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Motivation

Availability of increasingly
large data sets.

Possible useful properties:

Intrinsic
low-dimensionality,
Multiscale behavior.

General strategy:

Representation systems
analogous to harmonic
analysis tools on Rn.
Efficient representations
from data-dependent
operators.

Data deluge (The Economist)
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Wavelets and Multiresolution Analysis (MRA)

Family of dilations and Zn-translations of one or several functions.

Used for approximation of L2-functions on subsets of Rn at different
resolutions.

Definition (S. Mallat, Y. Meyer, 1986)

A sequence of closed subspaces {Vj}j∈Z of L2 (R) together with a

function φ is a multiresolution analysis (MRA) for L2 (R) if

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · · ,
(ii)

⋃
j∈Z

Vj = L2 (R) and
⋂
j∈Z

Vj = {0},

(iii) f ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,

(iv) f ∈ V0 =⇒ f(x− k) ∈ V0, for all k ∈ Z,

(v) {φ(x− k)}k∈Z is an orthonormal basis for V0.
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Wavelets and Multiresolution Analysis (MRA)

Wavelets spaces Wj are orthogonal complements of Vj in Vj+1 and

L2 (R) =
⊕
j∈Z

Wj .

Advantage: fast pyramidal schemes in numerical computation

Wavelets perform well in image processing applications
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Composite (Directional) Wavelets

Extensions of traditional wavelets (K. Guo et al, 2006).

Affine systems of the type

{DADBTkψ(x)}x∈Rn ,

Tk: translation operators, k ∈ Zn,
DA, DB : dilation operators, A,B ∈ GLn(R).

Examples: Contourlets (M. Do, M. Vetterli, 2002), Curvelets (E.
Candes et al. 2003), Shearlets (D. Labate et al. 2005): basis
elements with various orientations, elongated shapes with different
aspect ratios.

Goal

Construct representations analogous of composite wavelets on graphs and
manifolds.
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Representation using Frames

Definition (Frame)

A countable family of elements {fk}∞k=1 in a Hilbert space H is a frame
for H if for each f ∈ H there exist constants CL, CU > 0 such that

CL‖f‖2 ≤
∞∑
k=1

| 〈f, fk〉 |2 ≤ CU‖f‖2.

Overcomplete set of functions that span an inner product space.

Generalization of orthonormal bases.

Redundancy can yield robust representation of vectors or functions.

No independence and orthogonality restrictions =⇒ varied
characteristics that can be custom-made for a problem.
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Kernel-Based Methods

Efficient representations from data-dependent operators.

Data set X = {x1, · · · xN}, xi ∈ RD, D large

Algorithm

1) Represent the data as a graph
2) Design kernel that captures similarity between points on graph
3) Define graph operator based on kernel
4) Recover underlying data manifold in terms of most significant

eigenvectors of graph operator

Examples: Kernel PCA (B. Schlkopf et al. 1999), Laplacian
Eigenmaps (M. Belkin, P. Niyogi, 2002), Diffusion Maps (R.
Coifman, S. Lafon, 2006)...

Goal (Updated)

Construct frame systems analogous to composite systems with dilations
on graphs and manifolds and in the family of kernel-based methods.
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Thesis Contribution

Frame MRA

Established sufficient conditions to obtain frame MRA with
composite dilations.
Constructed an example of an “approximate” MRA.

Composite Diffusion Frames

Diffusion Frames MRA/Wavelet Frames.
Diffusion Frames MRA with composite dilations.

Laplacian eigenmaps applied to retinal images

LE for dimension reduction and enhancement of eye anomalies.
OMF/VMF for classification methods.
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General Idea of Construction

Define abstract space that encompasses Euclidean spaces, graph,
manifolds.

Define families of operators that encompass many graphs/manifolds
operators.

Define MRA based on eigenfunctions of these operators.

Construct frames with composite dilations that spans the MRA
subspaces.
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Spaces of Homogeneous Type

Quasi-metric d on X with quasi-triangle inequality

d(x, y) ≤ A (d(x, z) + d(z, y)) , ∀x, y, z ∈ X, A > 0.

Bδ (x) = {y ∈ X : d(x, y) < δ} is open ball of radius δ around x.

Definition (Spaces of Homogeneous Type)

A quasi-metric measure space (X, d, µ) with µ, a nonnegative measure,
is said to be of homogeneous type if for all x ∈ X and all δ > 0 and
there exists a constant C > 0 such that

µ (B2δ (x)) ≤ Cµ (Bδ (x)) .

