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Definition

Definition

® = {pp}M | CRY is a frame for RY if 34, B > 0 such that Vo € RV,

Allz]|* < Z @, ¢n)|* < Bllz])*.

If, in addition, | =1 for each k, we say that ® is a unit-norm frame.
The set of frames for RY with M elements will be denoted by F. In
addition, we let F,, the the subset of unit-norm frames.
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Analysis and Synthesis with frame

Let @ = {pp L, C RV,
@ The analysis operator, is defined by

RY 52 &Tx = {{z, o)} 2L, € RM.

@ The synthesis operator is defined by

M
RM 5 ¢ = (cp)ily s dc= chgpk € RV,
k=1
@ The frame operator S = ®®7 is given by

M
RY 52+ Sz = Z(w,cpk><pk eRY.
k=1
© The Gramian (operator) G = ®1® of the frame is the M x M
matrix whose (i, j)!" entry is (¢;, ¢i).
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Tight frames and FUNTFs

Q A frame @ is a tight frame if we can choose A = B.
Q If &= {p,})L, Cc RM is a frame then

{ol iy = {7 2o 1ily c RY
is a tight frame and for every x € RY,

M

=) (z,0l)el (1)

k=1

Q If ® is a tight frame of unit-norm vectors, we say that @ is a finite
unit-norm tight frame (FUNTF). In this case, the reconstruction
formula (??) reduces to

M
VeeRY, o= 3 (e @
k=1
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The frame potential

The (Benedetto and Fickus, 2003)

For each ® = {@}2L, C RY, such that |||l = 1 for each k, we have

M

M
FP(®) = [ps0n)* > 4 max(M, N). (3)
j=1k=1

Furthermore,

e I[f M < N, the minimum of FP is M and is achieved by orthonormal
systems for RN with M elements.

e [f M > N, the minimum of FP is sz and is achieved by FUNTFs.
FP(®) is the frame potential.
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Why frames and FUNTFs

© Geometry of FUNTFs: N. Strawn.
@ Constructing all FUNTFs: D. Mixon.

© Applications of FUNTFs and frames: P. Casazza; R. Balan; G. Chen
and D. Needell; A. Powell and O. Yilmaz.
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Optimally conditioned frames

@ FUNTFs can be considered “optimally conditioned” frames. In
particular the condition number of the frame operator is 1.

@ There are many preconditioning methods to improve the condition
number of a matrix, e.g., Matrix Scaling.

@ A matrix A is (row/column) scalable if there exit diagonal matrices
Dy, Dy with positive diagonal entries such that D1 A, ADs, or
D1 ADy have constant row/column sum.
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Goals of this section

@ How to transform a (non) tight frame into a tight one?

@ Give theoretical guarantees and algorithms.

© What "transformations” are allowed?

@ For a given “transformation”, what happens if a frame cannot be
transformed exactly?

In this part of the lecture we will only consider one “transform” and
mostly answer the first two questions.
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Main question

Question

Given a (non-tight) frame ® = {¢;}2L, C RY can one transform ® into
a tight frame? If yes can this be done algorithmically and can the class of
all frames that allow such transformations be described?

© I/f & denotes again the N x M synthesis matrix, a solution to the
above problem is the associated canonical tight frame

{2 3L,

Involves the inverse frame operator.

@ What “transformations” are allowed?
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Choosing a transformation

Given a (non-tight) frame ® = {p;} | C RY can one find nonnegative
numbers {ci }M, C [0,00) such that ® = {cipr}}L, becomes a tight
frame?
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Preconditioning of finite frames: Scalable frames Basic

Definition

Definition

A frame ® = {;}M | in RY is scalable, if 3{c,}1L, C [0,00) such that
{ekpr 1ML, is a tight frame for RY.

The set of scalable frames is denoted by SC(M, N).

In addition, if {cx}*, C (0,00), the frame is called strictly scalable and
the set of strictly scalable frames is denoted by SC (M, N).
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Preconditioning of finite frames: Scalable frames

A more general definition

Definition

Given, N <m < M, a frame & = {@k}g/le is said to be m-scalable,
respectively, strictly m—scalable, if 3®; = {¢y trer with
IC{1,2,...,M}, #I = m, such that ®; = {¢k}xrer is scalable,
respectively, strictly scalable.

We denote the set of m-scalable frames, respectively, strictly m-scalable
frames in F(M, N) by SC(M, N, m), respectively, SC+ (M, N, m).
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Some basic examples

@ When M = N, a frame ® = {p;}&_, C R is scalable if and only if
® is an orthogonal set.

