 2, 1, 1}. Barr(N) is the following graph

sum of the 5 complete bipartite graphs

Barr(N) = K (V1,V2)+K (V1,V3)+K (V1,V4)+K (V3,V5)+K (V4,V6).
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Barren graphs

Barr(4) Barr(6)
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Spectrum of Barren graph

λk value

λ0 0

λ1
1
2

(
N + 3−

√
N2 − 2N + 9

)
λ2 y1

λ3 = · · · = λN+1 5

λN+2 y2

λN+3 = λN+4 N + 1

λN+5
1
2

(
N + 3 +

√
N2 − 2N + 9

)
λN+6 y3

y1, y2, and y3 are the roots of the polynomial

λ3 + (−2N − 8)λ2 + (N2 + 10N + 15)λ+ (−2N2 − 14N)

Matthew Begué (NWC//UMCP) Expedition in Data and Harmonic Analysis on Graphs



Graph Preliminaries and the Laplacian Graph Time-Frequency operators Support of eigenvectors

Fiedler vector of the barren graph

b

a a

−a −a

−b


4a2 + 2b2 = 1 (‖ϕ‖ = 1)

2(b − a) = λb (green)
Na + (a− b) = λa (red)
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Thank You
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