Rn, with Euclidean metric and Lebesgue measure.

Finite graphs of bounded degree, with shortest path distance and counting
measure.

Compact Riemannian manifolds of bounded curvature with geodesic
metric.



logo

Introduction
Composite Diffusion Frames

An application of Laplacian Eigenmaps to Retinal Imaging
Conclusion

Spaces of Homogeneous Type
Symmetric Diffusion Semigroups
Multiresolution Analysis
Composite Diffusion Frames

Symmetric Diffusion Semigroups

Definition (Symmetric Diffusion Semigroup – E. M. Stein, 1979)

A family of operators {St}t≥0 is a symmetric diffusion semigroup on
(X,µ) if

(a) Semigroup: S0 = I, St1St2 = St1+t2 , lim
t→0+

Sf = f∀f ∈ L2(X,µ),

(b) Symmetry: St is self-adjoint for all t,

(c) Contraction: ‖St‖p ≤ 1 for 1 ≤ p ≤ +∞,

(d) Positivity: for each smooth f ≥ 0 in L2(X,µ), Stf ≥ 0,

(e) Infinitesimal generator: {St}t≥0 has negative self-adjoint generator
A, so that

St = eAt.
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Example of Symmetric Diffusion Semigroup

X: weighted graph (V,E,W ).

V: vertices, points in X.
E: edges, x ∼ y if x and y are connected.
W: matrix of positive weights wxy if x and y are connected.

Measure µ

dx =
∑
x∼y

wxy

µ(x) = dx.

Form diagonal matrix D with the dx.

The normalized Laplacian L = I −D−1/2WD−1/2 induces a
symmetric diffusion semigroup on L2(X,µ).
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Compact & Differentiable Symmetric Diffusion Semigroup

Definition (Compact symmetric diffusion semigroup)

A symmetric diffusion semigroup {St}t≥0 is called compact if St is
compact for 0 < t <∞.

Definition (Differentiability)

Let {St}t≥0 be a symmetric diffusion semigroup on L2(X,µ). The

semigroup {St}t≥0 is called differentiable for t > t0, if for every

f ∈ L2(X,µ), Stf is differentiable for t > t0. {St}t≥0 is called
differentiable if it is differentiable for every t > 0.



logo

Introduction
Composite Diffusion Frames

An application of Laplacian Eigenmaps to Retinal Imaging
Conclusion

Spaces of Homogeneous Type
Symmetric Diffusion Semigroups
Multiresolution Analysis
Composite Diffusion Frames

Spectral Theorem

Proposition (A. Pazy)

Let {St}t≥0 be a compact symmetric diffusion semigroup with

self-adjoint generator A. Suppose that {St}t≥0 is also differentiable.

If µ is an eigenvalue of A and ξµ is the corresponding eigenvector,
then λt = eµt is an eigenvalue of St and ξλ = ξµ is the
corresponding eigenvector.

By the spectral theorem, {ξλ}λ∈σ(S) forms a countable orthonormal

basis of L2(X,µ) and for f ∈ L2(X,µ), we can write

Stf =
∑
λ

λt 〈f, ξλ〉 ξλ.

By the contraction property, λ ∈ [0, 1].
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Eigenfunctions as scaling functions

Let {St}t≥0 be a compact symmetric diffusion semigroup.

View S as a dilation operator with spectrum σ(S)

Consider a discretization of {St}t≥0 at times tj .

Definition (Multiresolution spaces V εj )

Let 0 < ε < 1 and let σε,j(S) := {λ ∈ σ(S), λtj ≥ ε}. Define

V−1 = L2(X,µ),

V εj = 〈{ξλ : λ ∈ σε,j(S)}〉 , j ≥ 0.
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Multiresolution Analysis

The spaces
{
V εj
}
j≥−1 form a MRA in the sense that:

(i) V εj+1 ⊆ V εj for all j ≥ −1.

(ii) {ξλ : λ ∈ σε,j(S)} is an orthonormal basis for V εj .

(iii) V−1 = L2(X,µ).

For j ≥ −1, define W ε
j such that

V εj = V εj+1 ⊕W ε
j .

L2(X,µ) =
⊕

j≥−1W
ε
j is a wavelet decomposition of L2(X,µ).
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Diffusion Wavelets (R. Coifman, M. Maggioni, 2006)

Basis functions are typically non-localized.

The computation of the eigenfunctions is required.

