
Graph Sparsification

Matthew Begué

Norbert Wiener Center
Department of Mathematics

University of Maryland, College Park



Weighted Graphs

We will only consider undirected, weighted graphs represented
G = G(V ,E , ω).
V is the vertex set of size N <∞.
E is the edge set, E = {(u, v) : u, v ∈ V and u ∼ v}.
Each edge is assigned a weight ωu,v > 0.
For any x ∈ V , the degree of x , dx , is the sum of weights of
edges originating from x .

dx =
∑
y∈V

ωx,y .



Graph Laplacian

For a finite graph, the Laplacian can be represented as a matrix.
Let D denote the N × N degree matrix, D = diag(dx).
Let W denote the N × N weighted adjacency matrix,

W (i , j) =
{
ωxi ,xj , if xi ∼ xj
0, otherwise.

Then the unweighted graph Laplacian can be written as

L = D −W .

Equivalently,

L(i , j) =


dxi if i = j
−ωxi ,xj if xi ∼ xj
0 otherwise.



Spectrum of the Laplacian

L is a real symmetric matrix and therefore has nonnegative
eigenvalues {λk}N−1

k=0 with associated orthonormal eigenvectors
{ϕk}N−1

k=0 .
If G is finite and connected, then we have

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1.

The spectrum of the Laplacian, σ(L), is fixed but one’s choice of
eigenvectors {ϕk}N−1

k=0 can vary.
Since L is Hermetian (L = L∗), then we can choose the
eigenbasis {ϕk}N−1

k=0 to be entirely real-valued.

Easy to show that ϕ0 ≡ 1/
√

N.



A weighted graph and its Laplacian
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(a) A random graph on 30 vertices (b) Laplacian of the graph



Problems arise with graphs with many edges



A connected graph on N vertices can have as few as N − 1
edges,
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and can have as many as N(N−1)
2 edges
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κ-approximation

Goal is to construct a subgraph, H = (V , Ẽ , ω̃), to be a
κ-approximation of G.
H is a κ-approximation of G if there exist B ≥ A > 0 with
B/A ≤ κ such that for all x ∈ RN , we have

A · x>LGx ≤ x>LHx ≤ B · x>LGx .

We write
A · LG � LG � B · LG.

This means for any i = 0,1, ...,N − 1,

A ≤
λ
(H)
i

λ
(G)
i

≤ B

Subgraph H has the same vertex set, V , as G. But we change
the edge set and the weights of those edges. In particular Ẽ ⊆ E .



κ-approximation

Goal is to construct a subgraph, H = (V , Ẽ , ω̃), to be a
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Big Picture
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(a) A random graph on 30 vertices (b) Laplacian of the graph



Eigenvalues of LG
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Eigenvalues of LG
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Eigenvalues of LH will be contained in red region
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Spielman’s result

Theorem
Let G be an undirected weighted graph on N vertices and let d > 1.
There exists a weighted subgraph H with at most d · N edges
satisfying (

1− 1/
√

d
)2

LG � LH �
(

1 + 1/
√

d
)2

LG.

Hence, H is a κ =
(

1+1/
√

d
1−1/

√
d

)2
-approximation of G.

Joshua Batson, Daniel Spielman, Nikhil Srivastava,
Twice-Ramanujan Sparsifiers, SIAM Review (2014) 56, no. 2, pp.
315-334.



Method

The Laplacian matrix, LG, can be written as a sum of rank-1
outer products

LG =
∑

(u,v)∈E

ωu,v (χu − χv )(χu − χv )
>.

The sparsified graph, H, will have Laplcian

LH =
∑

(u,v)∈E

ω̃u,v (χu − χv )(χu − χv )
>

where at most d · N of the ω̃ 6= 0.
The weights ω̃u,v that are nonzero will be chosen so that the
eigenvalues “play nice.”
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Sketch of algorithm

Starting from A0 = 0, we will construct An by adding a weighted
outer product

An = An−1 + snvnv>n

where sn > 0 and vn = χu − χv for some (u, v) ∈ E .
The algorithm requires the selection of four positive constants,
εU , εL, δU , δL.



Step 0
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Step 1
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Step 2
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Step 3
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Step d · N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

LH = AdN + sdNvdNv>dN

0−N
εL

N
εU

−N
εL

+ dNδL
N
εU

+ dNδUf f ff ffff f ffff f



Logistics

For all d · N iterations of the algorithm, there will always exist at
least one admisible edge vi and scalar si > 0 provided that

0 ≤ 1/δU + εU ≤ 1/δL − εL.

Spielman gives constants

δL = 1, δU =

√
d1√

d − 1
, εL =

1√
d
, εU =

√
d − 1

d +
√

d
,

that make the resulting graph H a κ-approximation of G for

κ =

(
1 + 1/

√
d

1− 1/
√

d

)2

.

Theorem (B.)

This is the smallest value of κ that guarantees the Spielman algorithm
will produce a κ-approximation of G with only d · N edges.
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Strengths/Weaknesses

Strengths
This is a completely deterministic algorithm.
There exists a method of sparsification via graph effective
resistances which produces a κ-approximation of G with high
probability.
Daniel A. Spielman and Nikhil Srivastava, Graph sparsification by
effective resistances, SIAM Journal on Computing, (2011)40 no.
6, pp. 1913-1926.

Weaknesses
Very computationally expensive. Each step requires inverting 3
N × N matrices.
No information on the eigenvectors of LH

Wildly different in numerical experiments
Want to preserve eigenvectors to Fourier transform on sparsified
graph.
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