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Directionality

My work is tied together by the fundamental importance of directionality in
science and mathematics.

Remote sensing techniques, such as radar, sonar, and LIDAR, involve
emitting signals in the form of sound or light. Signals that return to the
emitter provide information of the direction of important features.
It’s been hypothesized that the edges of an image are sparsely
represented in the human visual cortex. 1

Some bacteria orient themselves towards light and form aggregates.
Dimensionality reduction techniques that require the computation of
eigenvectors, such as LE, work by detecting the most significant
directions, and hence features, in the data.

1D. Field. Relations between the statistics of natural images and the response properties of
cortical cells. JOSA A. (1987).

July 27, 2015 3 / 52



Directionality

My work is tied together by the fundamental importance of directionality in
science and mathematics.

Remote sensing techniques, such as radar, sonar, and LIDAR, involve
emitting signals in the form of sound or light. Signals that return to the
emitter provide information of the direction of important features.
It’s been hypothesized that the edges of an image are sparsely
represented in the human visual cortex. 1

Some bacteria orient themselves towards light and form aggregates.
Dimensionality reduction techniques that require the computation of
eigenvectors, such as LE, work by detecting the most significant
directions, and hence features, in the data.

1D. Field. Relations between the statistics of natural images and the response properties of
cortical cells. JOSA A. (1987).

July 27, 2015 3 / 52



Directionality

My work is tied together by the fundamental importance of directionality in
science and mathematics.

Remote sensing techniques, such as radar, sonar, and LIDAR, involve
emitting signals in the form of sound or light. Signals that return to the
emitter provide information of the direction of important features.
It’s been hypothesized that the edges of an image are sparsely
represented in the human visual cortex. 1

Some bacteria orient themselves towards light and form aggregates.
Dimensionality reduction techniques that require the computation of
eigenvectors, such as LE, work by detecting the most significant
directions, and hence features, in the data.

1D. Field. Relations between the statistics of natural images and the response properties of
cortical cells. JOSA A. (1987).

July 27, 2015 3 / 52



Directionality

My work is tied together by the fundamental importance of directionality in
science and mathematics.

Remote sensing techniques, such as radar, sonar, and LIDAR, involve
emitting signals in the form of sound or light. Signals that return to the
emitter provide information of the direction of important features.
It’s been hypothesized that the edges of an image are sparsely
represented in the human visual cortex. 1

Some bacteria orient themselves towards light and form aggregates.
Dimensionality reduction techniques that require the computation of
eigenvectors, such as LE, work by detecting the most significant
directions, and hence features, in the data.

1D. Field. Relations between the statistics of natural images and the response properties of
cortical cells. JOSA A. (1987).

July 27, 2015 3 / 52



Directionality

My work is tied together by the fundamental importance of directionality in
science and mathematics.

Remote sensing techniques, such as radar, sonar, and LIDAR, involve
emitting signals in the form of sound or light. Signals that return to the
emitter provide information of the direction of important features.
It’s been hypothesized that the edges of an image are sparsely
represented in the human visual cortex. 1

Some bacteria orient themselves towards light and form aggregates.
Dimensionality reduction techniques that require the computation of
eigenvectors, such as LE, work by detecting the most significant
directions, and hence features, in the data.

1D. Field. Relations between the statistics of natural images and the response properties of
cortical cells. JOSA A. (1987).

July 27, 2015 3 / 52



Outline of Talk
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3 A Shearlet Application to LIDAR
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Background on Anisotropic Harmonic Analysis

Anisotropic Harmonic Analysis

Harmonic analysis decomposes signals into simpler elements called
analyzing functions.
Classical methods include Fourier series and wavelets. These have
proven extremely influential and quite effective for many applications.
However, they are fundamentally isotropic, meaning they decompose
signals without considering how the signal varies directionally.
Wavelets decompose an image signal with respect to translation and
scale. Since the early 2000s, there have been several attempts to
incorporate directionality into the wavelet construction.
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Background on Anisotropic Harmonic Analysis

Anisotropic Harmonic Analysis

These constructions incorporate directionality in a variety of ways.
Some of the major constructions include:

