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A standard problem

Question

Let Φ = {ϕi}Mi=1 ⊂ RN be a complete set. Recover x from ŷ :

ŷ = ΦTx+ η,

where η is an error (noise).

Solution

Need to design “good” measurement matrix Φ, e.g., Φ should
lead to reconstruction methods that are robust to erasures and
noise.
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Minimal requirements on the measurement matrix

Fact

Φ = {ϕi}Mi=1 ⊂ KN is complete ⇐⇒ ∃A > 0 :

A‖x‖2 ≤
M∑
i=1

|〈x, ϕi〉|2 for all x ∈ KN

Clearly, there exists B > 0, e.g., B =
∑M

i=1 ‖ϕi‖2 such that

M∑
i=1

|〈x, ϕi〉|2 ≤ B‖x‖2 for all x ∈ KN .
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Definition of finite frames

Definition

Let K = R or K = C. {ϕi}Mi=1 ⊂ KN is called a finite frame
for KN if ∃ 0 < A ≤ B :

A‖x‖2 ≤
M∑
i=1

|〈x, ϕi〉|2 ≤ B‖x‖2, for all x ∈ KN . (1)

If A = B, then {ϕi}Mi=1 ⊂ KN is called a finite tight frame for
KN .
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Frame operator & Reconstruction formulas

For Φ = {ϕk}Mk=1 ⊂ KN let Φ =
[
ϕ1 ϕ2 . . . ϕM

]
.

Φ is a frame ⇐⇒ S = ΦΦ∗ is positive definite.

x = S(S−1x) =
M∑
i=1

〈x, S−1ϕi〉ϕi =
M∑
i=1

〈x, ϕi〉S−1ϕi

Φ̃ = {ϕ̃i}Mi=1 = {S−1ϕi}Mi=1 is the canonical dual frame.

Aopt = λmin(S) and Bopt = λmax(S). The condition
number of the frame is

κ(Φ) = λmax(S)/λmin(S) ≥ 1.
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The canonical dual frame

Lemma

Assume that Φ = {ϕi}Mi=1 ⊂ KN is a frame, and that
{ϕ̃i}Mi=1 ⊂ KN is the canonical dual frame. For each x ∈ KN ,∑M

i=1 |〈x, ϕ̃i〉|2 minimizes
∑M

i=1 |ci|2 for all {ci}Mi=1 such that

x =
∑M

i=1 ciϕi.
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Why frames?

Question

Let Φ = {ϕi}Mi=1 ⊂ RN be a unit norm frame. Recover x from

ŷ = Φ∗x+ η.

Solution

If no assumption is made about η we can just minimize
‖Φ∗x− ŷ‖2. This leads to

x̂ = (Φ†)∗ŷ =
M∑
i=1

(〈x, ϕi〉+ ηi)ϕ̃i.
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Finite unit norm tight frames

Definition

A tight frame {ϕi}Mi=1 ⊂ KN with ‖ϕk‖ = 1 for each k is
called a finite unit norm tight frame (FUNTF) for KN . In this
case, the frame bound is A = M/N .

Remark

Tight frames and FUNTFs can be considered optimally
conditioned frames since the condition number of their frame
operator is unity.
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Reconstruction formulas for tight frames

If Φ is a tight frame then S = AI and
x = 1

A

∑M
k=1〈x, ϕk〉ϕk.

If Φ = {ϕk}Mk=1 ⊂ KN is a frame then {S−1/2ϕk}Mk=1 is a
tight frame.
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Example of FUNTFs

Example

Let ω = e2πi/M

1√
M


1 1 1 . . . 1
1 ω ω2 . . . ωM−1

1 ω2 ω4 . . . ω2(M−1)

...
...

... . . .
...

1 ωM−1 ω2(M−1) . . . ω(M−1)2


Any (normalized) N rows from the M ×M DFT matrix is a
tight frame for CN .
Every tight frame of M vectors in KN is obtained from an
orthogonal projection of an ONB in KM onto KN .
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Examples of frames

Figure : The MB-Frame
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Why tight frames?

Assume that η = (ηi) is iid N (0, σ2). Then

x− x̂ =
M∑
i=1

〈x, ϕi〉ϕ̃i −
M∑
i=1

(〈x, ϕi〉+ ηi)ϕ̃i = −
M∑
i=1

ηiϕ̃i.

Consequently,

MSE =
1

N
E‖x− x̂‖2 =

1

N
Trace(S−1) =

1

N

N∑
i=1

1

λi

where {λi}Ni=1 is the spectrum of S.

