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Definition

Definition

Φ = {ϕk}Mk=1 ⊆ RN is a frame for RN if ∃A,B > 0 such that ∀x ∈ RN ,

A‖x‖2 ≤
M∑
k=1

|〈x, ϕk〉|2 ≤ B‖x‖2.

If, in addition, ‖ϕk‖ = 1 for each k, we say that Φ is a unit-norm frame.
The set of frames for RN with M elements will be denoted by F . In
addition, we let Fu the the subset of unit-norm frames.
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Analysis and Synthesis with frame

Let Φ = {ϕk}Mk=1 ⊂ RN .

1 The analysis operator, is defined by

RN 3 x 7→ ΦTx = {〈x, ϕk〉}Mk=1 ∈ RM .

2 The synthesis operator is defined by

RM 3 c = (ck)Mk=1 7→ Φc =

M∑
k=1

ckϕk ∈ RN .

3 The frame operator S = ΦΦT is given by

RN 3 x 7→ Sx =

M∑
k=1

〈x, ϕk〉ϕk ∈ RN .

4 The Gramian (operator) G = ΦTΦ of the frame is the M ×M
matrix whose (i, j)th entry is 〈ϕj , ϕi〉.
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Tight frames and FUNTFs

1 A frame Φ is a tight frame if we can choose A = B.
2 If Φ = {ϕk}Mk=1 ⊂ RM is a frame then

{ϕ†k}
M
k=1 = {S−1/2ϕk}Mk=1 ⊂ RN

is a tight frame and for every x ∈ RN ,

x =

M∑
k=1

〈x, ϕ†k〉ϕ
†
k. (1)

3 If Φ is a tight frame of unit-norm vectors, we say that Φ is a finite
unit-norm tight frame (FUNTF). In this case, the reconstruction
formula (??) reduces to

∀x ∈ RN , x = N
M

M∑
k=1

〈x, ϕk〉ϕk. (2)
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The frame potential

Theorem (Benedetto and Fickus, 2003)

For each Φ = {ϕk}Mk=1 ⊂ RN , such that ‖ϕk‖ = 1 for each k, we have

FP(Φ) =

M∑
j=1

M∑
k=1

|〈ϕj , ϕk〉|2 ≥ M
N max(M,N). (3)

Furthermore,
• If M ≤ N , the minimum of FP is M and is achieved by orthonormal
systems for RN with M elements.

• If M ≥ N , the minimum of FP is M2

N and is achieved by FUNTFs.
FP(Φ) is the frame potential.
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Why frames and FUNTFs

Remark

1 Geometry of FUNTFs: N. Strawn.

2 Constructing all FUNTFs: D. Mixon.

3 Applications of FUNTFs and frames: P. Casazza; R. Balan; G. Chen
and D. Needell; A. Powell and O. Yilmaz.
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Optimally conditioned frames

Remark

1 FUNTFs can be considered “optimally conditioned” frames. In
particular the condition number of the frame operator is 1.

2 There are many preconditioning methods to improve the condition
number of a matrix, e.g., Matrix Scaling.

3 A matrix A is (row/column) scalable if there exit diagonal matrices
D1, D2 with positive diagonal entries such that D1A,AD2, or
D1AD2 have constant row/column sum.
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Goals of this section

Remark

1 How to transform a (non) tight frame into a tight one?

2 Give theoretical guarantees and algorithms.

3 What “transformations” are allowed?

4 For a given “transformation”, what happens if a frame cannot be
transformed exactly?

In this part of the lecture we will only consider one “transform” and
mostly answer the first two questions.
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Main question

Question

Given a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN can one transform Φ into
a tight frame? If yes can this be done algorithmically and can the class of
all frames that allow such transformations be described?

Solution

1 If Φ denotes again the N ×M synthesis matrix, a solution to the
above problem is the associated canonical tight frame

{S−1/2ϕk}Mk=1.

Involves the inverse frame operator.

2 What“transformations” are allowed?
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Choosing a transformation

Question

Given a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN can one find nonnegative

numbers {ck}Mk=1 ⊂ [0,∞) such that Φ̃ = {ckϕk}Mk=1 becomes a tight
frame?
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Definition

Definition

A frame Φ = {ϕk}Mk=1 in RN is scalable, if ∃ {ck}Mk=1 ⊂ [0,∞) such that
{ckϕk}Mk=1 is a tight frame for RN .
The set of scalable frames is denoted by SC(M,N).
In addition, if {ck}Mk=1 ⊂ (0,∞), the frame is called strictly scalable and
the set of strictly scalable frames is denoted by SC+(M,N).
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A more general definition

