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Background on Harmonic Analysis: Classical and Anisotropic

Approach of Harmonic Analysis

Harmonic analysis provides methods for the decomposition of functions
into simpler constituent atoms.

The nature of the decomposition is flexible, and the development of new
methods is a major component of the field.

Given a function with certain known properties, a particular method of
decomposition might be especially convenient.

Beyond being of theoretical interest, these decomposition can be used for
applications.
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Background on Harmonic Analysis: Classical and Anisotropic

Fourier Series

The most classical decomposition system of the subject is Fourier series,
with ideas dating back at least as far as Lagrange’s study of vibrating
strings in the eighteenth century.
Suppose f ∈ L2([0,1]d ). Then f may be decomposed in the following
manner, with convergence in the L2([0,1]d ) norm:

f (x) =
∑

m∈Zd

(∫
[0,1]d

f (y)e−2πi〈m,y〉dy

)
e−2πi〈m,x〉.

This method decomposes f with respect to its frequency content, as
measured by the Fourier coefficients

∫
[0,1]d

f (y)e−2πi〈m,y〉dy .
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Background on Harmonic Analysis: Classical and Anisotropic

Discrete Wavelet Decompositions

A different type of decomposition, based on scale and translation, was
pioneered in the 1980s and 1990s 1,2.
Let f ∈ L2(R2), and let ψ be a wavelet function. Then f may be
decomposed in the following manner, with convergence in the L2(R2)
norm:

f =
∑
m∈Z

∑
n∈Z2

〈f , ψm,n〉ψm,n,

where ψm,n(x) := |det A|m2 ψ(Amx − n), A ∈ GL2(R). A typical choice for A
is the dyadic isotropic matrix

A =

(
2 0
0 2

)
.

1I. Daubechies. “Orthonormal bases of compactly supported wavelets.” Communications on
pure and applied mathematics 41.7 (1988): 909-996.

2S.G. Mallat. “Multiresolution approximations and wavelet orthonormal bases of L2(R)”.
Transactions of the American Mathematical Society 315.1 (1989): 69-87.
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Background on Harmonic Analysis: Classical and Anisotropic

Classical Methods are Good...

Fourier methods proved fundamental in the early development of signal
processing, and also in the study of physics.

Wavelets revolutionized the fields of image compression3, fusion, and
registration.

Both methods can be implemented with fast, efficient numerical
algorithms in both low level (C) and high level (MATLAB) languages.

3S. Athanassios, C. Christopoulos, and T. Ebrahimi. “The JPEG 2000 still image compression
standard.” IEEE Signal Processing Magazine 18.5 (2001): 36-58.
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Background on Harmonic Analysis: Classical and Anisotropic

...But Not Perfect

These classical methods are known to be suboptimal for representing
singularities in functions.

That is, if a function is singular (one dimension) or singular in a given
direction (higher dimensions), these transforms fail to efficiently represent
the singularity in the coefficients they generate.

For Fourier series, this is the Gibbs phenomenon: many Fourier
coefficients are needed to accurately account for a discontinuity.
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Background on Harmonic Analysis: Classical and Anisotropic

The Need for Anisotropy

Wavelets are good for one dimensional jump discontinuities, but are poor
in dimensions 2 or more4.

This is a major weakness, since one of the most widely-lauded
applications of wavelet methods is image analysis, which is
two-dimensional at its simplest.

In higher dimensions, singularities have a directional character, but
wavelets are fundamentally isotropic. This limits wavelets’ effectiveness
for resolving key aspects of images, such as edges.

What is needed are decomposition systems that are anisotropic, taking
directionality into account.

4F. Hartmut, L. Demanet, F. Friedrich. “Document and Image Compression”. In Beyond
wavelets: New image representation paradigms. 179-206. 2006.
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Background on Harmonic Analysis: Classical and Anisotropic

Shearlets

Starting in the early 2000s, several anisotropic systems were proposed:
Curvelets5, Contourlets6, Ridgelets7, Shearlets8, and more.

We note that ridgelets, curvelets, and shearlets fall into the overarching
anisotropic paradigm of α-molecules.

Let f ∈ L2(R2) and ψ be a shearlet function. Then f may be decomposed
in the following manner, with convergence in the L2(R2) norm:

f =
∑
j∈Z

∑
k∈Z

∑
m∈Z2

〈f , ψj,k,m〉ψj,k,m.