Ridgelets. 2

Curvelets. 3

Contourlets. 4

Shearlets. 5

Wavelets, ridgelets, curvelets, and shearlets are all special cases of the
recently introduced α−molecules. 6

2E. Candès. Ridgelets: theory and applications. PhD thesis. (1998).
3D. Donoho and E. Candès. Curvelets: A surprisingly effective nonadaptive representation for

objects with edges. Curve and Surface Fitting. (1999).
4M. Do and M. Vetterli. Contourlets. Beyond Wavelets. (2001).
5D. Labate, W.-Q. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional representation

using shearlets. Proc. SPIE 5914. (2005).
6P. Grohs, S. Keiper, G. Kutyniok, and M. Schäfer. α−molecules. arXiv: 1407.4424. (2014).
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Background on Anisotropic Harmonic Analysis

Anisotropic Harmonic Analysis

A useful model for real images is the class of cartoon-like images, E2(R2).
Roughly, they are functions that are smooth away from a smooth curve of
discontinuity.
Let f ∈ E2(R2) and let fN be its best N-term approximation with respect to
a set of analyzing functions. The optimal asymptotic decay rate of
||f − fN ||22 is O(N−2),N →∞, achieved adaptively.
Up to a log factor, curvelets, contourlets, and shearlets satisfy this
optimal decay rate (ridgelets are only optimal for linear boundaries).
Hence, these analyzing functions are essentially optimally sparse for
cartoon-like images. Wavelets can only achieve O(N−1). Fourier series
are even worse with O(N−1/2).
We focus on shearlets since they have multiple, efficient numerical
implementations.
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Background on Anisotropic Harmonic Analysis

Shearlets

We define the parabolic scaling matrices

Aa =

(
a 0
0 a1/2

)
, a > 0

and the shearing matrices

Ss =

(
1 s
0 1

)
, s ∈ R.

Also, let DM be the dilation operator defined by

DMψ = |det M|−1/2ψ(M−1·), M ∈ GL2(R)

and Tt the translation operator defined by

Ttψ = ψ(· − t), t ∈ R2.
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Background on Anisotropic Harmonic Analysis

Shearlets

Definition

Let ψ ∈ L2(R2). The Continuous Shearlet Transform of f ∈ L2(R2) is

f 7→ S H ψf (a, s, t) = 〈f ,TtDAaDSsψ〉,a > 0, s ∈ R, t ∈ R2.

Parabolic scaling allows for directional sensitivity.
Shearing allows us to change this direction.
By carefully choosing ψ and discretizing the parameter space, we can
decompose f ∈ L2(R2) into a Parseval frame.
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Background on Anisotropic Harmonic Analysis

Shearlets

It’s generally assumed that ψ̂ splits as ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1).

The basic shearlet ψ is only used in a horizontal cone, while the reflection
of ψ across the line ξ2 = ξ1 is used in a vertical cone. A scaling function φ
is used for the low-pass region. This construction is known as
cone-adapted shearlets.

Figure: Frequency tiling for cone-adapted shearlets.7

7G. Kutyniok and D. Labate, eds. Shearlets: Multiscale analysis for multivariate data.
Birkhäuser. (2012).
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Background on Anisotropic Harmonic Analysis

Shearlet Implementations

Shearlets have several efficient numerical implementations in MATLAB
that are freely available.

2D Shearlet Toolbox (Easley, Labate, and Lim). 8

Shearlab (Kutyniok, Shahram, Zhuang et al.). 9

Fast Finite Shearlet Transform (Häuser and Steidl).10

We used the last option (FFST) here, which is in many ways the most
intuitive of the implementations.

8http://www.math.uh.edu/˜dlabate/software.html
9http://www.shearlab.org/

10http://www.mathematik.uni-kl.de/imagepro/software/ffst/
July 27, 2015 12 / 52
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Background on Anisotropic Harmonic Analysis

Fast Finite Shearlet Transform (FFST)

Consider an M × N image. Define j0 := blog2 max{M,N}c. We discretize
the parameters as follows:

aj := 2−2j =
1
4j , j = 0, . . . , j0 − 1,

sj,k := k2−j , −2j ≤ k ≤ 2j ,

tm :=
(m1

M
,

m2

N

)
, m1 = 0, . . . ,M − 1, m2 = 0, . . . ,N − 1.