Definition

Given, N ≤ m ≤M , a frame Φ = {ϕk}Mk=1 is said to be m-scalable,
respectively, strictly m−scalable, if ∃ΦI = {ϕk}k∈I with
I ⊆ {1, 2, . . . ,M}, #I = m, such that ΦI = {ϕk}k∈I is scalable,
respectively, strictly scalable.
We denote the set of m-scalable frames, respectively, strictly m-scalable
frames in F(M,N) by SC(M,N,m), respectively, SC+(M,N,m).
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Some basic examples

Example

1 When M = N , a frame Φ = {ϕk}Nk=1 ⊂ RN is scalable if and only if
Φ is an orthogonal set.

2 When M ≥ N , if Φ contains an orthogonal basis, then it is clearly
N−scalable.

3 Thus, given M ≥ N , the set SC(M,N,N) consists exactly of
frames that contains an orthogonal basis for RN .
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Useful remarks

Remark

We note that a frame Φ = {ϕk}Mk=1 ⊂ RN with ϕk 6= 0 for each
k = 1, . . . ,M is scalable if and only if Φ′ = { ϕk

‖ϕk‖}
M
k=1 is scalable.
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Useful remarks

Remark

Given a frame Φ ⊂ RN , assume that Φ = Φ1 ∪ Φ2 where

Φ1 = {ϕ(1)
k ∈ Φ : ϕ

(1)
k (N) ≥ 0}

and
Φ2 = {ϕ(2)

k ∈ Φ : ϕ
(2)
k (N) < 0}.

Let
Φ′ = Φ1 ∪ (−Φ2).

Φ is scalable if and only if Φ′ is scalable.
We shall assume that all the frame vectors are in the upper-half space,
i.e., Φ ⊂ RN−1 × R+,0 where R+,0 = [0,∞).
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Elementary properties of scalable frames

Proposition

Let M ≥ N , and m ≥ 1 be integers.

(i) If Φ ∈ F is m-scalable then m ≥ N .

(ii) For any integers m,m′ such that N ≤ m ≤ m′ ≤M we have that

SC(M,N,m) ⊂ SC(M,N,m′),

and

SC(M,N) =

M⋃
m=N

SC(M,N,m).

(iii) Φ ∈ SC(M,N) if and only if T (Φ) ∈ SC(M,N) for one (and hence
for all) orthogonal transformation(s) T on RN .

(iv) Let Φ = {ϕk}N+1
k=1 ∈ F(N + 1, N) \ {0} with ϕk 6= ±ϕ` for k 6= `.

If Φ ∈ SC+(N + 1, N), then Φ /∈ SC+(N + 1, N + 1).
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Scalable frames: When and How?

Question

1 When is a frame Φ = {ϕk}Mk=1 ⊂ RN scalable?

2 If Φ = {ϕk}Mk=1 ⊂ RN is scalable, how to find the coefficients?

3 If Φ is not scalable, how close to scalable is it?

4 What are the topological properties of SC(M,N)?
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A reformulation

Fact

Φ is (m-) scalable ⇐⇒ ∃{xk}k∈I ⊂ [0,∞) with #I = m ≥ N such

that Φ̃ = ΦX satisfies

Φ̃Φ̃T = ΦX2ΦT = ÃIN =
∑

k∈I x
2
k‖ϕk‖2

N IN (4)

where X = diag(xk).
(4) is equivalent to solving

ΦY ΦT = IN (5)

for Y = 1
Ã
X2.
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Scalable frame in R2

Question

When is Φ = {ϕk}Mk=1 ⊂ S1 is a scalable frame in R2?

Solution

Assume that Φ = {ϕk}Mk=1 ⊂ R× R+,0, ‖ϕk‖ = 1, and ϕ` 6= ϕk for
` 6= k. Let 0 = θ1 < θ2 < θ3 < . . . < θM < π, then

ϕk =

(
cos θk
sin θk

)
∈ S1.

Let Y = (yk)Mk=1 ⊂ [0,∞), then (5) becomes

( ∑M
k=1 yk cos2 θk

∑M
k=1 yk sin θk cos θk∑M

k=1 yk sin θk cos θk
∑M
k=1 yk sin2 θk

)
=

(
1 0
0 1

)
. (6)
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Scalable frame in R2

Solution

(6) is equivalent to 
∑M
k=1 yk sin2 θk = 1∑M
k=1 yk cos 2θk = 0∑M
k=1 yk sin 2θk = 0.

Consequently, for Φ to be scalable we must find a nonnegative vector

Y = (yk)Mk=1 in the kernel of the matrix whose kth column is

(
cos 2θk
sin 2θk

)
.
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Scalable frame in R2

Solution

(6) is equivalent to 
∑M
k=1 yk sin2 θk = 1∑M
k=1 yk cos 2θk = 0∑M
k=1 yk sin 2θk = 0.

