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Uncertainty Principles

In the context of harmonic analysis, the Heisenberg uncertainty
principle (HUP) states that for an L2 function f : R→ C:

‖f ‖2
L2(R) ≤ 4π ‖tf (t)‖L2(R) ‖γ f̂ (γ)‖

L2(R̂)
. (1)

If f ∈ S(R), the space of Schwartz functions, then inequality (1) is
equivalent to

‖f ‖2
L2(R) ≤

∥∥f ′(t)
∥∥
L2(R)

+
∥∥∥f̂ ′(γ)

∥∥∥2

L2(R̂)
.

Paul J. Koprowski UMD

Finite Frames and Graph Theoretical Uncertainty Principles



Motivation Definitions Results

Uncertainty Principles

The study of uncertainty principles is of general interest to
analysts.

In the quantum settings, these principles are of great
importance.

In signal processing, uncertainty principles dictate the trade
off between high spectral and high temporal accuracy.
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Graph Theory

Graph theory has a well studied and rich theory associated
with pure mathematics.

Problems grounded in computer science and big data have
contributed to recent interest in graph theory in the applied
sciences.

So called “big data” problems are, in many cases, rooted in
graph strucures.

Data fusion of hyperspectral images employs many graph
theoretic techniques.
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Graphs Visualized

A graph representation of the swiss roll (left) and Gleich’s
representation of Wikipdedia as of 2007 (right)
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Our Goals

The nascent field of harmonic analysis on graphs looks to
further analytic understanding of graphs.

We look to the recently defined graph Fourier transform, and
try to determine which uncertainty principles can be extended
into the graph theoretic setting.

We show the celebrated principle of Donoho and Stark [1],
which, due to the loss of the cyclic structure associated with
the discrete Fourier transform, no longer holds in the graph
setting.1

1This result is omitted in this talk.
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Graph Defined

A graph G = {V ,E ⊆ V × V ,w} is a set V of vertices, a set
E of edges, and a weight function w : V × V → R+ where
R+ denotes the nonnegative reals.

We represent V = {vj}N−1
j=0 and keep the indexing fixed, but

arbitrary2.

2For many of our results, changing indexing can have an effect on the
values of our results but not the qualitative meanings. We discuss this in our
future considerations section.
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Weight Function

For (vi , vj) ∈ V × V we have that

w(vi , vj) =

{
0 if (vi , vj) ∈ Ec

c > 0 if (vi , vj) ∈ E.

We assume that the graph is undirected, such that (vi , vj) and
(vj , vi ) are equivalent, and w(vi , vj) = w(vj , vi ).

We say that a graph is unit weighted if w takes only the
values 0 and 1.
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Edge Assumptions

We assume w(vi , vi ) = 0, that is, there are no loops in the
graph.

We assume the graph is simple and connected, i.e., given any
two vertices vi and vj , there exist at most one edge between
them, and there exists a sequence of vertices {vk} for
k = 0, ..., d ≤ N − 1 such that (vi , v0), (v0, v1), ..., (vd , vj) ∈ E
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Adjacency Matrix

The adjacency matrix A = (Aij) for G is the symmetric N × N
matrix, where

Aij = w(vi , vj).
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Degree Matrix

The degree matrix D is the N × N diagonal matrix

D = diag

N−1∑
j=0

(A0j) ,
N−1∑
j=0

(A1j) , ...,
N−1∑
j=0

(
A(N−1)j

)
where the i th diagonal entry is the sum of the weights of edges
connected to vertex vi .
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Graph Laplacian

The graph Laplacian L is the symmetric N×N matrix given by

L = D − A.

The normalized graph Laplacian L is the symmetric N × N
matrix given by

L = D−1/2LD−1/2 = I − D−1/2AD−1/2.
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Incidence and Weight Matrix

The |E| × N incidence matrix M = (Mkj) with element Mkj

for edge ek and vertex vj is given by:

(Mkj) =


1, if ek = (vj , vl) and j < l
−1, if ek = (vj , vl) and j > l

0, otherwise.

The |E| × |E| weight matrix, W , is the diagonal matrix,

W = diag(w(e0), ...,w(e|E|−1))

with the weight of the kth edge on the kth diagonal.
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Circulant Graph

0

e0
1e1

2

e2

3

e3 4

e4

A circulant graph with 5 vertices.