@ When M > N, if ® contains an orthogonal basis, then it is clearly
N —scalable.

@ Thus, given M > N, the set SC(M, N, N) consists exactly of
frames that contains an orthogonal basis for R .
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Preconditioning of finite frames: Scalable frames ies of ;calable
Ch f s

scalabl

Useful remarks

We note that a frame ® = {px}L, C RY with ¢, # 0 for each
k=1,...,M is scalable if and only if ®' = {m}ﬁ/[zl is scalable.
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Useful remarks

Given a frame ® C RY, assume that ® = ®; U &5 where

& = {oM € ®: (V) > 0}
and ) )

®; = {p) € @ : o7 (V) < 0}.
Let

P =& U (—By).

® s scalable if and only if ®' is scalable.
We shall assume that all the frame vectors are in the upper-half space,
ie, ® CRN=L xR, o where Ry o = [0, 00).
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Fritz John's ellipsoid theorem and scalable frames

Elementary properties of scalable frames

Let M > N, and m > 1 be integers.
(i) If ® € F is m-scalable then m > N.

(ii) For any integers m, m’ such that N < m < m' < M we have that
SC(M,N,m) C SC(M,N,m’),

and
M

SC(M,N)= | J sc(M,N,m).
m=N
(iii) ® € SC(M, N) if and only if T'(®) € SC(M, N) for one (and hence
for all) orthogonal transformation(s) T on RY.
(iv) Let ® = {pp}ntt € F(N +1,N)\ {0} with o5, # L, for k # ¢.
If® € SCy(N +1,N), then ® ¢ SC (N + 1, N +1).
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Preconditioning of finite frames: Scalable frames

Scalable frames: When and How?

@ When is a frame ® = {¢}2L, C R scalable?
Q If® = {p, 1M, C RY s scalable, how to find the coefficients?
@ If ® is not scalable, how close to scalable is it?

© What are the topological properties of SC(M, N)?
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Preconditioning of finite frames: Scalable frames

A reformulation

act

® is (m-) scalable <= F{zy}rer C [0,00) with #£I = m > N such
that ® = ®X satisfies

~ o~ . 2 2
33T = X207 = Aly = ZrerZlerl (4)

where X = diag(zy).
(4) is equivalent to solving

oY ol = Iy (5)

_ 1vy2
forY—AX.
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Scalable frame in R2

When is ® = {px}, C S' is a scalable frame in R*?

Solution

Assume that ® = {pi}M | CR x Ry g, ||kl = 1, and @, # px for
L#£Ek Let0=01 <0y <03<...<0p <, then

o = (cos0k> c sl

sin 0y,

Let Y = (yx)iL, C [0,00), then (5) becomes

Zkle Y cosZ Oy, 22/[:1 ypsinfgcosby ) (1 0 (6)
SV Y sin Oy, cos by S yrsin? 0 0 1)°
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Scalable frame in R2

(6) is equivalent to

Zg/il ypsin?f, = 1
M

D kg Ykcos20, =

Zi\/le ypsin26, = 0.
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Scalable frame in R2

Solution

(6) is equivalent to

Zg/il ypsin?f, = 1
M

D kg Ykcos20, =

Zi\/le ypsin26, = 0.

Consequently, for ® to be scalable we must find a nonnegative vector

Y = (yx)M., in the kernel of the matrix whose k'" column is (Z?ﬁ ;gk) .
k
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Scalable frame in R2

The problem is equivalent to finding non-trivial nonnegative vectors in
the nullspace of

1 cos26y ... cos20y (7)
0 sin26y ... sin20p;/)°
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Describing SC(3,2)

We first consider the case M = 3. In this case, we have
0=10; <6y <03 <m, and the (7) becomes

1 cos260y cos20; (8)
0 sin26y sin203/)°
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Describing SC(3,2)

If O, = /2 for ko € {2,3}, then the corresponding frame contains an
ONB and, hence is scalable.
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Describing SC(3,2)

Example

If O, = /2 for ko € {2,3}, then the corresponding frame contains an
ONB and, hence is scalable.

For example, when kg = 2, then 0 = 0; < 02 = 7/2 < 5 < 7. In this
case, the fame is 2— scalable but not 3— scalable.