Consequently, for Φ to be scalable we must find a nonnegative vector

Y = (yk)Mk=1 in the kernel of the matrix whose kth column is
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Scalable frame in R2

Solution

The problem is equivalent to finding non-trivial nonnegative vectors in
the nullspace of (

1 cos 2θ2 . . . cos 2θM
0 sin 2θ2 . . . sin 2θM

)
. (7)
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Describing SC(3, 2)

Example

We first consider the case M = 3. In this case, we have
0 = θ1 < θ2 < θ3 < π, and the (7) becomes(

1 cos 2θ2 cos 2θ3

0 sin 2θ2 sin 2θ3

)
. (8)
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Describing SC(3, 2)

Example

If θk0 = π/2 for k0 ∈ {2, 3}, then the corresponding frame contains an
ONB and, hence is scalable.
For example, when k0 = 2, then 0 = θ1 < θ2 = π/2 < θ3 < π. In this
case, the fame is 2− scalable but not 3− scalable.

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(3, 2)

Example

If θk0 = π/2 for k0 ∈ {2, 3}, then the corresponding frame contains an
ONB and, hence is scalable.
For example, when k0 = 2, then 0 = θ1 < θ2 = π/2 < θ3 < π. In this
case, the fame is 2− scalable but not 3− scalable.

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(3, 2)

Example

Suppose θk 6= π/2 for k = 2, 3. If θ3 < π/2, then the frame cannot be
scalable. Indeed, u = (z1, z2, z3) belongs to the kernel of (8) if and only if{

z1 = sin 2(θ3−θ2)
sin 2θ2

z3,

z2 = − sin 2θ3
sin 2θ2

z3,
(9)

where z3 ∈ R. The choice of the angles implies that z2z3 < 0, unless
z3 = 0.
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Describing SC(3, 2)

Example

This is illustrated by

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(3, 2)

Example

Suppose that 0 = θ1 < θ2 < π/2 < θ3 < π. From (9) z2 > 0 for all
z3 > 0 and z1 > 0 for all z3 > 0 if and only if θ3 − θ2 < π/2.
Consequently, when 0 = θ1 < θ2 < π/2 < θ3 < π the frame
Φ ∈ SC+(3, 2, 3) if and only if 0 < θ3 − θ2 < π/2.
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Describing SC(3, 2)

Example

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(4, 2)

Example

When M = 4 we are lead to seek nonnegative non-trivial vectors in the
null space of (

1 cos 2θ2 cos 2θ3 cos 2θ4

0 sin 2θ2 sin 2θ3 sin 2θ4

)
.
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Describing SC(4, 2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(4, 2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(4, 2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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A more general reformulation

Setting

Let F : RN → Rd, d := (N − 1)(N + 2)/2, defined by

F (x) =


F0(x)
F1(x)

...
FN−1(x)



F0(x) =


x2

1 − x2
2

x2
1 − x2

3
...

x2
1 − x2

N

 , . . . , Fk(x) =


xkxk+1

xkxk+2

...
xkxN


and F0(x) ∈ RN−1, Fk(x) ∈ RN−k, k = 1, 2, . . . , N − 1.
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The map F when N = 2

Example

When N = 2 the map F reduces to

F

(
x
y

)
=

(
x2 − y2

xy

)
.

Note that in the examples given above we consider

F̃

(
x
y

)
=

(
x2 − y2

2xy

)
.
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When is a frame scalable: A generic solution

Question

When is Φ = {ϕk}Mk=1 ⊂ RN scalable?

Proposition

A frame Φ for RN is m-scalable, respectively, strictly m-scalable, if and
only if there exists a nonnegative u ∈ kerF (Φ) \ {0} with ‖u‖0 ≤ m,
respectively, ‖u‖0 = m, and where F (Φ) is the d×M matrix whose kth

column is F (ϕk).
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A key tool: The Farkas Lemma

Lemma

For every real N ×M -matrix A exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative
solution x ∈ RM , i.e., all components of x are nonnegative and at
least one of them is strictly positive.

(ii) There exists y ∈ RN such that yTA is a vector with all entries
strictly positive.
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Farkas lemma with N = 2, M = 4

Figure : Bleu=original frame; Green=image by the map F . Both of these
examples result in non scalable frames.
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Farkas lemma with N = 2, M = 4

Figure : Bleu=original frame; Green=image by the map F . Both of these
examples result in scalable frames.
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Some convex geometry notions

Fact

Let X = {xi}Mk=1 ⊂ RN .