Note that the shears vary from −1 to 1. To fill out the remaining
directions, we also shear with respect to the y -axis.
Shearlets whose supports overlap are “glued” together.
The transform is computed through the 2D FFT and iFFT.
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Background on Anisotropic Harmonic Analysis

Fast Finite Shearlet Transform

Figure: Frequency tiling for FFST.11

11S. Häuser and G. Steidl. Fast finite shearlet transform: a tutorial. arXiv:1202.1773. (2014).
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Background on Anisotropic Harmonic Analysis

Fast Finite Shearlet Transform

Figure: Demonstration of output from the FFST on the cameraman image. The
shearlet coefficients are from scale 3 (out of 4) in the direction of slope 4.
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Background on Anisotropic Harmonic Analysis

How Well Can the FFST Resolve Directions?

We can prove that the direction of the shearlet coefficient of maximum
magnitude determines the direction, at least in the ideal case.

Theorem

Let f (x) = Hy>rx be a 2D Heaviside function and assume WLOG that |r | ≤ 1.
Fix a scale j and position m. Then the shearlet coefficient of the FFST
SH(f )(j , k ,m) is only nonzero for at most two consecutive values of the
shearing parameter k. The value of k that maximizes |SH(f )(j , k ,m)| satisfies

∣∣sj,k − r
∣∣ < 1

2j .

Furthermore, for this k, sj,k is closest to r over all k.
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Background on Anisotropic Harmonic Analysis

Sketch of Proof

We first show by direct computation that
∫
R ψ̂(−rω, ω)dω =

∫
R ψ(x , rx)dx

for all ψ ∈ S(R2), r ∈ R.

Since ∂
∂y Hy>rx = δy−rx , Ĥy>rx = 1

2πiω2
δ̂y−rx .

Using the above, 〈δ̂y−rx , ψ̂〉 =
∫
R ψ̂(−rω, ω)dω, ψ̂ ∈ C∞c (R2).

We compute

SH(f )(j , k ,m) = 〈f , ψjkm〉

= 〈f̂ , ψ̂jkm〉

=

∫
R2

1
2πiω2

δ̂y−rx(ω1, ω2)ψ̂jkm(ω1, ω2)dω1dω2

=
1

2πi

∫
R

1
ω2
ψ̂jkm(−rω2, ω2)dω2.
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Background on Anisotropic Harmonic Analysis

Sketch of Proof

By the way ψ̂ decomposes,

ψ̂jkm(−rω2, ω2) = ψ̂1(4−jω2)ψ̂2(−2j r+k)exp(−2πi(−rω2m1/M+ω2m2/N)).

Since k only appears in ψ̂2(−2j r + k), we examine that term separately.
By assumption, ψ̂2 is a positive, smooth function supported on [−1,1]
that is strictly increasing on [−1,0] and decreasing on [0,1].
Hence, to obtain a nonzero shearlet coefficient, we must have
| − 2j r + k | < 1 or |sj,k − r | < 1/2j .
The shearlet slopes differ by 1/2j , so this can only occur at most twice.
The coefficient is maximized when −2j r + k is closest to 0, that is, when
sj,k is closest to r .
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Directional Superresolution

What is Superresolution?

Superresolution (SR) is the problem of improving the resolution of an
image, without introducing artifacts.
All sensors have a diffraction limit, which restricts resolving power.
Decreasing pixel size improves resolution, but has the drawback of also
decreasing light, leading to shot noise. 12

Undersampling leads to aliasing, causing the image to appear blocky.
12S. Park, M. Park, and M. Kang.Super-resolution image reconstruction: a technical overview.

IEEE Signal Processing Magazine 20.3 (2003):21-36.
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Directional Superresolution

What is Superresolution?

Superresolution is often phrased as an image recovery problem. Let f be
the observed image and u the image we want to recover. One possible
model is 13

f = D(h ∗ u) + n

where h is a possibly unknown blur filter, D is a down-sampling operator
(which typically introduces aliasing), and n is Gaussian white noise.
For this presentation, we take the simpler model

f = Du

and assume D downsamples by a factor of 2.