; N
y \
/“\ A
/ \
/ .
/ ~ \
V |
|
b o
| 1
) !
n i
\
\ /
\ /
\ /

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green—=associated canonical tight frame.
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Describing SC(3,2)

Example

Suppose 0y # /2 for k = 2,3. If 83 < w/2, then the frame cannot be
scalable. Indeed, u = (21, 23, 23) belongs to the kernel of (8) if and only if

in2(65—6
sin 2(03 2)2:

1 = : 3
sin 20! ’
2 ____sin 20322? (9)
2 = sin 20, <37

where z3 € R. The choice of the angles implies that zo2z3 < 0, unless
zZ3 = 0.
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Preconditioning of finite frames: Scalable frames

Describing SC

This is illustrated by

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Preconditioning of finite frames: Scalable frames

frames in
| sc

Describing SC(3,2)

Suppose that 0 = 61 < 0 < 7/2 < 65 < . From (9) 22 > 0 for all
z3 > 0 and z; > 0 for all z3 > 0 if and only if 3 — 0 < 7/2.
Consequently, when 0 = 6 < 05 < 7/2 < 03 < 7 the frame

® € SC4(3,2,3) if and only if 0 < 05 — 0 < 7/2.
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Describing SC(3,2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.

Kasso Okoudjou Preconditioning, Probability measures, and



Preconditioning of finite frames: Scalable frames
Characterization of scalable fr:
Characterization of scal
Fritz John's ellipsoid theor

Describing SC(4,2)

When M = 4 we are lead to seek nonnegative non-trivial vectors in the
null space of

1 cos20y cos203 cos20,

0 sin26y sin203 sin26,
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Describing SC(4,2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Describing SC(4,2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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A more general reformulation

Setti
Let F: RN 5 Re, d:= (N — 1)(N +2)/2, defined by
F()({L‘)
Fl (.’L‘)
F(z) =

Fy1(z)

2 2
CIL‘% — l‘% TpT41
.rl - .733 xk—xk_i'_Q
FO(‘T): . 7""Fk(x):
:L‘% — .T%V TN

and Fy(z) e RN, Fr(z) e RN %, k=1,2,..., N - 1.
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The map F' when N =2

When N = 2 the map F reduces to

Ja T\ _ x27y2
Yy ry

Note that in the examples given above we consider

ﬁ x _ x2—y2
Y 2zy
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n of scalable frames in
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When is a frame scalable: A generic solution

When is ® = {1}, C R scalable?

Proposition

A frame ® for RN is m-scalable, respectively, strictly m-scalable, if and
only if there exists a nonnegative u € ker F\(®) \ {0} with ||ullp < m,
respectively, ||ullo = m, and where F(®) is the d x M matrix whose k"
column is F(py).
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A key tool: The Farkas Lemma

w2
K3,

For every real N x M-matrix A exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative
solution x € RM | j.e., all components of x are nonnegative and at

least one of them is strictly positive.
(ii) There exists y € RN such that yT A is a vector with all entries
strictly positive.
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Farkas lemma with N =2, A

Figure : Bleu=original frame; Green=image by the map F'. Both of these
examples result in non scalable frames.
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Farkas lemma with N =2, A

Figure : Bleu=original frame; Green=image by the map F'. Both of these
examples result in scalable frames.
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Fritz John's ellipsoid theorem and scalable frames

Some convex geometry notions

Let X = {z;}}, C RV,
© The polytope generated by X is the convex hull of X, denoted by
Px (or co(X)).
@ The affine hull generated by X is denoted by aff (X).

© The relative interior of the polytope co(X) denoted by rico(X), is
the interior of co(X) in the topology induced by aff(X).

Q It is true that rico(X) # () whenever #X > 2, and

M M
rico(X) = Zakxk Doy > O,Zak =1,
k=1 k=1
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Scalable frames and Farkas's lemma

Theorem

Let M > N > 2, and let m be such that N < m < M. Assume that
O = {pop}M, € F*(M,N) is such that oy, # +@, when k # £. Then the
following statements are equivalent:

(i) @ is m—scalable, respectively, strictly m—scalable,

(ii) There exists a subset I C {1,2,..., M} with #I = m such that
0 € co(F(®y)), respectively, 0 € rico(F(Py)).

(iii) There exists a subset I C {1,2,..., M} with #I = m for which
there is no h € R% with (F(¢y),h) > 0 for all k € I, respectively,

with (F(pk),h) > 0 for all k € I, with at least one of the
inequalities being strict.