1 The polytope generated by X is the convex hull of X, denoted by
PX (or co(X)).

2 The affine hull generated by X is denoted by aff(X).

3 The relative interior of the polytope co(X) denoted by ri co(X), is
the interior of co(X) in the topology induced by aff(X).

4 It is true that ri co(X) 6= ∅ whenever #X ≥ 2, and

ri co(X) =

{
M∑
k=1

αkxk : αk > 0,

M∑
k=1

αk = 1

}
,
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Scalable frames and Farkas’s lemma

Theorem

Let M ≥ N ≥ 2, and let m be such that N ≤ m ≤M . Assume that
Φ = {ϕk}Mk=1 ∈ F∗(M,N) is such that ϕk 6= ±ϕ` when k 6= `. Then the
following statements are equivalent:

(i) Φ is m−scalable, respectively, strictly m−scalable,

(ii) There exists a subset I ⊂ {1, 2, . . . ,M} with #I = m such that
0 ∈ co(F (ΦI)), respectively, 0 ∈ ri co(F (ΦI)).

(iii) There exists a subset I ⊂ {1, 2, . . . ,M} with #I = m for which
there is no h ∈ Rd with 〈F (ϕk), h〉 > 0 for all k ∈ I, respectively,
with 〈F (ϕk), h〉 ≥ 0 for all k ∈ I, with at least one of the
inequalities being strict.
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A useful property of F

For x = (xk)Nk=1 ∈ RN and h = (hk)dk=1 ∈ Rd, we have that

〈F (x), h〉 =

N∑
`=2

h`−1(x2
1 − x2

`) +

N−1∑
k=1

N∑
`=k+1

hk(N−1−(k−1)/2)+`−1xkx`.

(10)
Consequently, fixing h ∈ Rd, 〈F (x), h〉 is a homogeneous polynomial of
degree 2 in x1, x2, . . . , xN . The set of all polynomials of this form can be
identified with the subspace of real symmetric N ×N matrices whose
trace is 0.
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A useful property of F

Remark

〈F (x), h〉 = 〈Qhx, x〉 = 0 defines a quadratic surface in RN , and
condition (iii) in the last Theorem stipulates that for Φ to be scalable,
one cannot find such a quadratic surface such that the frame vectors
(with index in I) all lie on (only) “one side” of this surface.
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A geometric characterization of scalable frames

Theorem (G. Kutyniok, F. Philipp, K. Tuley, K.O. (2012))

Let Φ = {ϕk}Mk=1 ⊂ RN \ {0} be a frame for RN . Then the following
statements are equivalent.

(i) Φ is not scalable.

(ii) There exists a symmetric M ×M matrix Y with trace(Y ) < 0 such
that 〈ϕj , Y ϕj〉 ≥ 0 for all j = 1, . . . ,M .

(iii) There exists a symmetric M ×M matrix Y with trace(Y ) = 0 such
that 〈ϕj , Y ϕj〉 > 0 for all j = 1, . . . ,M .
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Scalable frames in R2 and R3

Figures show sample regions of vectors of a non-scalable frame in R2 and
R3.

(a) (b) (c)

Figure : (a) shows a sample region of vectors of a non-scalable frame in R2.
(b) and (c) show examples of sets in C3 which determine sample regions in R3.
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Fritz John’s Theorem

Theorem (F. John (1948))

Let K ⊂ B = B(0, 1) be a convex body with nonempty interior. There
exits a unique ellipsoid Emin of minimal volume containing K.
Moreover, Emin = B if and only if there exist {λk}mk=1 ⊂ (0,∞) and
{uk}mk=1 ⊂ ∂K ∩ SN−1, m ≥ N + 1 such that

(i)
∑m
k=1 λkuk = 0

(ii) x =
∑m
k=1 λk〈x, uk〉uk,∀x ∈ RN

where ∂K is the boundary of K and SN−1 is the unit sphere in RN .
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F. John’s characterization of scalable frames

Setting

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame for RN . We apply F. John’s
theorem to the convex body K = PΦ = conv({±ϕk}Mk=1). Let EΦ denote
the ellipsoid of minimal volume containing PΦ, and VΦ = Vol(EΦ)/ωN
where ωN is the volume of the euclidean unit ball.

Theorem

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame. Then Φ is scalable if and only if
VΦ = 1. In this case, the ellipsoid EΦ of minimal volume containing
PΦ = conv({±ϕk}Mk=1) is the euclidean unit ball B.
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F. John’s characterization of scalable frames

Setting

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame for RN . We apply F. John’s
theorem to the convex body K = PΦ = conv({±ϕk}Mk=1). Let EΦ denote
the ellipsoid of minimal volume containing PΦ, and VΦ = Vol(EΦ)/ωN
where ωN is the volume of the euclidean unit ball.