13A. Marquina and S. Osher. Image super resolution by TV-regularization and Bregman
iteration. J. Sci. Comput. 37 (2008): 367-382.
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Directional Superresolution

Superresolution

The previous problem is ill-posed due to the loss of information in the
downsampling process.
The problem becomes more tractable with additional information.

One common technique is to combine multiple low resolution images of the
same scene with sub-pixel shifts.
Another is to build a dictionary of known high/low resolution pairs from a set
of test images. 14

We consider the more difficult problem of single-image superresolution,
where no additional information is available.

14W. Freeman, T. Jones, E. Pasztor. Example-based super-resolution. Computer Graphics and
Applications 22.2 (2002):56-65
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Directional Superresolution

Single-image Superresolution in the Literature

New Edge-Directed Interpolation scheme (Li and Orchard) uses
estimates of local covariance at the low resolution to interpolate the
higher resolution.
Directional Filtering and Data Fusion (Zhang and Wu) fuses two
estimates of a pixel’s value through linear minimum mean square-error
estimation.
Soft Decision Adaptive Interpolation (ibid.) uses a 2D piecewise
autoregressive model, where the model parameters are determined by a
soft-decision estimation on groups of pixels.
Kernel Regression (Takeda, Farsiu, and Milanfar) makes use of
non-parametric estimation to denoise and interpolate randomly sampled
data.
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Directional Superresolution

Superresolution and Harmonic Analysis

The above single-image superresolution techniques are essentially
statistical in nature.
Harmonic analysis techniques have also been applied to the problem,
including:

Iterative procedures that impose sparsity in the transform domain
(contourlet15, shearlet16 ).
Formations of tight frames from circulant matrices that capture particular
directions. 17

Sparse mixing estimation (SME) utilizing orthogonal block matching pursuit
on wavelet coefficients. 18

15N. Mueller, Y. Lu, and M.N. Do. Image interpolation using multiscale geometric
representations. In Proc. SPIE Computational Imaging V, pp. 64980A, (2007).

16H. Lakshman, W.-Q Lim, H. Schwartz et al. Image interpolation using shearlet based iterative
refinement. arXiv:1308.1126. (2013).

17E.H. Bosch, A. Castrodad, J.S. Cooper, W. Czaja, and J. Dobrosotskaya. Tight frames for
multiscale and multidirectional image analysis. In SPIE Defense, Security, and Sensing, pp.
875004-875004. International Society for Optics and Photonics. (2013).

18S. Mallat and G. Yu. Super-resolution with sparse mixing estimators. IEEE Transactions on
Image Processing 19.11 (2010): 2889-2900.
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Directional Superresolution

Superresolution Algorithm

1 Let I be the original image/signal. If I has multiple bands, we apply
the algorithm to each band separately.

2 Upsample I by bicubic interpolation to obtain Ib.
3 Apply the FFST to Ib. Restrict to a scale of interest.
4 Assign each pixel a dominant local direction based on the direction of

the shearlet coefficient of largest magnitude.
5 Pixels whose largest shearlet coefficient is below a threshold T are

determined to have no local direction.
6 Pixels within some distance of the border are also assigned to have

no local direction.
7 Apply a blur filter of length 5 to Ib in each shearlet direction.
8 Replace each pixel having a dominant local direction with its

corresponding “blurred” value.
9 Output the superresolved image.
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Directional Superresolution

Details of Superresolution Algorithm

If I is an M × N image with max{M,N} ≥ 128, we can obtain a
decomposition of Ib into 4 scales with 2j+1 directions at scale j .
We choose j = 3 as the scale of interest, since it will contain the edges
and few textures.
The threshold T is typically taken to be about 0.04 for normalized images.
The FFST gives spurious information near the border, so this information
is discarded.
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Directional Superresolution

Experiments

We tested our algorithm on a color orthophoto of an urban area in
Zeebruges, Belgium with spatial resolution 5-cm. 19

We extracted a 512× 512 subset of the image and then downsampled by
a factor of 2.