Kasso Okoudjou Preconditioning, Probability measures, and Frames



Preconditioning of finite frames: Scalable frames

on of scalable fvames in
Fritz John's ellipsoid theorem and

A useful property of F

For z = ()2, € RN and h = (hi)¢_, € RY, we have that

N-1 N
(F( th (2 —2p) + Z Z Ra(N=1=(k—1)/2)+0—1TkTe-
k=1 f=k+1

(10)
Consequently, fixing h € R?, (F(z),h) is a homogeneous polynomial of
degree 2 in x1,Z2,...,xn. The set of all polynomials of this form can be
identified with the subspace of real symmetric N x N matrices whose
trace is 0.
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Fritz John's ellipsoid theorem and sc;

A useful property of F

(F(z),h) = (Qnx, ) = 0 defines a quadratic surface in RY, and
condition (iii) in the last Theorem stipulates that for ® to be scalable,
one cannot find such a quadratic surface such that the frame vectors
(with index in I) all lie on (only) “one side” of this surface.
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e
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A geometric characterization of scalable frames

Theorem (G. Kutyniok, F. Philipp, K. Tuley, K.O. (2012))

Let ® = {¢p 1)L, c RN \ {0} be a frame for RY. Then the following
statements are equivalent.
(i) ® is not scalable.

(ii) There exists a symmetric M x M matrix Y with trace(Y') < 0 such
that (p;,Yp,;) >0 forallj=1,..., M.

(iii) There exists a symmetric M x M matrix Y with trace(Y) = 0 such
that (p;,Yp;) >0 forallj=1,..., M.
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Scalable frames in R? and R?

R3.

IS ETZ
S5
NNeslel 2

(@)

Figure : (a) shows a sample region of vectors of a non-scalable frame in R?.
(b) and (c) show examples of sets in C3 which determine sample regions in R3.

()
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Fritz John's Theorem

Theorem (F. John (1948))

Let K C B = B(0,1) be a convex body with nonempty interior. There
exits a unique ellipsoid &,,;, of minimal volume containing K.
Moreover, &,,in, = B if and only if there exist {\z}7"; C (0,00) and
{ug}, COKNSN=1 m > N + 1 such that

(i) Ty s =0

(i) &=, A, ug)ug, Vo € RY
where OK is the boundary of K and SN~ is the unit sphere in R .
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F. John's characterization of scalable frames

Let ® = {@p}ML, € SNV=! be a frame for RN. We apply F. John's
theorem to the convex body K = Py = conv({£py ). Let £y denote
the ellipsoid of minimal volume containing Pg, and Vo = Vol(Es) /wi
where wy is the volume of the euclidean unit ball.
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F. John's characterization of scalable frames

Setting

Let ® = {@p}ML, € SNV=! be a frame for RN. We apply F. John's
theorem to the convex body K = Py = conv({£py ). Let £y denote
the ellipsoid of minimal volume containing Pg, and Vo = Vol(Es) /wi
where wy is the volume of the euclidean unit ball.

Theorem

Let ® = {p}2, C SN~ be a frame. Then ® is scalable if and only if
Ve = 1. In this case, the ellipsoid £ of minimal volume containing
Py = conv({xpr}2L,) is the euclidean unit ball B.

A\
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Fritz John's ellipsoid theorem and scalable frames

A measure of scalability

Let ® C SN~ be a frame. Then Vi is a “measure of scalability”: the
closer it is to 1 the more scalable is the frame.
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Preconditioning of finite frames: Scalable frames

e”lpsold theorem and scalable frames

A quadratic programing approach to scalability

= {pi}M isscalable <= I}, C [0,00) : DCPT =1,
where C' = diag(c;).

M
Cp = {<I>C’(I>T = ZcigoicpiT i¢; >0}

=1

is the (closed) cone generated by {p;pl }M

i=1

® = {@;}M, isscalable <= I € Cp.

D(I) = C>Onég1gonalHq>C(I)T B IHF
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Characteriz
Fritz John's ellipsoid theorem and scalable frames

A second measure of scalability

Let ® C SN~ be a frame. Then Dg is a “measure of scalability”: the
closer it is to O the more scalable is the frame.
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f finite frame thec
Frames: Definition and basi

Preconditioning of finite frames: Scalable frames

terizatit
Fritz John's ellipsoid theorem and scalable frames

Comparing the measures of scalability

Values of Vg and Dg for randomly generated frames of M vectors in R%.

Frames o size 4x 6 Frames of size 4x 11

Figure : Relation between Vs and Dg with M = 6,11. The black line indicates
the upper bound in the last theorem, while the red dash line indicates the lower
bound.
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f finite frame thec
Frames: Definition and basi

Preconditioning of finite frames: Scalable frames

terizatit
Fritz John's ellipsoid theorem and scalable frames

Comparing the measures of scalability

Values of Vg and Dg for randomly generated frames of M vectors in R%.