Theorem (Goyal, Kovačević, and Kelner (2001))

The MSE is minimum if and only if the frame Φ is tight.
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Frames in applications

Example

Quantum computing: construction of POVMs

Spherical t-designs

Classification of hyper-spectral data

Quantization

Phase-less reconstruction

Compressed sensing.
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Existence and characterization of FUNTFs

Theorem (Benedetto and Fickus, 2003)

For each Φ = {ϕk}Mk=1 ⊂ RN , such that ‖ϕk‖ = 1 for each k,
we have

FP(Φ) =
M∑
j=1

M∑
k=1

|〈ϕj, ϕk〉|2 ≥ M
N

max(M,N). (2)

Furthermore,
• If M ≤ N , the minimum of FP is M and is achieved by
orthonormal systems for RN with M elements.
• If M ≥ N , the minimum of FP is M2

N
and is achieved by

FUNTFs.
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Proof

Proof.

FP ({ϕk}Mk=1) = M +
M∑

k 6=`=1

|〈ϕk, ϕ`〉|2 ≥M.

• If M ≤ N the minimizers are exactly orthonormal systems
and the minimum is M .
• Now assume M ≥ N and let G = Φ∗Φ. Then,

FP ({ϕk}Mk=1) = Tr(G2) =
N∑
k=1

λ2
k

and, trace(G) =
∑N

k=1 λk = M .
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Proof

Proof.

FP ({ϕk}Mk=1) = M +
M∑

k 6=`=1

|〈ϕk, ϕ`〉|2 ≥M.

• If M ≤ N the minimizers are exactly orthonormal systems
and the minimum is M .
• Now assume M ≥ N and let G = Φ∗Φ. Then,

FP ({ϕk}Mk=1) = Tr(G2) =
N∑
k=1

λ2
k

and, trace(G) =
∑N

k=1 λk = M .
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Proof (continued)

Proof.

Minimizing FP ({ϕk}Mk=1) is equivalent to minimizing

N∑
k=1

λ2
k such that

N∑
k=1

λk = M.

Solution: λk = M/N for all k.
Hence S = M

N
IN where IN is the identity matrix. The

corresponding minimizers {ϕk}Mk=1 are FUNTFs

x =
N

M

M∑
k=1

〈x, ϕk〉ϕk ∀x ∈ KN .
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Construction of FUNTFs

Fact

Numerical schemes such as gradient descent can be used
to find minimizers of the frame potential and thus find
FUNTFs.

The spectral tetris method was proposed by Casazza,
Fickus, Mixon, Wang, and Zhou (2011) to construct all
FUNTFs. Further contributions by Krahmer, Kutyniok,
Lemvig, (2012); Lemvig, Miller, Okoudjou (2012).

Other methods (algebraic geometry) have been proposed
by Cahill, Fickus, Mixon, Strawn.
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Optimally conditioned frames

Remark
1 FUNTFs can be considered “optimally conditioned”

frames. In particular the condition number of the frame
operator is 1.

2 There are many preconditioning methods to improve the
condition number of a matrix, e.g., Matrix Scaling.

3 A matrix A is (row/column) scalable if there exit diagonal
matrices D1, D2 with positive diagonal entries such that
D1A,AD2, or D1AD2 have constant row/column sum.
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Main question

Question

Can one transform a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN

into a tight one?

Solution
1 A solution: The canonical tight frame

{S−1/2ϕk}Mk=1.

2 What“transformations” are allowed?
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Choosing a transformation

Question

Given a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN can one find
nonnegative numbers {ck}Mk=1 ⊂ [0,∞) such that

Φ̃ = {ckϕk}Mk=1 becomes a tight frame?
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Definition

Definition

A frame Φ = {ϕk}Mk=1 in RN is scalable, if ∃ {ck}Mk=1 ⊂ [0,∞)
such that {ckϕk}Mk=1 is a tight frame for RN .
The set of scalable frames is denoted by SC(M,N).
In addition, if {ck}Mk=1 ⊂ (0,∞), the frame is called strictly
scalable and the set of strictly scalable frames is denoted by
SC+(M,N).
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A more general definition

Definition

Given, N ≤ m ≤M , a frame Φ = {ϕk}Mk=1 is said to be
m-scalable, respectively, strictly m−scalable, if
∃ΦI = {ϕk}k∈I with I ⊆ {1, 2, . . . ,M}, #I = m, such that
ΦI = {ϕk}k∈I is scalable, respectively, strictly scalable.
We denote the set of m-scalable frames, respectively, strictly
m-scalable frames in F(M,N) by SC(M,N,m), respectively,
SC+(M,N,m).
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An observation

Fact

Let Φ = {ϕk}Mk=1 ⊂ RN \ {0} be a frame with ϕk 6= ±ϕ` for

k 6= `. Φ is scalable if and only if Φ̃ = {±ϕk/‖ϕk‖}Mk=1 is
scalable.
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Elementary properties

Proposition (G. Kutyniok, F. Philipp, K. O. (2014))

Let M ≥ N , and m ≥ 1 be integers.