Given

Space of homogeneous type X and bump functions Φ centered on
dyadic cubes covering X, and which approximately span V ε0 ,
Compact symmetric semigroup

{
St
}
t≥0

.

Apply a variant of Gram-Schmidt orthogonalization process to
families of the form {StjΦ}.
Subspaces obtained approximate

{
V εj
}
j≥0.

Diffusion Wavelets: V εj = V εj+1 ⊕W ε
j .

High computational cost and unstability for some examples.

* M. Christ proved the existence of dyadic cubes on spaces of homogeneous type
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Composite Diffusion Frames

We use the idea of approximating MRA of eigenfunctions.

We construct frames instead of orthonormal wavelets and therefore,
we will not need an orthogonalization process.

We use a composition of dilations to obtain more versatile
representations.
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Assumptions for Composite Diffusion Frames

a) A bounded space of homogeneous type (X, d, µ).

b) A compact symmetric diffusion semigroup {St}t≥0 on L2(X,µ)
with spectrum σ(S) with eigenvalues λ and corresponding
eigenvectors ξλ. Each λ has multiplicity 1.

c) Another compact symmetric diffusion semigroup {T t}t≥0 with
spectrum σ(T ) = σ(S) and eigenvectors ζλ, such that, T and S are
similar, i.e., for some invertible operator U ,

ζλ = Uξλ.

d) A fixed ε ∈ (0, 1).

e) A frame Φ0 = {φ0,k}k∈K, with frame constants CL, CU > 0 such
that 〈Φ0〉 = V ε0 .
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Construction of Composite Diffusion Frames

Theorem (W. Czaja, K.Y.D.)

Suppose that the assumptions (a)-(e) hold. Consider a discretization of
{St}t≥0 at times tj and let V εj be as defined earlier. Then, there exists a
sequence of frames Φ = {Φj}j=0,..., with the following properties:

(i) 〈Φj〉 = V εj and hence 〈Φj+1〉 ⊆ 〈Φj〉,
(ii) Φj is a frame for 〈Φj〉.
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Architecture of Proof

1. Define Tε,i:

Tε,if =
∑
λ∈σε,i

λti 〈f, ζλ〉 ζλ,

Properties of Tε,i
(i) For each i ≥ 0, Tε,i : V εi −→ V εi is a closed range, bounded

operator. Moreover, V εi is invariant under Tε,i.
(ii) For each i, j ≥ 0, and i < j, the operator Tε,i : V εi −→ V εj is a

closed range, bounded operator from V εi to V εj .
(iii) For each i ≥ 0, Tε,i is self-adjoint, and has a self-adjoint

pseudo-inverse T †ε,i.
(iv) For each f ∈ V εi , we can write

Tε,if = T †ε,i(Tε,i)
2f.
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Architecture of Proof

2. For i ≤ j, let Ψi = Tε,iΦ0 and show Ψi spans V εj .

Use assumptions 〈Φ0〉 = V ε0 .
Use 1(i) and invertibility of U .

3. For i < j, show Ψ is frame for each i

Use part 2 to show f ∈ V εj implies f ∈ V ε0 .
For upper bound, use the fact that Tε,i is a contraction.
For lower bound, use the fact that Tε,i has closed, bounded
pseudoinverse. Rewrite any function f ∈ 〈Φi〉 in terms of Tε,i and its
pseudoinverse and bound below.
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Architecture of Proof

4. For i < j, Let Φj =
⋃
i Sε,jΨi =

⋃
i Sε,jTε,iΦ0, where

Sε,jf =
∑

λ∈σε,j(S)

λtj 〈f, ξλ〉 ξλ.

Show Φj spans V εj .

Note that Sε,j has same properties as Tε,i.
Since Ψi spans V εj , by 2(i), Sε,jΨi spans V εj .
Since Φj is finite union of Sε,jΨi, Φj spans V j.
Since Φj is finite union of frames, it is a frame.
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Potential Application

Diffusion Shearlets (W. Czaja, K.Y.D., Upcoming)

Suppose that we have all assumptions of composite dilation theorem.
We are given an invertible, shear matrix U .
Form a family of operator Ts, “similar” to S with

ζλ = Usξλ.

By composite dilation theorem, for s <∞, j ≥ 0,⋃
i

Sε,jTε,i,sΦ0

is a frame for Vj .
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Age-related Macular Degeneration (AMD)

Leading cause of blindness in elderly patients in industrialized
nations.

Earliest observable sign of retinal pigment epithelium (RPE)
dysfunction, which causes AMD, is accumulation of irregularly
shaped, color fundus deposits called drusen.
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Age-related Macular Degeneration (AMD)

Growing interest in automated, ana-
lytic tools for:

Early diagnosis.