M =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
1 0 0 0 −1



W =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Paul J. Koprowski UMD

Finite Frames and Graph Theoretical Uncertainty Principles



Motivation Definitions Results

Decomposition of L and L

It is straightforward, albeit tedious, to show that

L = (W 1/2M)∗((W 1/2M))

and
L = (W 1/2MD−1/2)∗(W 1/2MD−1/2).

Hence the Laplacian, respectively, the normalized Laplacian, is
symmetic, positive semi-definite and has real ordered eigenvalues
0 ≤ λ0 ≤ ... ≤ λN−1, respectively, 0 ≤ µ0 ≤ ... ≤ µN−1.
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Diagonalization of the Laplacians

By the spectral theorem, L, respectively, L, has an
orthonormal eigenbasis, {χj}N−1

j=0 of RN , respectively,

{Fj}N−1
j=0 .

The Laplacian has the diagonalization

∆ = χ∗Lχ = diag(λ0, λ1, ..., λN−1),

where χ = [χ0, χ1, ..., χN−1] where each χj is a column vector.

The normalized Laplacian has the diagonalization

D = F ∗LF = diag(µ0, µ1, ..., µN−1),

where F = [F0,F1, ...,FN−1] where each Fj is a column vector.
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Graph Fourier transform

The inverse Fourier transform of an integrable function f may
be thought of as the expansion of f in the complex
exponentials. These are eigenfunctions of the Laplacian
operator.
Motivated by this, we define the graph Fourier transform f̂ of
a function f ∈ l2(G ) as coefficients of the expansion in the
eigenbasis of the graph Laplacian:

f̂ [j ] = 〈χj , f 〉 , j = 0, ...,N − 1.

We define the normalized graph Fourier transform
∗
f as the as

coefficients of the expansion in the eigenbasis of the
normalized graph Laplacian:

∗
f = 〈Fj , f 〉 , j = 0, ...,N − 1.
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Matrix Version

If
χ = [χ0, χ1, ..., χN−1]

then we have f̂ = χ∗f , and since χ is unitary we may invert the
transform with χ. That is

f = χχ∗f = χf̂ .

Similarly, let F = [F0,F1, ...,FN−1] such that
∗
f = F ∗f and

f = FF ∗f = F
∗
f .
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Difference Operator

Define the difference operator

Dr = W 1/2M such that Dr f [k] = (f [j ]− f [i ]) (w(ek))1/2 ,

where ek = (vj , vi ) and j < i .
This operator maps from l2(G )→ R|E| with coordinate values
representing the weighted change in a function f over each edge.
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Normalized Difference Operator

Define the normalized difference operator

Dnr = W 1/2MD−1/2

such that

Dnr f [k] =

(
f [j ]

(deg(vj))1/2
− f [i ]

(deg(vi ))1/2

)
(w(ek))1/2 ,

where ek = (vj , vi ) and j < i . This operator maps from
l2(G )→ R|E| with coordinate values representing the normalized,
weighted change in a function f over each edge.
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Differential Uncertainty Principle

Motivated by the additive form of the Heisenberg uncertainty
principle, and by the discrete Heisenberg uncertainty principle due
to Grünbaum [2] we introduce a graph differential uncertainty
principle.

Theorem

Let G be a simple connected, and undirected graph. Then, for any
non-zero function f ∈ l2(G ), the following inequalities hold:

0 < ‖f ‖2 λ̃0 ≤ ‖Dr f ‖2 +
∥∥∥Dr f̂

∥∥∥2
≤ ‖f ‖2 λ̃N−1, (2)

where 0 < λ̃0 ≤ λ̃1 ≤ ... ≤ λ̃N−1 are the ordered real eigenvalues
of L + ∆. Furthermore, the bounds are sharp.
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Proof

Noting that

‖Dr f ‖2 = 〈Dr f ,Dr f 〉
= 〈f , χ∆χ∗f 〉

=
〈
f̂ ,∆f̂

〉
and, similarly, that

∥∥∥Dr f̂
∥∥∥2

=
〈
f̂ , Lf̂

〉
, we have

‖Dr f ‖2 +
∥∥∥Dr f̂

∥∥∥2
=
〈
f̂ , (L + ∆)f̂

〉
.3

3One should note that Dr f is a vector with dimension not usually equal to
N as there are usually more edges than vertices. However, using properties of
the inner product, we are able to translate our problem into one involving N
dimensional vectors.
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The operator L + ∆ is symmetric positive semidefinite so applying
the properties of the Rayleigh quotient for symmetric operators we
have

0 ≤ ‖f ‖2 λ̃0 ≤ ‖Dr f ‖2 +
∥∥∥Dr f̂

∥∥∥2
≤ ‖f ‖2 λ̃N−1.