Figure: Original image (left) and downsampled image (right)

192015 IEEE GRSS Data Fusion Contest. http://www.grss-ieee.org/community/technical-committees/data-fusion/.
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Directional Superresolution

Results of Experiments

The downsampled image was then superresolved with bicubic
convolution, SME, and our algorithm.
Here, we zoom in on a 100× 100 subset to observe the fine details.

(a) Original (b) Bicubic (c) SME (d) Shearlet-based

Figure: A comparison of the three methods on a zoomed-in area of the image.
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Directional Superresolution

Comparison of Methods

Our algorithm is quite fast.
We performed SME and our algorithm on each channel of the RGB image.
Computations were performed on a MacBook Pro with a 2.6 GHz Intel Core
i5 processor and 16 GB of RAM.
Timings: bicubic (instant), SME (705 s), our algorithm (3 s).

Bicubic preserves jagged edges caused by aliasing. SME and our
algorithm smooth the edges.
SME leads to sharper edges and fewer blurred textures than our
algorithm.
However, SME causes some undesirable artifacts, which appear as thin
lines in the roof.
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Directional Superresolution

Summary and Future Directions

In general, anisotropic harmonic analysis provides a powerful set of
techniques for superresolution in terms of visual quality.
One of the greatest challenges for our algorithm is superresolving images
with many textures without oversmoothing.
In future work, we would like to find a method for filtering out the textures
so as to only smooth the edges.
In addition, we would like to consider more sophisticated ways of
improving edges beyond motion blurring, which tends to decrease image
sharpness.
We will further study Mallat’s SME method to determine if shearlets can
offer any improvements.
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A Shearlet Application to LIDAR

What is LIDAR?

LIDAR (Light Detection and Ranging) is a remote-sensing technique that
uses lasers to acquire elevation data.
A collection vehicle (plane, helicopter, car) emits light, which reflects off
the ground (or a structure on the ground) and back to a sensor.
By analyzing the time of return, elevation data can be obtained.
Multiple returns occur when light strikes semi-permeable object, such as
trees.
Intensities may also be collected; they measure material reflectivity.
Recently, LIDAR has become an indispensable component of self-driving
cars.
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A Shearlet Application to LIDAR

What is LIDAR?

Illustration of LIDAR returns20 (left) and Google prototype with LIDAR system
on roof21 (right).

20T. Doster. Harmonic Analysis Inspired Data Fusion for Applications in Remote Sensing. PhD
thesis. (2014).

21S. Gibbs. Google’s self-driving car: How does it work and when can we drive one? The
Guardian. (2014).
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A Shearlet Application to LIDAR

Description of the Problem

We have gridded first-return LIDAR data of rural scenes without
intensities.
We would like to detect quasilinear structures (roads, ditches).
Challenges:

Trees dominate scenes and need to be filtered out.
Roads and ditches do not stand out much from their surroundings in LIDAR.
Roads are weak edges and do not persist across scales.

To meet these challenges, we need scale and directionality information.
By choosing the appropriate scale, we can focus on the weak edges.
By including directionality, we can seek out locally linear objects.

We develop a shearlet-based algorithm for feature detection.
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A Shearlet Application to LIDAR

The Mohawk Ditch Scene

Figure: Original gridded LIDAR data, courtesy of the Army Research Labs.
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A Shearlet Application to LIDAR

The Mohawk Ditch Scene

Trees dominate the scene and there are some hints of roads.
A good way to visualize the information content in such a scene is to
apply a standard deviation filter and take the logarithm (logstd).

Figure: Log of the standard deviation-filtered data.
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A Shearlet Application to LIDAR

The Mohawk Ditch Scene

Large shearlet coefficients at a point mean high local directionality.
Thresholding from below gives directional features, while thresholding
from above removes trees.
We perform the shearlet transform with four scales. The features of
interest are in scale 3.

Figure: Log of sum of the shearlet coefficient magnitudes at scale 3.
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A Shearlet Application to LIDAR

Is Thresholding Shearlet Coefficients Enough?

