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Weighted Graphs

@ We will only consider undirected, weighted graphs represented
G=G(V,E,w).

@ Vs the vertex set of size N < cc.

@ Eistheedgeset, E={(u,v):u,ve Vandu~ v}.

@ Each edge is assigned a weight w, , > 0.

@ For any x € V, the degree of x, d, is the sum of weights of
edges originating from x.

dy = Z Wy,y-

yev
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Graph Laplacian

@ For a finite graph, the Laplacian can be represented as a matrix.
Let D denote the N x N degree matrix, D = diag(dx).
Let W denote the N x N weighted adjacency matrix,

c o wxs IEX X
W(i.j) _{ 0, I otherwise.

Then the unweighted graph Laplacian can be written as
L=D-W.
Equivalently,
dy, ifi=j
0 otherwise.
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Spectrum of the Laplacian

@ L is a real symmetric matrix and therefore has nonnegative
eigenvalues {)\k},’:’:‘O‘ with associated orthonormal eigenvectors

{erthsg-
@ If Gis finite and connected, then we have

O=X <A <A< < Ay

@ The spectrum of the Laplacian, o(L), is fixed but one’s choice of
eigenvectors {(pk},I:/;J can vary.

@ Since L is Hermetian (L = L*), then we can choose the
eigenbasis {¢x}r—, to be entirely real-valued.

@ Easy to show that po = 1/v/N.
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A weighted graph and its Laplacian
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(a) A random graph on 30 vertices (b) Laplacian of the graph
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Problems arise with graphs with many edges

facebook




@ A connected graph on N vertices can have as few as N — 1
edges,

@ and can have as many as “¥-1) edges
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k-approximation

@ Goal is to construct a subgraph, H = (V, E, &), tobe a
k-approximation of G.

@ His a x-approximation of G if there exist B > A > 0 with
B/A < k such that for all x € RV, we have

A-xTLex < x"Lyx <B-x"Lgx.

@ We write
A Lg=2Lg=<B Lg.
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k-approximation

@ Goal is to construct a subgraph, H = (V, E, &), tobe a
k-approximation of G.

@ His a x-approximation of G if there exist B > A > 0 with
B/A < k such that for all x € RV, we have

A-xTLex < x"Lyx <B-x"Lgx.

@ We write
A Lg=2Lg=<B Lg.

@ This means forany i=0,1,....N—1,

NG)

A< _<B
— G_
A9
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k-approximation

@ Goal is to construct a subgraph, H = (V, E, &), tobe a
k-approximation of G.

@ His a x-approximation of G if there exist B > A > 0 with
B/A < k such that for all x € RV, we have

A-xTLlex < x"Lyx <B-x"Lgx.

@ We write
A Lg=2Lg=<B Lg.

@ This means forany i=0,1,....N—1,

NG)

A< _<B
— G_
A9

@ Subgraph H has the same vertex set, V, as G. Butwe change, .
the edge set and the weights of those edges. In particular B C g =~



Big Picture
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(a) A random graph on 30 vertices (b) Laplacian of the graph
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Eigenvalues of Lg

05+
04l
03
021

0.1

-0.1F

0.2

-0.3F

0.4

0.5 L1 1 1 1 1 1 1 1 I

Niener Center

nalysis s Applications



Eigenvalues of Lg
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Eigenvalues of Ly will be contained in red region
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Spielman’s result

Theorem

Let G be an undirected weighted graph on N vertices and letd > 1.
There exists a weighted subgraph H with at most d - N edges
satisfying

(1 —1/\/3)2LGjLHj (1+1/\Fd)2LG

141/vd\2. L
11/ ﬁ) approximation of G.

Hence, H is a k = (

@ Joshua Batson, Daniel Spielman, Nikhil Srivastava,
Twice-Ramanujan Sparsifiers, SIAM Review (2014) 56, no. 2, pp.
315-334.
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@ The Laplacian matrix, Lg, can be written as a sum of rank-1
outer products

Le= Y wuvlxu—xv)(xu—xv)"
(u,v)EE
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@ The Laplacian matrix, Lg, can be written as a sum of rank-1
outer products

Lg = Z Wu,v(Xu - XV)(XU - XV)T-
(u,v)EE

@ The sparsified graph, H, will have Laplcian

Ly = Z a)u,v(Xu - Xv)(Xu - Xv)T
(u,v)eE

where at most d - N of the & # 0.

vvvvvvvv



@ The Laplacian matrix, Lg, can be written as a sum of rank-1
outer products

Lg = Z Wu,v(Xu - XV)(XU - XV)T-
(u,v)EE

@ The sparsified graph, H, will have Laplcian

Ly = Z a)u,v(Xu - Xv)(Xu - Xv)T
(u,v)eE

where at most d - N of the & # 0.

@ The weights &, that are nonzero will be chosen so that the
eigenvalues “play nice.”
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Sketch of algorithm

@ Starting from Ay = 0, we will construct A, by adding a weighted
outer product
An=An_1+ SaVpv,

where s, > 0 and v, = x, — xv for some (u, v) € E.
@ The algorithm requires the selection of four positive constants,
€U €L, 6U7 6L-
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A=A + SngVér
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Az = As + S3V3V:—3r
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@ Forall d - N iterations of the algorithm, there will always exist at
least one admisible edge v; and scalar s; > 0 provided that

0<1/oy+ey<1/d,—er.



@ Forall d - N iterations of the algorithm, there will always exist at
least one admisible edge v; and scalar s; > 0 provided that

0<1/oy+ey<1/d,—er.

@ Spielman gives constants
\/81 € — 1 € — \@f 1
va-1 T Va YT e vd

that make the resulting graph H a x-approximation of G for

(1 +1/Vd ?
"T\1ovd)

op=1, dy=




@ Forall d - N iterations of the algorithm, there will always exist at
least one admisible edge v; and scalar s; > 0 provided that

0<1/oy+ey<1/d,—er.

@ Spielman gives constants
\/81 6 — 1 € — ﬁf 1
va-1 T Va YT e vd

that make the resulting graph H a x-approximation of G for

(1 +1/Vd ?
"T\1ovd)

op=1, dy=

Theorem (B.)

This is the smallest value of « that guarantees the Spielman algorithm !
will produce a r-approximation of G with only d - N edges. plcetions




Strengths/Weaknesses

Strengths
@ This is a completely deterministic algorithm.

@ There exists a method of sparsification via graph effective
resistances which produces a x-approximation of G with high
probability.

@ Daniel A. Spielman and Nikhil Srivastava, Graph sparsification by
effective resistances, SIAM Journal on Computing, (2011)40 no.
6, pp. 1913-1926.
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Strengths/Weaknesses

Strengths

@ This is a completely deterministic algorithm.

@ There exists a method of sparsification via graph effective
resistances which produces a x-approximation of G with high
probability.

@ Daniel A. Spielman and Nikhil Srivastava, Graph sparsification by
effective resistances, SIAM Journal on Computing, (2011)40 no.
6, pp. 1913-1926.

Weaknesses

@ Very computationally expensive. Each step requires inverting 3
N x N matrices.

@ No information on the eigenvectors of Ly

o Wildly different in numerical experiments
e Want to preserve eigenvectors to Fourier transform on sparsified
graph.
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