Theorem

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame. Then Φ is scalable if and only if
VΦ = 1. In this case, the ellipsoid EΦ of minimal volume containing
PΦ = conv({±ϕk}Mk=1) is the euclidean unit ball B.
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A measure of scalability

Remark

Let Φ ⊂ SN−1 be a frame. Then VΦ is a “measure of scalability”: the
closer it is to 1 the more scalable is the frame.
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A quadratic programing approach to scalability

Setting

Φ = {ϕi}Mi=1 is scalable ⇐⇒ ∃{ci}Mi=1 ⊂ [0,∞) : ΦCΦT = I,

where C = diag(ci).

CΦ = {ΦCΦT =

M∑
i=1

ciϕiϕ
T
i : ci ≥ 0}

is the (closed) cone generated by {ϕiϕTi }Mi=1.

Φ = {ϕi}Mi=1 is scalable ⇐⇒ I ∈ CΦ.

DΦ := min
C≥0 diagonal

∥∥ΦCΦT − I
∥∥
F
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A second measure of scalability

Remark

Let Φ ⊂ SN−1 be a frame. Then DΦ is a “measure of scalability”: the
closer it is to 0 the more scalable is the frame.
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Comparing the measures of scalability

Values of VΦ and DΦ for randomly generated frames of M vectors in R4.
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Figure : Relation between VΦ and DΦ with M = 6, 11. The black line indicates
the upper bound in the last theorem, while the red dash line indicates the lower
bound.
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Comparing the measures of scalability

Values of VΦ and DΦ for randomly generated frames of M vectors in R4.
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Figure : Relation between VΦ and DΦ with M = 15, 20. The black line
indicates the upper bound in the last theorem, while the red dash line indicates
the lower bound.
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Concluding remarks on scalable frames

1 The problem can be reformulated as a linear programing one leading
to numerical solutions.

2 When frame not scalable, one can define how close or far to being
scalable it is: Notion of “almost scalable.”

3 Role of redundancy.

4 Size of SC(M,N).

5 Other methods of frame preconditioning
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Goals of this section

Remark

1 Standard tools used in frame theory include: Functional and
Harmonic Analysis, Operator Theory, Linear Algebra, Differential
Geometry, Differential Equations.

2 Identifying frames with probability measures leads analyzing frames
in the setting of the Wasserstein metric spaces.

3 For example, gradient flow methods from optimal transport theory
can be used to minimize certain common potentials in frame theory.
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Motivation: The Welch bound

Theorem

For any frame Φ = {ϕk}Mk=1 ⊂ SN−1 we have

max
k 6=`
|〈ϕk, ϕ`〉| ≥

√
M−N
N(M−1) , (11)

and equality hold if and only if Φ is an ETF.

Furthermore, equality can hold only when M ≤ N(N+1)
2 .
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Definition of the pth frame potential

Definition

Let M be a positive integer, and 0 < p <∞. Given a collection of unit
vectors Φ = {ϕk}Mk=1 ⊂ SN−1, the p-frame potential is the functional

FPp,M (Φ) =

M∑
k,`=1

|〈ϕk, ϕ`〉|p. (12)

When, p =∞, the definition reduces to

FP∞,M (Φ) = max
k 6=`
|〈ϕk, ϕ`〉|.

Kasso Okoudjou Preconditioning, Probability measures, and Frames



Preconditioning of finite frames: Scalable frames
Probabilistic frames

The pth frame potentials
Probabilistic frames: definition and basic properties
Probabilistic frame potential
Probabilistic pth frame potential

Special cases

1 p = 2 corresponds to the frame potential whose minimizers are the
FUNTFs

2 For p =∞ and fixed M , the minimizers of FP∞,M are called
Grassmanian frames.

3 The potential FP∞,M always has a minimum but constructing these
minimizers is challenging.

Question

What are the minimizers of FPp,M?
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Example: M = 3, N = 2

Question

Find the minimizers of

FPp,3(Φ) =

3∑
k,`=1

|〈ϕk, ϕ`〉|p

when p ∈ (0,∞] and Φ = {ϕk}3k=1 ⊂ S1.
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Solution for p = 2 and p =∞

Solution

1 When p = 2,

FP2,3(Φ) =

3∑
k,`=1

|〈ϕk, ϕ`〉|2 ≥ 9/2

with equality if and only if Φ = {ϕk}3k=1 ⊂ S1 is a FUNTF. A
minimizer of FP2,3 is the MB-frame, see next slide.