5E.J. Candès and D. L. Donoho. “New tight frames of curvelets and optimal representations of
objects with piecewise C2 singularities.” Communications on pure and applied mathematics 57.2
(2004): 219-266.

6M. Do and M. Vetterli. “Contourlets: a directional multiresolution image representation.”
Proceedings of IEEE International Conference on Image Processing. 2002.

7E.J. Candès. “Ridgelets: theory and applications”. Diss. Stanford University, 1998.
8D. Labate, W.-Q. Lim, G. Kutyniok, and G. Weiss. “Sparse multidimensional representation

using shearlets.” Proceedings of SPIE Optics & Photonics. 2005.
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Background on Harmonic Analysis: Classical and Anisotropic

Shearlets

Here,
ψj,k,m(x) := 2

3j
4 ψ(Sk A2j x −m).

Aa =

(
a 0
0 a

1
2

)
, Sk =

(
1 k
0 1

)
.

Note that A has been replaced with Aa, which is no longer isotropic; this
will allow our new analyzing functions to be more pronounced in a
particular direction.

The new matrix Sk , a shearing matrix, lets us select the direction.

As a becomes larger, the direction selected by Sk will be emphasized to a
proportionally greater degree.

Shearlets have the benefit of fast numerical methods, so we focus on
them.
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Background on Harmonic Analysis: Classical and Anisotropic

Shearlet Optimality

One of the theoretical benefits of shearlets is their optimality for
representing a certain class of functions.

Definition

The set of cartoon-like images in R2 is

E := {f | f = f0 + χBf1, fi ∈ C2([0,1]2), ‖fi‖C2 ≤ 1, B ⊂ [0,1]2, ∂B ∈ C2([0,1])}.

The space of cartoon-like images is a quantitative definition of signals
that represent images. That is, although images are discrete, if we are to
consider only continuous signals, then E models the class of signals
corresponding to images.
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Background on Harmonic Analysis: Classical and Anisotropic

Shearlet Optimality

Shearlets are known to be optimal for E over all reasonable
representation systems 9.

That is, elements of E may be written with optimally few shearlet
coefficients, when compared to the number of coefficients required by
other representation systems.

From a practical standpoint, this suggest shearlets should be superior to
classical methods for the analysis of images.

We shall investigate the efficacy of shearlets for image registration in the
final third of this talk.

9K. Guo and D. Labate. “Optimally sparse multidimensional representation using shearlets.”
SIAM journal on mathematical analysis 39.1 (2007): 298-318.
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Directional Gabor Theory

Gabor Systems

Gabor theory was developed based on the work of Nobel laureate Dennis
Gabor 10, who was interested in whether modulates and translates of
Gaussians could form a basis for L2(R).

Definition

Let g ∈ L2(Rd ). Let α, β > 0. The family of functions

G(g, α, β) := {g(x − αn)e−2βπi〈m,x〉}m,n∈Zd

is a regular Gabor system. Let Λ ⊂ R2d be discrete. The family of functions

G(g,Λ) := {g(x − λ)e−2πi〈γ,x〉}(γ,λ)∈Λ

is an (irregular) Gabor system.
10D. Gabor. “Theory of communication. Part 1: The analysis of information.” Journal of the

Institution of Electrical Engineers-Part III: Radio and Communication Engineering 93.26 (1946):
429-441.
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Directional Gabor Theory

Gabor Systems

Gabor systems decompose a signal with respect to translations and
modulations.

Gabor theory is rich and subtle, and numerical applications of Gabor
systems have proven useful, particularly for the analysis of auditory
signals.

However, like Fourier series and wavelets, Gabor systems are
fundamentally isotropic.

Grafakos and Sansing introduced a directional generalization of Gabor
systems11. Their work is related to the ridgelets of Candès and Donoho.

11L. Grafakos and C. Sansing. “Gabor frames and directional time-frequency analysis.” Applied
and Computational Harmonic Analysis 25.1 (2008): 47-67.
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Directional Gabor Theory

Directional Gabor Systems

For g ∈ L2(R), gm,t ∈ L2(R) is the function defined by:

gm,t (s) = e2πim(s−t)g(s − t) = TtM−mg(s), m, t ∈ R.