Frames of size 4 15 Frames of size 4x 20

Figure : Relation between Vg and D with M = 15,20. The black line
indicates the upper bound in the last theorem, while the red dash line indicates
the lower bound.
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Preconditioning of finite frames: Scalable frames

Concluding remarks on scalable frames
o
(2]
o
()
o

Kasso Okoudjou Preconditioning, Probability measures, and Frames

The problem can be reformulated as a linear programing one leading
to numerical solutions.

When frame not scalable, one can define how close or far to being
scalable it is: Notion of “almost scalable.”

Role of redundancy.
Size of SC(M, N).
Other methods of frame preconditioning



Probab
Probabilistic frames Probabilistic
Probabilistic p®

Goals of this section

© Standard tools used in frame theory include: Functional and
Harmonic Analysis, Operator Theory, Linear Algebra, Differential
Geometry, Differential Equations.

@ Identifying frames with probability measures leads analyzing frames
in the setting of the Wasserstein metric spaces.

© For example, gradient flow methods from optimal transport theory
can be used to minimize certain common potentials in frame theory.
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The pt frame potentials

Probabilistic frame: inition and basic properties
Probabilistic frames Probabilistic frar)vc i

Probabilistic p

Motivation: The Welch bound

Theorem

For any frame ® = {¢,}2, C SV=1 we have

M—N
maxl{on, 00 2 \/ (1)

and equality hold if and only if ® is an ETF.
Furthermore, equality can hold only when M < w
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The pt frame potentials
Proba nition and basic properties

Probabilistic frames Probabi tia
Probabil potential

Definition of the p'* frame potential

Definition
Let M be a positive integer, and 0 < p < oo. Given a collection of unit
vectors ® = {1}, c SN-1, the p-frame potential is the functional

M

FP, m(®) = |{ek, pe)|P- (12)
k=1

When, p = oo, the definition reduces to

FPoo M (®) = S [{©k, @e)]-
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on and basic properties
Probabilistic frames bilistic frame po I

potential

Special cases

© p = 2 corresponds to the frame potential whose minimizers are the
FUNTFs

@ For p = 0o and fixed M, the minimizers of FP, 5s are called
Grassmanian frames.

© The potential FP, 5s always has a minimum but constructing these
minimizers is challenging.

What are the minimizers of FP,, s ?
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The pt/* frame potentials

Probabilistic frames ition and basic properties
Probabilistic frames ilistic frame potenti

Probabilistic p*/* fram.

Example: M =3, N =2

Find the minimizers of

3

FP,3(®) = > {0k, po)l?
k=1

when p € (0,00] and ® = {¢}3_, C St
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The pt frame potentials

Probabilistic frames: definition and basic properties
Probabilistic frames Probabilistic fram tial

Probabilistic p*/* potential

Solution for p = 2 and p = o0

Q@ Whenp =2,

3

FP3(®) = Y ok, po)|* > 9/2
k=1

with equality if and only if ® = {p}s_, C S is a FUNTF. A
minimizer of FPy 3 is the MB-frame, see next slide.

@ When p = o,

FPoo3(®) = max |, pe)| > 1/v/2

with equality if and only if ® = {py}s_, C S* is an ETF. Hence a
solution is also given by the MB frame

Kasso Okoudjou Preconditioning, Probability measures, and Frames



The pt/ frame potentials
P
Probabilistic frames

potential

vm‘un and basic properties
the MB-frame

M-B Frame
P T~
N
//X S
s N
4 “\
/ .
! L] \
/ \ 8
/ \
/ |
! !
! i
|
3 = —
|
i |
|
\ /
\ ;
\ /
5 =1 J
~ s
N Vs
~ -
. -
™~ ~
S~ e

Figure : An example of Equiangular FUNTF: the MB-frame.
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The pt frame potentials
ore on and basic properties
Probabilistic frames

Minimizers of FP, 5 for p € (0, o]

Proposition

Let pg = }Zggg Then FP,,, 5(®) > 5, with equality holding if and only if

® = {¢}3_, is an orthonormal basis plus one repeated vector or an
ETF. Furthermore,

(1) for0 < p < po, and ® = {pr}i_, C S, we have FP, 3(®) > 5,
and equality holds if and only if ® = {¢y}3_, is an orthonormal
basis plus one repeated vector,

(2) forp > py, and ® = {px}3_, C S*, we have

FP,5(®) > 270 (6)17% + 3, and equality holds if and only if
® = {pr}3_, isan ETF.
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The pt frame potentials
Probabilisti nition and basic properties
Probabilistic frames i 3 I
potential