(i) Φ ∈ SC(M,N) if and only if T (Φ) ∈ SC(M,N) for one
(and hence for all) orthogonal transformation(s) T on RN .

(ii) Let Φ = {ϕk}N+1
k=1 ∈ F(N + 1, N) \ {0} with ϕk 6= ±ϕ`

for k 6= `. If Φ ∈ SC+(N + 1, N), then
Φ /∈ SC+(N + 1, N + 1).
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The scaling problem

Φ = {ϕi}Mi=1 is scalable ⇐⇒ ∃{ci}Mi=1 ⊂ [0,∞) : ΦCΦT = I,

where C = diag(ci).

K. Okoudjou Preconditioning of frames



Finite frame theory
Preconditioning of finite frames: Scalable frames

Application: Scaling Laplacian pyramids
References

Scalable Frames: Definition and basic properties
Characterization of scalable frames
Fritz John’s ellipsoid theorem and scalable frames

A reformulation

Fact

Φ is (m-) scalable ⇐⇒ ∃{xk}k∈I ⊂ [0,∞) with

#I = m ≥ N such that Φ̃ = ΦX satisfies

Φ̃Φ̃T = ΦX2ΦT = ÃIN =
∑

k∈I x
2
k‖ϕk‖2

N
IN (3)

where X = diag(xk).
(3) is equivalent to solving

ΦY ΦT = IN (4)

for Y = 1
Ã
X2.
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Scalable frame in R2

Question

When is Φ = {ϕk}Mk=1 ⊂ S1 is a scalable frame in R2?

Solution

Assume that Φ = {ϕk}Mk=1 ⊂ R× R+,0, ‖ϕk‖ = 1, and
ϕ` 6= ϕk for ` 6= k. Let 0 = θ1 < θ2 < θ3 < . . . < θM < π,
then

ϕk =

(
cos θk
sin θk

)
∈ S1.
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Describing SC(3, 2)

Example

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(3, 2)

Example

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(3, 2)

Example

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(4, 2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(4, 2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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A more general reformulation

Setting

Let F : RN → Rd, d := (N − 1)(N + 2)/2, defined by

F (x) =
(
F0(x) F1(x) . . . FN−1(x)

)T

F0(x) =


x2

1 − x2
2

x2
1 − x2

3
...

x2
1 − x2

N

 , . . . , Fk(x) =


xkxk+1

xkxk+2
...

xkxN


and F0(x) ∈ RN−1, Fk(x) ∈ RN−k, k = 1, 2, . . . , N − 1.
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Remark

Remark

The map F is related to the diagram vector used by
Copenhaver, Kim, Logan, Mayfield, Narayan, Petro, and
Sheperd in their characterization of scalable frame
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The map F when N = 2

Example

When N = 2 the map F reduces to

F

(
x
y

)
=

(
x2 − y2

xy

)
.

Note that in the examples given above we consider

F̃

(
x
y

)
=

(
x2 − y2

2xy

)
.
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When is a frame scalable: A generic solution

Question

When is Φ = {ϕk}Mk=1 ⊂ RN scalable?

Proposition (G. Kutyniok, F. Philipp, K. O. (2014))

A frame Φ for RN is m-scalable, respectively, strictly
m-scalable, if and only if there exists a nonnegative
u ∈ kerF (Φ) \ {0} with ‖u‖0 ≤ m, respectively, ‖u‖0 = m,
and where F (Φ) is the d×M matrix whose kth column is
F (ϕk).
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A key tool: The Farkas Lemma

Lemma

For every real N ×M -matrix A exactly one of the following
cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial
nonnegative solution x ∈ RM , i.e., all components of x
are nonnegative and at least one of them is strictly
positive.

(ii) There exists y ∈ RN such that yTA is a vector with all
entries strictly positive.
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Farkas lemma with N = 2, M = 4

Figure : Bleu=original frame; Green=image by the map F .
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Some convex geometry notions

Fact

Let X = {xi}Mk=1 ⊂ RN .