2 When p =∞,

FP∞,3(Φ) = max
k 6=`
|〈ϕk, ϕ`〉| ≥ 1/

√
2

with equality if and only if Φ = {ϕk}3k=1 ⊂ S1 is an ETF. Hence a
solution is also given by the MB frame
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the MB-frame

Figure : An example of Equiangular FUNTF: the MB-frame.
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Minimizers of FPp,3 for p ∈ (0,∞]

Proposition

Let p0 = log(3)
log(2) . Then FPp0,3(Φ) ≥ 5, with equality holding if and only if

Φ = {ϕk}3k=1 is an orthonormal basis plus one repeated vector or an
ETF. Furthermore,

(1) for 0 < p < p0, and Φ = {ϕk}3k=1 ⊂ S1, we have FPp,3(Φ) ≥ 5,
and equality holds if and only if Φ = {ϕk}3k=1 is an orthonormal
basis plus one repeated vector,

(2) for p > p0, and Φ = {ϕk}3k=1 ⊂ S1, we have

FPp,3(Φ) ≥ 2
p
p0 (6)1− p

p0 + 3, and equality holds if and only if
Φ = {ϕk}3k=1 is an ETF.
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Minimizers of FPp,3 for p ∈ (0,∞)

Remark

µp,3,2 = min{FPp,2(Φ) : Φ = {ϕk}3k=1 ⊂ S1}

Figure : Graph of µp,3,2 when p ∈ (0, 4).
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Minimizers of FPp,N+1 for p ∈ (0,∞)

Theorem

Let p ∈ (0,∞], and N be positive integer. Let Φ = {ϕk}N+1
k=1 ⊂ SN−1.

Set p0 =
log(

N(N+1)
2 )

log(N) . Assume that FPp0,N+1(Φ) ≥ N + 3, with equality

holding if and only if Φ = {ϕk}N+1
k=1 is an orthonormal basis plus one

repeated vector or an ETF. Then,

(1) for 0 < p < p0, and Φ = {ϕk}N+1
k=1 ⊂ SN−1, we have

FPp,N+1(Φ) ≥ N + 3, and equality holds if and only if
Φ = {ϕk}N+1

k=1 is an orthonormal basis plus one repeated vector,

(2) for p0 < p < 2, and Φ = {ϕk}N+1
k=1 ⊂ SN−1, we have

FPp,N+1(Φ) ≥ 2
p
p0 (N(N + 1))1− p

p0 +N + 1, and equality holds if
and only if Φ = {ϕk}N+1

k=1 is an ETF.
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Remarks on the Theorem

Remark

1 The hypothesis of the last theorem can be verified when N = 2. But
for N ≥ 3 it is not known if this hypothesis is true.

2 There seems to be some “universality” of the minimizers of these
potentials. With p0 given above, any orthonormal basis plus one
repeated vector minimizes FPp,N+1 for 0 < p ≤ p0 and any ETF
minimizes FPp,N+1 for p0 ≤ p ≤ ∞.
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Partial results on minimizing FPp,M for p ∈ (0,∞)

Proposition

Let p ∈ (0,∞], M,N be positive integers. Let Φ = {ϕk}Mk=1 ⊂ SN−1 we
have:

(a) If M ≥ N and 2 < p <∞, then

FPp,M (Φ) ≥M(M − 1)
(

M−N
N(M−1)

)p/2
+N,

and equality holds if and only if Φ is an ETF.

(b) Let 0 < p < 2 and assume that M = kN for some positive integer
k. Then the minimizers of the p-frame potential are exactly the k
copies of any orthonormal basis modulo multiplications by ±1. The
minimum of (12) over all sets of M = kN unit norm vectors is k2N .
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Numerical simulations for N = 2

Remark

We let
µp,M,2 = min{FPp,2(Φ) : Φ = {ϕk}Mk=1 ⊂ S1}

Figure : Graph of µp,M,2 when p ∈ (0, 4), M ∈ {3, 4, 5, 6}.
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The pth frame potential and t-design

Definition

Let t be a positive integer. A spherical t-design is a finite subset {xi}Mi=1

of the unit sphere SN−1 in RN , such that,

1

M

M∑
i=1

h(xi) =

∫
SN−1

h(x)dσ(x),

for all homogeneous polynomials h of total degree equals or less than t in
N variables and where σ denotes the uniform surface measure on SN−1

normalized to have mass one.
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FUNTFS and 2-design

Proposition

Φ = {ϕk}Mk=1 ⊂ SN−1 is a spherical 2-design if and only if Φ is a

FUNTF and
∑M
k=1 ϕk = 0.
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t-designs as minimizers of pth frame potentials

Theorem

Let p = 2k be an even integer and {xi}Mi=1 = {−xi}Mi=1 ⊂ SN−1, then

FPp,M ({xi}Mi=1) ≥ 1 · 3 · 5 · · · (p− 1)

N(N + 2) · · · (N + p− 2)
M2,

and equality holds if and only if {xi}Mi=1 is a spherical p-design.
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Motivations

Let Φ = {ϕi}Mi=1 be a frame in RN with bounds 0 < A ≤ B <∞.
Define

µΦ := 1
M

M∑
i=1

δϕi
then

∫
RN

|〈x, y〉|2dµΦ(y) =
1

M

M∑
k=1

|〈x, ϕk〉|2.