Minimizers of FP

fip,3,2 = min{FP;, 5(®) : ® = {p}}_; C 5}

Frame Patential (M= 3)
527

48}

wip3)

=

381

36

34 ! L ! ! ! L ! )
]
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The pt frame potentials

Pr on and basic properties
Probabilistic frames Pr tial

potential

Minimizers of FP, x4 for p € (0, 00)

Theorem

Let p € (0,00], and N be positive integer. Let ® = {pp} N1 c SN-1,

log(N(N+1)) = . .
Set pg = W. Assume that FP,, n41(®) > N + 3, with equality

holding if and only if ® = {¢y}~ ' is an orthonormal basis plus one
repeated vector or an ETF. Then,
(1) for0 < p < po, and ® = {pg}n 1t € SN, we have

FP, n+1(®) > N + 3, and equality holds if and only if

® = {@i} o1 is an orthonormal basis plus one repeated vector,
(2) forpg <p<2, and ® = {cpk},ivjll C SN=1 we have

FP, n41(®) > 270 (N(N + 1)) "% + N + 1, and equality holds if
and only if & = {py )" is an ETF.
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The pt/* frame potentials

Probabilistic frame inition and basic properties
Probabilistic frames Probabilis

Probabilistic p*

Remarks on the Theorem

@ The hypothesis of the last theorem can be verified when N = 2. But
for N > 3 it is not known if this hypothesis is true.

@ There seems to be some “universality” of the minimizers of these
potentials. With py given above, any orthonormal basis plus one
repeated vector minimizes FPp, y11 for 0 < p < po and any ETF
minimizes FP, n41 for pg < p < oo.
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The pt/ frame potentials
Pr on and basic properties
Probabilistic frames [Fr tial
) potential

Partial results on minimizing FP,, 5, for p € (0, 00)

Proposition

Let p € (0,00], M, N be positive integers. Let ® = {¢p}2L, < SV~ we
have:

(a) If M > N and 2 < p < oo, then

_ /2
FP,um(®) > M(M - 1)(#6725)"" + N,

and equality holds if and only if ® is an ETF.

(b) Let 0 < p < 2 and assume that M = kN for some positive integer
k. Then the minimizers of the p-frame potential are exactly the k
copies of any orthonormal basis modulo multiplications by +1. The
minimum of (12) over all sets of M = kN unit norm vectors is k>N .

Kasso Okoudjou Preconditioning, Probability measures, and Frames



The pt frame potentials
Probabili rames: definition and basic properties
Probabilistic frames listic frame potential

otential

Numerical simulations for N = 2

We let
Mp,M,2 = min{FPpg((IJ) 10 = {Sﬁk}fc\/lzl - Sl}

Frame Potentials

! I
i .5 1 15 2 2.5 3 35

2 I L I !
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The pt frame potentials

Probabilistic frames: definition and basic properties
Probabilistic frames Probabilistic frame i

Probabilistic p

The p'* frame potential and ¢-design

Definition

Let ¢ be a positive integer. A spherical t-design is a finite subset {z;}},
of the unit sphere SV~ in RY, such that,

M
% ; h(z:) = /SM h(z)do (),

for all homogeneous polynomials h of total degree equals or less than ¢ in
N variables and where o denotes the uniform surface measure on S™V—1!
normalized to have mass one.
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The pt frame potentials
listic frames: finition and basic properties
Probabilistic frames i

FUNTFS and 2-design

Proposition

O = {3, c SN=1 is a spherical 2-design if and only if ® is a
FUNTF and ", ¢ = 0.
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The pt frame potentials

Probabilistic frames

th

frame potentials

t-designs as minimizers of p

Let p = 2k be an even integer and {x;}M, = {—z;}}, C SN~1, then

1-3-5..-(p—1) )

FPp,M({xi zj\il)z N(N+2)"'(N+p_2) ’

and equality holds if and only if {x;}} is a spherical p-design.
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Probabilistic frames

Motivations

o Let ® = {p;}, be a frame in RY with bounds 0 < A < B < oo.
Define

M 1 M
poi= Yo de then [ 1) Pdua(s) = 3 D |G

k:l

e Foreach z € RY: A/M||z|]? < [on [z, y)Pdpa(y) < B/M||z|?
@ 1 is an example of probabilistic frames.

@ P is the set of probability measures on R, and

Pe={nePia = [ IlPdut <o
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The pth frame p als

Probabilistic fra definition and basic properties
Probabilistic frames Probabilistic frar i

Probabilistic p?