The minimum, respectively, the maximum, values are attained by
setting f̂ equal to the first, respectively, the last, eigenfunction for
L + ∆.
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For positivity of the lower bound, we note that ‖Dr f ‖2 = 0 if and
only if f̂ = [c , 0, ..., 0]′, however this implies∥∥∥Dr f̂

∥∥∥2
= c2deg(v0) > 0.

We conclude inequality (2) holds, as desired. �

Paul J. Koprowski UMD

Finite Frames and Graph Theoretical Uncertainty Principles



Motivation Definitions Results

Normalized Differential Uncertainty Principle

Theorem

Let G be a simple connected, and undirected graph. Then, for any
non-zero function f ∈ l2(G ), the following inequalities hold:

0 < ‖f ‖2 µ̃0 ≤ ‖Dnr f ‖2 +

∥∥∥∥Dnr

∗
f

∥∥∥∥2

≤ ‖f ‖2 µ̃N−1, (3)

where 0 < µ̃0 ≤ µ̃1 ≤ ... ≤ µ̃N−1 are the ordered real eigenvalues
of L+D. Furthermore, the bounds are sharp.

Paul J. Koprowski UMD

Finite Frames and Graph Theoretical Uncertainty Principles



Motivation Definitions Results

Future Directions

Proving similar results for directed graphs and graphs with
disconnected components.

Effect of permuting graph labels.
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Frames

A set {ej} of N vectors in Cd is said to be a frame for Cd if
there exist 0 < A ≤ B such that for all f ∈ Cd the following
bounds hold:

0 < A ‖f ‖2 ≤
N−1∑
j=0

|〈f , ej〉|2 ≤ B ‖f ‖2 .

If A = B = 1 then the frame is called a Parseval frame.

Define the matrix E = [e0, e1, ..., eN−1] to be a d × N matrix
where the set of N d−vectors {ek} forms a Parseval frame for
Cd , i.e., EE ∗ = Id×d .
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Finite Frame Differential Uncertainty Principle

We extend the finite frame uncertainty principle due to Lammers
and Maeser [3] to the graph theoretic setting.

Theorem

Let G be a simple connected and undirected graph. The following
inequalities hold for all d × N Parseval frames E :

d−1∑
j=0

λ̃j ≤ ‖Drχ
∗E ∗‖2

fr + ‖DrE
∗‖2

fr ≤
N−1∑

j=N−d
λ̃j , (4)

where
{
λ̃j

}
is the ordered set of real, positive eigenvalues of

L + ∆. Furthermore, these bounds are sharp.
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Proof

Writing out the Frobenius norms as trace operators yields:

‖Drχ
∗E ∗‖2

fr + ‖DrE
∗‖2

fr = tr(EχD∗r Drχ
∗E ∗) (5)

+ tr(DrE
∗ED∗r ).

Using the invariance of the trace when reordering products, we
have ‖Drχ

∗E ∗‖2
fr + ‖DrE

∗‖2
fr

= tr(Lχ∗E ∗Eχ) + tr(LE ∗E )

= tr(Lχ∗E ∗Eχ) + tr(χ∆χ∗E ∗E )

= tr((L + ∆)χ∗E ∗Eχ).
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The operator ∆ + L is real, symmetric, and positive semidefinite.
By the spectral theorem, it has an orthonormal eigenbasis P that,
upon conjugation, diagonalizes ∆ + L:

P∗(∆ + L)P = ∆̃ = diag(λ̃0, λ̃1, ..., λ̃N−1).

Hence, we have

‖DrχE
∗‖2

fr + ‖DrE
∗‖2

fr = tr((∆ + L)χ∗E ∗Eχ)

= tr(P∆̃P∗χ∗E ∗Eχ)

= tr(∆̃P∗χ∗E ∗EχP)

=
N−1∑
j=0

(K ∗Kjj) λ̃j ,

where K = EχP.
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The matrix K is a Parseval frame because unitary transformations
of Parseval frames are Parseval frames . Therefore,
tr(K ∗K ) = tr(KK ∗) = d . K ∗K is also the product of matrices
with operator norm ≤ 1. Therefore, each of the entries, (K ∗Kjj) ,
satisfies 0 ≤ (K ∗Kj ,j) ≤ 1. Hence, minimizing (maximizing)∑N−1

j=0 (K ∗Kjj) λ̃j is achieved if

(K ∗Kjj) =

{
1 j < d (j ≥ N − d)

0 j ≥ d (j < N − d).