For each x ∈ RN : A/M‖x‖2 ≤
∫
RN |〈x, y〉|2dµΦ(y) ≤ B/M‖x‖2

µΦ is an example of probabilistic frames.

P is the set of probability measures on RN , and

P2 =

{
µ ∈ P : M2

2 (µ) =

∫
RN

‖y‖2dµ(y) <∞
}
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Definition

Definition

A Borel probability measure µ ∈ P is a probabilistic frame if there exist
0 < A ≤ B <∞ such that

A‖x‖2 ≤
∫
RN

|〈x, y〉|2dµ(y) ≤ B‖x‖2, for all x ∈ RN . (13)

When A = B, µ is called a tight probabilistic frame.
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When is a probability measure a probabilistic frame?

Theorem

A Borel probability measure µ ∈ P is a probabilistic frame if and only if
µ ∈ P2 and Eµ = RN , where Eµ denotes the linear span of supp(µ) in
RN . Moreover, if µ is a tight probabilistic frame, then the frame bound
is given by

A = 1
NM

2
2 (µ) = 1

N

∫
RN

‖y‖2dµ(y).
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Examples

Example

(a) Let a = {ak}Mk=1 ⊂ (0,∞) with
∑M
k=1 ak = 1. A set

Φ = {ϕk}Mk=1 ⊂ RN is a frame if and only if the probability measure

µΦ,a =
∑M
k=1 akδϕk

supported by the set Φ is a probabilistic frame.

(c) The uniform distribution on the unit sphere SN−1 in RN is a tight
probabilistic frame. That is, denoting the probability measure on
SN−1 by dσ we have that for all x ∈ RN ,

‖x‖2
N =

∫
RN

〈x, y〉2dσ(y).
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Probabilistic frame operator

Let µ ∈ P be a probability measure.
1 The probabilistic analysis operator is given by

Tµ : RN → L2(RN , µ), x 7→ 〈x, ·〉.

2 The probabilistic synthesis operator is defined by

T ∗µ : L2(Nd, µ)→ RN , f 7→
∫
RN

f(x)xdµ(x).

3 The probabilistic frame operator of µ is

Sµ = T ∗µTµ.

4 The probabilistic Gram operator of µ, is defined on L2(RN , µ) by

Gµf(x) = TµT
∗
µf(x) =

∫
RN

〈x, y〉f(y)dµ(y).
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Probabilistic frame operator

Fact

The probabilistic frame operator is given by

Sµ : Rd → Rd, Sµ(x) =

∫
RN

〈x, y〉ydµ(y)

and is the matrix of second moments of µ:
If {ej}Nj=1 is the canonical orthonormal basis for RN , then

Sµei =

N∑
j=1

mi,j(µ)ej ,

where

mi,j(µ) =

∫
RN

y(i)y(j)dµ(y).
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Probabilistic frame operator

Proposition

Let µ ∈ P, then Sµ is well-defined (and hence bounded) if and only if

M2(µ) <∞.

Furthermore, µ is a probabilistic frame if and only if Sµ is positive
definite.
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Duality

If µ is a probabilistic frame then Sµ is positive definite.

1 The push-forward of µ through S−1
µ is given by

µ̃(B) = µ((S−1
µ )−1B) = µ(SµB).

2 µ̃ is a probabilistic frame called the probabilistic canonical dual
frame of µ.

3 The push-forward of µ through S
−1/2
µ is given by

µ†(B) = µ(S1/2B).
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Reconstruction formula

Proposition

Let µ ∈ P be a probabilistic frame with bounds 0 < A ≤ B <∞. Then:

(a) µ̃ is a probabilistic frame with frame bounds 1/B ≤ 1/A.

(b) µ† is a tight probabilistic frame.

Consequently, for each x ∈ RN we have:∫
RN

〈x, y〉Sµy dµ̃(y) =

∫
RN

〈S−1
µ x, y〉 y dµ(y) = x, (14)

and ∫
RN

〈x, y〉 y dµ†(y) =

∫
RN

〈S−1/2
µ x, y〉S−1/2

µ y dµ(y) = x. (15)
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Definition

Question

When is a probability measure µ a tight probabilistic frame?