1 The polytope generated by X is denoted by PX .

2 The relative interior of the polytope PX denoted by riPX ,
is

riPX =

{
M∑
k=1

αkxk : αk > 0,
M∑
k=1

αk = 1

}
,
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Scalable frames and Farkas’s lemma

Theorem (G. Kutyniok, F. Philipp, K. O. (2014))

Let M ≥ N ≥ 2, and let m be such that N ≤ m ≤M .
Assume that Φ = {ϕk}Mk=1 ∈ F∗(M,N) is such that
ϕk 6= ±ϕ` when k 6= `. Then the following statements are
equivalent:

(i) Φ is m−scalable, respectively, strictly m−scalable,

(ii) There exists a subset I ⊂ {1, 2, . . . ,M} with #I = m
such that 0 ∈ PF (ΦI), respectively, 0 ∈ riPF (ΦI).

(iii) There exists a subset I ⊂ {1, 2, . . . ,M} with #I = m for
which there is no h ∈ Rd with 〈F (ϕk), h〉 > 0 for all
k ∈ I, respectively, with 〈F (ϕk), h〉 ≥ 0 for all k ∈ I,
with at least one of the inequalities being strict.
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A useful property of F

For x = (xk)
N
k=1 ∈ RN and h = (hk)

d
k=1 ∈ Rd, we have that

〈F (x), h〉 =
N∑
`=2

h`−1(x2
1−x2

`)+
N−1∑
k=1

N∑
`=k+1

hk(N−1−(k−1)/2)+`−1xkx`.

Remark

〈F (x), h〉 = 〈Qhx, x〉 = 0 defines a quadratic surface in RN .
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A geometric characterization of scalable frames

Theorem (G. Kutyniok, F. Philipp, K. Tuley, K.O. (2012))

Let Φ = {ϕk}Mk=1 ⊂ RN \ {0} be a frame for RN . Then the
following statements are equivalent.

(i) Φ is not scalable.

(ii) There exists a symmetric M ×M matrix Y with
trace(Y ) < 0 such that 〈ϕj, Y ϕj〉 ≥ 0 for all
j = 1, . . . ,M .

(iii) There exists a symmetric M ×M matrix Y with
trace(Y ) = 0 such that 〈ϕj, Y ϕj〉 > 0 for all
j = 1, . . . ,M .
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Scalable frames in R2 and R3

Figures show sample regions of vectors of a non-scalable frame
in R2 and R3.

(a) (b) (c)

Figure : (a) shows a sample region of vectors of a non-scalable
frame in R2. (b) and (c) show examples of sets in C3 which
determine sample regions in R3.
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Fritz John’s Theorem

Theorem (F. John (1948))

Let K ⊂ B = B(0, 1) be a convex body with nonempty
interior. There exits a unique ellipsoid Emin of minimal volume
containing K.
Moreover, Emin = B if and only if there exist
{λk}mk=1 ⊂ [0,∞) and {uk}mk=1 ⊂ ∂K ∩ SN−1, m ≥ N + 1
such that

(i)
∑m

k=1 λkuk = 0

(ii) x =
∑m

k=1 λk〈x, uk〉uk,∀x ∈ RN .
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Frame interpretation of F. John Theorem

Remark

Let {uk} ⊂ ∂K ∩ SN−1 be the contact points of K and
SN−1. The second part of John’s theorem can be written:

Id =
m∑
k=1

λk〈·, uk〉uk =
m∑
k=1

〈·,
√
λkuk〉

√
λkuk.
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F. John’s characterization of scalable frames

Theorem (Chen, Kutyniok, Philipp, Wang, K.O. (2014))

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame. Set
PΦ = conv({±ϕk}Mk=1) and VΦ the volume of PΦ. Then Φ is
scalable if and only if VΦ = 1. That is, the ellipsoid EΦ of
minimal volume containing PΦ is the euclidean unit ball B.
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A quadratic programing approach to optimally

conditioning frames

Setting

Φ = {ϕi}Mi=1 is scalable ⇐⇒ ΦCΦT = I.
Let CΦ = {ΦCΦT =

∑M
i=1 ciϕiϕ

T
i : ci ≥ 0} be the cone

generated by {ϕiϕTi }Mi=1.
Φ = {ϕi}Mi=1 is scalable ⇐⇒ I ∈ CΦ.

DΦ := min
C≥0 diagonal

∥∥ΦCΦT − I
∥∥
F
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Comparing the measures of scalability

Values of VΦ and DΦ for randomly generated frames of M
vectors in R4.
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Figure : Relation between VΦ and DΦ with M = 6, 20. The black
line indicates the upper bound in the last theorem, while the red
dash line indicates the lower bound.
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LP2 matrices
New constructions of tight wavelet filter banks

Wavelets and filter banks

Setting

1 A function ψ ∈ L2(R) such that
{2k/2ψ(2k · −`) : k, ` ∈ Z} is an ONB for L2 is called a
wavelet.

2 Wavelets usually arise from MRA through a scaling
function φ ∈ L2: φ(x) =

∑
` c`φ(2x− `).
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New constructions of tight wavelet filter banks

Wavelets and filter banks

Setting

1 Let h : ZN → R be a FIR lowpass filter. Its z-transform
is H(z) :=

∑
k∈ZN h(k)z−k.