Choosing E to be the first (last) d rows of (χP)∗ accomplishes
this. The positivity of the bounds follows from the proof of
Theorem 3.1 �
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Normalized Finite Frame Differential Uncertainty Principle

Theorem

Let G be a simple, connected and undirected graph. The following
inequalities hold for all d × N Parseval frames E :

d−1∑
j=0

µ̃j ≤ ‖DnrF∗E ∗‖2
fr + ‖DnrE

∗‖2
fr ≤

N−1∑
j=N−d

µ̃j , (6)

where {µ̃j} is the ordered set of real, non-negative eigenvalues of
L+D. Furthermore, these bounds are sharp.
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Feasibility Results

We introduce analysis on the region of all possible pairs,

(‖Dr f ‖2 ,
∥∥∥Dr f̂

∥∥∥2
).

This work is highly motivated by the work of Agaskar and Lu
[4]
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Feasibility Results

Define the difference operator feasibility region FR as follows:

FR ={(x , y) : ∃f ∈ l2(G ) \ {0} such that

‖f ‖ = 1, ‖Dr f ‖2 = x and
∥∥∥Dr f̂

∥∥∥2
= y
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Convexity of FR

Proposition

Let FR be the difference operator feasibility region for a simple and
connected graph G with N vertices. Then, the following properties
hold.

a) FR is a closed subset of [0, λN−1]× [0, λN−1] where λN−1 is
the maximal eigenvalue of the Laplacian L.

b) y = 0 and x = 1
N

∑N−1
j=0 λj is the only point on the horizontal

axis in FR. x = 0 and y = L0,0 is the only point on the
vertical axis in FR.

c) FR is in the half plane defined by x + y ≥ λ̃0 > 0 with equality
if and only if f̂ is in the eigenspace associated with λ̃0.

d) If N ≥ 3 then FR is a convex region.
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Complete Graph

Figure: A unit weighted complete graph with 16 vertices.
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Feasibility Region

The green line intersects the red boundary at ‖D + rf ‖2 +
∥∥∥Dr f̂

∥∥∥2
= λ̃0 according to differential uncertainty

bounds.
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Feasibility Region
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∥∥∥Dr f̂
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= λ̃0 according to differential uncertainty
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Differential Uncertainty Curve

We now turn our attention the lower boundary of FR: the
differential uncertainty curve (DUC) ω(x) is defined as

∀x ∈ [0, λN−1], ω(x) = inf
g∈l2(G , ‖g‖=1)

〈g , Lg〉 subject to 〈g ,∆g〉 = x .

Given a fixed x ∈ [0, λN−1], we say g ′ attains the DUC if for all
unit normed g with 〈g ,∆g〉 = x we have

‖g‖ = 1 and
〈
g ′, Lg ′

〉
≤ 〈g , Lg〉 .
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Figure: The differential uncertainty curve (red) for a connected graph GPaul J. Koprowski UMD
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Characterization of the DUC

Theorem

A unit normed function f ∈ l2(G ) with ‖Dr f ‖2 = x ∈ (0, λN−1)
achieves the uncertainty curve if and only if f̂ is a nonzero
eigenfunction for K (α) = L− α∆ associated with the minimal
eigenvalue of K (α) where α ∈ (−∞,∞).
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The UF-Trefethen 20 Graph

This graph was used to facilitate solving the Problem 7 of the Hundred-dollar, Hundred-digit Challenge Problems,

SIAM News, vol 35, no. 1.
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The Trefethen 20 FR

The DUC is in red, and the green is the lower bound from the
Differential UP theorem.
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The Minnesota Road Graph

The road graph of Minnesota due to Gleich. It has 2640 vertices,
and only 3,003 edges.
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The Minnesota Road Graph

The DUC for the Minnesota road graph.
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The Minnesota Road Graph

A magnification of the DUC in the region near the origin.
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Future Considerations

Examine feasibility region for the normalized Laplacian

Directed graphs approach

Explore the connection with the Bell labs feasibility results in
[5] and [6]
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