Definition

The probabilistic frame potential is the nonnegative function defined on
P and given by

PFP(µ) =

∫∫
RN×RN

|〈x, y〉|2 dµ(x) dµ(y), (16)

for each µ ∈ P.
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The probabilistic frame potential and Gramian operator

Proposition

Let µ ∈ P, then PFP(µ) is the Hilbert-Schmidt norm of the probabilistic
Gramian operator Gµ, that is

‖Gµ‖2HS =

∫∫
Rd×Rd

〈x, y〉2dµ(x)dµ(y).

Furthermore, if µ ∈ P2, (which is the case when µ is a probabilistic
frame) then we have

PFP(µ) ≤M4
2 (µ) <∞.
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Probabilistic tight frames as minimizers of the PFP

Theorem

Let µ ∈ P2 be such that M2(µ) = 1 and set Eµ = span(supp(µ)), then
the following estimate holds

PFP(µ) ≥ 1/n (17)

where n is the number of nonzero eigenvalues of Sµ. Moreover, equality
holds if and only if µ is a tight probabilistic frame for Eµ.
In particular, given any probabilistic frame µ ∈ P2 with M2(µ) = 1, we
have

PFP(µ) ≥ 1/N

and equality holds if and only if µ is a tight probabilistic frame.

Remark

When µ is a discrete measure, then PFP(µ) is the frame potential.
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Definition

For p ∈ (0,∞) set

Pp =
{
µ ∈ P : Mp

p (µ) =

∫
RN

‖y‖pdµ(y) <∞
}
.

Definition

For each p ∈ (0,∞), the probabilistic p−frame potential is given by

PFP(µ, p) =

∫∫
RN×RN

|〈x, y〉|p dµ(x) dµ(y). (18)

When supp(µ) = Φ = {ϕk}Mk=1 ⊂ SN−1, PFP(µ, p) reduces to FPp,M .
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Minimizers of the probabilistic pth frame potential

Theorem

Let 0 < p < 2, then the minimizers of (18) over all the probability
measures supported on the unit sphere SN−1 are exactly those
probability measures µ that satisfy

(i) there is an orthonormal basis {e1, . . . , eN} for RN such that

{e1, . . . , eN} ⊂ supp(µ) ⊂ {±e1, . . . ,±eN}

(ii) there is f : SN−1 → R such that µ(x) = f(x)ν±x1,...,±xN
(x) and

f(xi) + f(−xi) =
1

N
,

where the measure ν±x1,...,±xN
(x) represent the counting measure

of the set {±xi : i = 1, . . . , N}.
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Probabilistic p−frame

Definition

For 0 < p <∞, we call µ ∈M(SN−1,B) a probabilistic p-frame for RN
if and only if there are constants A,B > 0 such that

A‖y‖p ≤
∫
SN−1

|〈x, y〉|pdµ(x) ≤ B‖y‖p, ∀y ∈ RN . (19)

We call µ a tight probabilistic p-frame if and only if we can choose
A = B.
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Examples

Example

By symmetry considerations, it is not difficult to show that the uniform
surface measure σ on SN−1 is always a tight probabilistic p-frame, for
each 0 < p <∞.

Lemma

If µ is probabilistic frame, then it is a probabilistic p-frame for all
1 ≤ p <∞. Conversely, if µ is a probabilistic p-frame for some
1 ≤ p <∞, then it is a probabilistic frame.
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Tight probabilistic p-frames and spherical t−designs

Theorem

Let p be an even integer. For any probability measure µ on SN−1,

PFP(µ, p) ≥ 1 · 3 · 5 · · · (p− 1)

N(N + 2) · · · (N + p− 2)
,

and equality holds if and only if µ is a probabilistic tight p-frame.
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Tight probabilistic p-frames and spherical t−designs

Proposition

Let p = 2k be an even positive integer. A set Φ = {ϕk}Mk=1 ⊂ SN−1 is a
spherical p−design if and only if the probability measure
µΦ = 1

M

∑N
k=1 δϕk

is a probabilistic tight p−frame.
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Concluding remarks on probabilistic frames

The 2-Wasserstein metric given by

W 2
2 (µ, ν) := min

{∫
RN×RN

‖x− y‖2dγ(x, y), γ ∈ Γ(µ, ν)

}
, (20)

where Γ(µ, ν) is the set of all Borel probability measures γ on
RN × RN whose marginals are µ and ν, respectively.

(P2,W2) form a metric space.

Construction of frame path with various constraint.

Optimization of frame related functionals, e.g., the probabilistic pth

frame potentials, in the context of the Wasserstein metrics.
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Thank You!
http://www2.math.umd.edu/ okoudjou
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