Definition

A Borel probability measure i € P is a probabilistic frame if there exist
0 < A < B < ~ such that

All|l* < / (@, y)[dp(y) < Bllz||?, for all z € RY. (13)
RN

When A = B, p is called a tight probabilistic frame.
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The pt? frame potentials
i definition and basic properties

Probabilistic frames

When is a probability measure a probabilistic frame?

Theorem

A Borel probability measure 1w € P is a probabilistic frame if and only if
w € Py and E, = RN, where E,, denotes the linear span of supp(u) in
RY . Moreover, if W Is a tight probabilistic frame, then the frame bound
is given by

A= 530 =% [ IolPauty).
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nition and basic properties
Probabilistic frames tial

Examples

(a) Let a = {ax})L, C (0,00) with Z,]szl ar = 1. A set
® = {pp}L, C RY is a frame if and only if the probability measure

W0 = Zkle ax0y, supported by the set ® is a probabilistic frame.

(c) The uniform distribution on the unit sphere SNV~ in RY is a tight
probabilistic frame. That is, denoting the probability measure on
SN=1 by do we have that for all z € RY,

2

. /RN (@, y)2do(y).
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Probabilistic frames

Probabilistic frame operator

Let 1 € P be a probability measure.
@ The probabilistic analysis operator is given by

T, :RY — L*(RY,p), =+ (z,-).
@ The probabilistic synthesis operator is defined by
T, : LAN% ) - RN, fs /RN f(x)xdp(z).
© The probabilistic frame operator of y is
Su=T,T).

@ The probabilistic Gram operator of pu, is defined on L2(R™, 1) by

Gl (2) = T T2 f(2) = / (2, 9) f () dia(y).

RN
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The pt? frame potentials

Probabilistic frames: definition and basic properties
Probabilistic frames Probabilistic frar}vc potential

Probabilistic pt/* frame potential

Probabilistic frame operator

The probabilistic frame operator is given by

SRV SRY S,(x) = / @, yyydu(y)
RN

and is the matrix of second moments of (:
If {e;}}L, is the canonical orthonormal basis for R™, then

N
Suei = Z ms. 5 (:u)ejv
j=1

where

m; (1) = /R N y Dy D dp(y).
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Probabilistic frames Probabilistic frame
Probabilistic p?/ fr:

Probabilistic frame operator

Proposition

Let 1 € P, then S,, is well-defined (and hence bounded) if and only if

M (p) < oo.

Furthermore, p is a probabilistic frame if and only if S, is positive
definite.
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The pt? frame potentials
P

c frames: definition and basic properties
Probabilistic frames i fi tial

potential

Duality

If v is a probabilistic frame then S, is positive definite.
© The push-forward of p through S;l is given by

i(B) = p((S, ") 7' B) = u(S.B).

@ /i is a probabilistic frame called the probabilistic canonical dual
frame of p.

© The push-forward of p through 5;1/2 is given by

u'(B) = u(S'*B).
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The pt? frame potentials
Probabilistic fram nition and basic properties
Probabilistic fram tial

Probabilistic p*/

Probabilistic frames

potential

Reconstruction formula

Let 1 € P be a probabilistic frame with bounds 0 < A < B < oo. Then:
(a) fis a probabilistic frame with frame bounds 1/B < 1/A.

(b) u' is a tight probabilistic frame.

Consequently, for each x € R we have:

/ (2, y) S,y dii(y) = / (7o yduly) =z, (14)
RN RN

and

/<w7y>yduf(y)=/ (S22, y) S Py du(y) = = (15)
RN RN
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finition and basic properties
Probabilistic frames Proba

istic frame potential
Probabilistic pt/* frame potential

Definition

When is a probability measure y a tight probabilistic frame?
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The pth frame p als

Probabilis inition and basic properties
Probabilistic frames Probabilistic frame potential

Probabilistic p’* frame potential

Definition

When is a probability measure y a tight probabilistic frame?

Definition
The probabilistic frame potential is the nonnegative function defined on
‘P and given by

PRPG) = [ 1) du(o) du), (16)

for each p € P.

Kasso Okoudjou Preconditioning, Probability measures, and Frames



Probabilistic frames

The probabilistic frame potential and Gramian operator

Proposition

Let y € P, then PFP(u) is the Hilbert-Schmidt norm of the probabilistic
Gramian operator G, that is

Gulls = [[ | (@) dute)dnty).