Tracking progression over time.

Testing effectiveness of new
treatment methods.

Common procedure:

Retinal imaging.

Feature extraction using
segmentation/dimension
reduction methods.

Classification of features.
Retinal image (from NIH): drusen

appear as bright spots.
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LE-VMF

Laplacian Eigenmaps (LE) is a nonlinear dimensionality reduction
algorithm with locality preserving properties, which represent the
data in the form of eigenimages, some of which accentuate the
visibility of anomalies.

Vectorized Matched Filtering (VMF) is a matched-filtering based
algorithm that classifies anomalies across significant eigenimages
simultaneously.
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Laplacian Eigenimages

Eigenimages enhance appearance of structures in retinal images, pointing to possibility

of distinct anomaly spectral signatures. In eigenimage 1 and 2, two classes of

anomalies. In eigenimage 3, structures with large dark centers surrounded by a thin

contour with white fluffy appearance.
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Matched Filtering

Used to detect the presence of specific elements in an unknown
signal.

A series of filters (templates) are correlated with an unknown signal.

Templates yielding “high” correlation coefficients are retained as
components of the signal.

In 2-D, consider a filter or template image T of size p× q. Compute
the normalized cross-correlation NCC of the templates and each
image, yielding a response matrix. For a pixel I(x, y) in the image I

NCC(x, y) =

p∑
i

q∑
j

I(x+ i, y + j)T (i, j)√
p∑
i

q∑
j

|I(x+ i, y + j)|2
√

p∑
i

q∑
j

|T (i, j)|2
.
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Vectorized Matched Filtering

Vectorized Matched Filtering “averages” the response matrices accross
the data:

Given some templates, perform matched filtering for each image
obtained via PCA or LE.

Take the average of the absolute value of NCC matrices across all
images for an individual.

Apply a threshold to keep more significant correlations in the
average response matrix. Set of all other correlations to 0.

Identify anomalies for each individual using the average correlation
matrix after threshold.
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Image Preparation

Start with blue, green, and yellow AF images of the human retina.

Registration & Alignment. We determine the overlap between
images and produce a common coordinate system. After these
processes, the images have same size and uniform overlap.

Vessel Mask. We create a mask for the images to remove
contribution from the blood vessels, as they are otherwise selected
as anomaly by the detection algorithm.
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Anomaly Detection

Feature Enhancement. Perform LE on X.

Template Creation. Rely on the following properties of anomalies:

– circular or ellipsoid shapes, with different orientations, whose size can
vary significantly across patients.

– centers appear darker compared to other retinal surfaces.

Vectorized Matched Filtering.

Thresholding. Apply a threshold coefficient r to eliminate high
correlation responses due to some background elements.

Detection. We use the average response matrix after thresholding
to identify the anomalies.
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Evaluation of Method

Compare PCA and LE for feature enhancement.

Linear transformation that creates a new coordinate system for the
data such that greatest variance by some projection of the data
comes to lie on the first coordinate, second greatest variance on the
second coordinate and so on.
Compute matrix Q = XXT .
Perform eigendecomposition of Q:

Q = PΛPT ,

where, Λ: matrix of eigenvalues λi, i = 1, . . . D, P : matrix of
orthonormal eigenvectors vii, i = 1, . . . D.
Use eigenvectors as PCA eigenimages.

Test method on various patients.

Test method on nosiy data.
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Comparison of Detections

Comparison of PCA and LE as anomaly enhancing schemes. For each patient, in both

images the plus markers are the common detections. In the left image, the minuses

mark anomalies detected by PCA-VMF and not detected by LE-VMF and vice versa in

the right image.
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Numerical comparison

The table below shows the number of correct detections, false positive
(false detections) and true negatives (missed detections). We also give
the rate of correct detections.

Table: Performances of VMF applied to PCA images versus LE images.

Type of Detections PCA-VMF LE-VMF
Correct 16 21
True Negative 6 1
False Positive 22 11
Rate of Correct anomaly Detection 73 % 95 %
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Conclusion

Summary

Composite Diffusion Frames as new method in harmonic analysis
toolbox for graphs and manifolds.
Laplacian-Eigenmaps and Vectorized Matched Filtering for analysis
of retinal images.

Future

Diffusion Shearlets and application to vessel detection.
Retinal Imaging using various diffusion methods including composite
diffusion frames.
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Thank you!
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