Figure: Locations where the sum of shearlet coefficients is between 0.12 and 1 at
scale 3.

We capture locations of ditches and roads, but also edges of trees.
The large shearlet coefficients of the trees cause a bleeding effect, so
tree edges cannot be filtered out.
We need to find a better way to use the information.
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A Shearlet Application to LIDAR

Detection Algorithm

1 Let A be the original LIDAR image. Define B := A−min(A).
2 Compute the FFST of B. Restrict to a scale of interest.
3 Specify four thresholding parameters: loglow , loghi ,elevhi , and

shearhi . These parameters are thresholds on the logstd, the elevation
from the minimum point, and the shearlet coefficient, respectively.

4 Each point that satisfies the standard deviation and elevation
thresholds are candidates for the edge points we are interested in.
For each of the points, record the number of directions whose
shearlet coefficient has magnitude below shearhi .

5 Remove the points that have small shearlet coefficients in all
directions.

6 Apply a median filter determined by a vector mfilt = [m,n], where m
and n are odd.

7 Output the resulting image.
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A Shearlet Application to LIDAR

Details of the Detection Algorithm

Since the logstd allows us to see what is in the scene, it makes sense to
threshold by it.
Thresholding the elevation from above with respect to the lowest point will
remove trees, at least for flat terrain.
For directional features, the shearlet coefficient will ideally be large in
only one direction. We relax this constraint by allowing it to be large in
other directions, but consider more small coefficients (determined by
shearhi) to be better evidence of detecting a structure of interest.
The median filter is needed as post-processing to remove isolated pixels.
The result will be an image of pixels that satisfy the thresholds. Each
pixel will have value given by the number of small shearlet directions.
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A Shearlet Application to LIDAR

Results

Figure: Results of algorithm with loglow = −2.4, loghi = 0, shearhi = 0.1, elevhi = 50,
and mfilt = [5, 3]. Yellow and orange pixels are strongly directional, green is
moderately directional, light blue is weakly directional, dark blue is non-directional.
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Results

Trees have almost entirely been filtered out.
As hypothesized, points with many small shearlet coefficients do tend to
belong to roads and ditches.
It was important to keep weakly directional points to fill in large gaps.
Some gaps are unavoidable, either due to exceptionally thin edges or
tree-covered roads.
False positives tend to be either roofs of buildings or regions between
trees.
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A More Difficult Example: Gainsville Track

Figure: Original LIDAR data.
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Gainsville Track

Figure: Logstd of the Gainsville track scene. Note the barely detectable dirt road.
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Results

Figure: Results of the algorithm on the Gainsville track scene with
loglow = −4, loghi = 0, shearhi = 0.1, elevhi = 5, and mfilt = [5, 5]. Scale 2 is used
here, so there can be at most 7 weak directions.
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Results

The detected road contains all strongly directional points.
There are breaks in the detected road, but in fact they are in the original
data.
Regions between trees are also detected as before.
We need global shape analysis to detect and remove these regions.
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A Shearlet Application to LIDAR

The Hough Transform

The Hough transform can be used to detect straight lines in a binary
image.
Essentially, it counts the number of points that pass through various lines.
Each line is parametrized as ρ = x cos(θ) + y sin(θ).
It can be thought of as a discrete version of the Radon transform.
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The Hough Transform

Figure: The Hough transform of the binary-converted output.
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The Hough Transform

Figure: Plot of the ten most significant lines as determined by the Hough transform,
superimposed on the binary-converted results of the algorithm.

Three distinct lines were detected.
Averaging the values corresponding to each line, we obtain that the lines
are described by (θ, ρ) = (−15.5,200), (−15,209.5), (−14,170).
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A Shearlet Application to LIDAR

Conclusions and Future Work

We were able to detect roads and ditches by local variance and
directionality.
We needed to relax the condition of only one shearlet coefficient being
large.
The algorithm produces false positives for areas between trees, tops of
buildings, and bushes.
Global shape analysis is needed to filter out these features.
We would also like to incorporate information from the entire LIDAR point
cloud.

Multiple returns would allow us to detect roads beneath trees.
Intensities may allow us to distinguish the tops of buildings.
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