Furthermore, if u € Pa, (which is the case when y is a probabilistic
frame) then we have

PFP () < My () < oo.
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Probabilistic frames T otential
bilistic pt* frame potential

Probabilistic tight frames as minimizers of the PFP

Let y1 € Py be such that My(p) =1 and set E,, = span(supp(p)), then
the following estimate holds

PFP (1) > 1/n (17)

where n is the number of nonzero eigenvalues of S,,. Moreover, equality
holds if and only if v is a tight probabilistic frame for E,,.
In particular, given any probabilistic frame p € Ps with My(u) =1, we
have

PFP(u) > 1/N

and equality holds if and only if u is a tight probabilistic frame.

When p is a discrete measure, then PFP(u) is the frame potential.




Probabilistic frames

Definition

For p € (0,00) set

Py ={neP: M0 = [ lulPduty) < oc}.

Definition

For each p € (0,00), the probabilistic p—frame potential is given by

PPP(er) = ([ el dute) duty). (18)

When supp(u) = ® = {px }L, € S¥=1, PFP(u,p) reduces to FP,, y/.
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Probabilistic frames: definition and basic properties
Probabilistic frames Probabilistic frar;vc potential

Probabilistic p*/* frame potential

Minimizers of the probabilistic p! frame potential

Theorem

Let 0 < p < 2, then the minimizers of (18) over all the probability
measures supported on the unit sphere SN~ are exactly those
probability measures i that satisfy

(i) there is an orthonormal basis {e1,...,en} for RY such that
{e1,...,en} Csupp(p) C {£e,...,ten}
(ii) thereis f: SN~ — R such that p(x) = f(2)Vis,..  +uey(x) and

Fla) + =) = 1

where the measure Vi, .+, (x) represent the counting measure
of the set {xx; :i=1,...,N}.
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Probabilistic frames R tial

potential

Probabilistic p—frame

Definition
For 0 < p < oo, we call u € M(SN=1 B) a probabilistic p-frame for RV
if and only if there are constants A, B > 0 such that

Al < [ l@a)lPdu@) < Blule, vyeRY. (19

We call u a tight probabilistic p-frame if and only if we can choose
A=B.
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Probabilistic frames >robabil b
h

a
frame potential

Examples

Example

By symmetry considerations, it is not difficult to show that the uniform
surface measure o on S™V~1 is always a tight probabilistic p-frame, for
each 0 < p < .

Lemma

| A

If 1 is probabilistic frame, then it is a probabilistic p-frame for all
1 < p < oo. Conversely, if u is a probabilistic p-frame for some
1 < p < o0, then it is a probabilistic frame.

\

Kasso Okoudjou Preconditioning, Probability measures, and Frames



Probabilistic frames

Tight probabilistic p-frames and spherical t—designs

Let p be an even integer. For any probability measure ji on SV—1,

1-3-5---(p—1)

PFP(up) 2 moy o Nt p =)’

and equality holds if and only if p is a probabilistic tight p-frame.
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Probabilistic frames c e po ial
potential

Tight probabilistic p-frames and spherical t—designs

Proposition

Let p = 2k be an even positive integer. A set ® = {¢o,}2 L, c SN-1isa
spherical p—design if and only if the probability measure

pis = - SN 8, is a probabilistic tight p—frame.
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Concluding remarks on probabilistic frames

@ The 2-Wasserstein metric given by

ey =nind [ eyl e} (20)

where T'(u, v) is the set of all Borel probability measures «y on
RN x RN whose marginals are i and v, respectively.
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Concluding remarks on probabilistic frames

@ The 2-Wasserstein metric given by
Wae)mmin{ [ eyl e P b @0
RN xRN
where T'(u, v) is the set of all Borel probability measures «y on

RN x RN whose marginals are i and v, respectively.

o (Py,Ws) form a metric space.
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Concluding remarks on probabilistic frames

@ The 2-Wasserstein metric given by

ey =nind [ eyl e} (20)

where T'(u, v) is the set of all Borel probability measures «y on
RN x RN whose marginals are i and v, respectively.

o (Py,Ws) form a metric space.

@ Construction of frame path with various constraint.
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Concluding remarks on probabilistic frames

@ The 2-Wasserstein metric given by

ey =nind [ eyl e} (20)

where T'(u, v) is the set of all Borel probability measures «y on
RN x RN whose marginals are i and v, respectively.

o (Py,Ws) form a metric space.
@ Construction of frame path with various constraint.

@ Optimization of frame related functionals, e.g., the probabilistic pth
frame potentials, in the context of the Wasserstein metrics.
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Probabilistic frames

Thank You!
http://www2.math.umd.edu/ okoudjou
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