2 A polyphase representation of h is a Laurent polynomial
column vector H(z) ∈Mq(z) such that

H(z) = [Hν0(z), Hν1(z), . . . , Hνq−1(z)]T ,

where Hν(z) is the z-transform of the filter hν defined as
hν(k) = h(2k + ν), k ∈ Z.

K. Okoudjou Preconditioning of frames



Finite frame theory
Preconditioning of finite frames: Scalable frames

Application: Scaling Laplacian pyramids
References

LP2 matrices
New constructions of tight wavelet filter banks

LP2 matrices

Setting

1 Let

ΦH(z) :=
[

H(z) I− H(z)H∗(z)
]
∈Mq×(q+1)(z).

2 We shall refer to the matrix ΦH(z) as the LP2 matrix (of
order q) associated with H(z).

3

ΦH(z)

[
H∗(z)

I

]
= I. (5)
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Properties of LP2 matrices

Remark

1 The LP2 matrix ΦH(z) is paraunitary, if

ΦH(z)Φ∗H(z) = I. (6)

2 The class of paraunitary LP2 matrices is fundamentally
related to the theory of tight filter banks.

3 The design of tight filter bank from a paraunitary LP2

matrix ΦH(z) is equivalent to the existence of a column
vector H(z) such that H∗(z)H(z) = 1.
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LP2 matrices
New constructions of tight wavelet filter banks

Example

Example

Let H(z) = [1, (1 + z−1)/2]T/
√

2. Then H∗(z)H(z) 6= 1.

Question

Can one find matrices M(z) whose entries are Laurent
polynomials such that ΦH(z)M(z) is paraunitary, i.e.

[ΦH(z)M(z)][M∗(z)Φ∗H(z)] = I.
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New constructions of tight wavelet filter banks

Scaling LP2 matrices

Theorem (Y. Hur, K. O. (2014))

Let ΦH(z) be an LP2 matrix associated with H(z) ∈Mq(z).
Then we have

ΦH(z)diag([2− H∗(z)H(z), 1, . . . , 1])Φ∗H(z) = I.
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Reducing the problem

Fact

Let h be a lowpass filter and H(z) ∈Mq(z) be its polyphase
representation. Suppose that there exists a Laurent polynomial
mH(z) such that 2− H∗(z)H(z) = |mH(z)|2. Then

ΦH(z)diag([mH(z), 1, . . . , 1]) =[
mH(z)H(z) I− H(z)H∗(z)

]
is paraunitary, i.e. ΦH(z) is scalable.
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1-d tight wavelet frames

Lemma (Fejér-Riesz Lemma)

Suppose P (z) =
∑r

k=−r p(k)z−k ≥ 0, for all z ∈ T. Then
there exists a 1-D Laurent polynomial Q(z) =

∑r
k=0 q(k)z−k

such that P (z) = |Q(z)|2,∀z ∈ T.
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1-d tight wavelet frames

Theorem (Y. Hur, K. O. (2014))

Let h be a 1-D lowpass filter with positive accuracy and
dilation λ ≥ 2, and let H(z) be its polyphase representation.
Suppose 2− H∗(z)H(z) > 0, ∀z ∈ T. Then there is a
polynomial mH(z) such that [mH(z)H(z), I− H(z)H∗(z)] gives

rise to a tight wavelet filter bank whose lowpass filter h̃ is
associated with mH(z)H(z) and has the same accuracy as h.
Furthermore, if the support of h is contained in {0, 1, . . . , s},
then the support of h̃ is contained in {0, 1, . . . , 2s}.
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Example

Example
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Figure : The original (φ, left) and the new (φ̃, right) refinable
functions.
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Thank You!
http://www2.math.umd.edu/ okoudjou

K. Okoudjou Preconditioning of frames


	Finite frame theory
	Motivations and definition
	Tight frames
	Frame potential

	Preconditioning of finite frames: Scalable frames
	Scalable Frames: Definition and basic properties
	Characterization of scalable frames
	Fritz John's ellipsoid theorem and scalable frames

	Application: Scaling Laplacian pyramids
	LP2 matrices
	New constructions of tight wavelet filter banks

	References