Definition

Let g ∈ S(R) be a R-valued, non-zero window function. For d ≥ 1 an integer
and m, t ∈ R, we define:

Gm,t (s) := D d−1
2

(gm,t )(s) = (ĝm,t (γ)|γ|
d−1

2 )∨(s), s ∈ R.

The weighted Gabor ridge functions are

Gm,t,u(x) := Gm,t (〈u, x〉) = (ĝm,t (γ)|γ|
d−1

2 )∨(〈u, x〉), x ∈ Rd .

April 6, 2015 18 / 45



Directional Gabor Theory

Directional Gabor Systems

The weighted Gabor ridge functions incorporate directional information
via the 〈u, ·〉 argument. This is similar to the approach of ridgelets.

Definition

Let f ∈ S(Rd ). The Radon transform of f is a function R(f ) : Sd−1 × R→ C
given by the formula

R(f )(u, s) :=

∫
〈u,x〉=s

f (x)dx , u ∈ Sd−1, s ∈ R.

Theorem

Let f ∈ L1(Rd ), and let Ru(f )(s) := R(f )(u, s). For a fixed u ∈ Sd−1, the
Fourier transform of f and Ru(f ) are related in the following way:

R̂u(f )(γ) = f̂ (γu).
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Directional Gabor Theory

Continuous Reproducing Formula

Theorem

Let g, ψ ∈ S(R) be two window functions such that 〈g, ψ〉 6= 0, with
corresponding families of Gabor ridge functions Gm,t,u,Ψm,t,u. Suppose
f ∈ L1(Rd ) and f̂ ∈ L1(R̂d ). Then:

f =
1

2〈g, ψ〉

∫
Sd−1

∫
R

∫
R
〈f ,Gm,t,u〉Ψm,t,udmdtdu.
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Directional Gabor Theory

Semi-discrete Reproducing Formula

Theorem

There exist g, ψ ∈ S(R) and α, β > 0 such that for all f ∈ L1(Rd ) ∩ L2(Rd ), we
have have:

A‖f‖2
2 ≤

∫
Sd−1

∑
m∈Z

∑
t∈Z
|〈f ,Gαm,βt,u〉|2du ≤ B‖f‖2

2, (1)

where the constants A,B depend only on g, α, β and du is the Lebesgue
measure on Sd−1. Moreover, for this choice of g, ψ, we have:

f =
1
2

∫
Sd−1

∑
m∈Z

∑
t∈Z
〈f ,Gαm,βt,u〉Ψαm,βt,udu.
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Directional Gabor Theory

The Discretization Problem

Grafakos and Sansing conjectured the above semi-discrete reproducing
formula could be fully discretized, to produce a discrete frame.

To this effect, we analyze systems of the form

{gm,t,u(x) := gm,t (〈u, x〉)}(m,t,u)∈Λ, Λ ⊂ S1 × R× R.

Note that the weighting in the Fourier domain is removed for these
systems. This weighting is used to make the integration over S1 work, so
is not necessary in the discrete case.
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Directional Gabor Theory

Choosing the Correct Space of Functions

Although stated here for dimension 2, the following result holds in higher
dimensions.

Theorem

Let {gm,t,u}(m,t,u)∈Λ be any discrete directional Gabor system. Then there
exists a sequence of Schwartz functions {φn}∞n=1 ∈ S(R2) such that

lim
n→∞

‖φn‖2 = 0.∑
(m,t,u)∈Λ

|〈φn, gm,t,u〉|2 ≥ 1,∀n.

Thus, {gm,t,u}(m,t,u)∈Λ cannot be a discrete frame for any function space
containing S(R2).

So, we cannot hope to represent the entire class of Schwartz functions.
We will have to aim for something smaller.
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Directional Gabor Theory

A Toy Example

Theorem

Let g(x) = χ[− 1
2 ,

1
2 ](x). Let Γ ⊂ S1 × R be such that the mapping ψ : Γ→ Z2

given by (u,m) 7→ mu is a bijection. Set Λ = {(m, t ,u)|(u,m) ∈ Γ, t ∈ Z}.
Then we have:

∑
(m,t,u)∈Λ

|〈f ,gm,t,u〉|2 = ‖f‖2
2,

for all f ∈ L2(R2) supported on B 1
2
(0).
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Directional Gabor Theory

Sufficient Condition

Definition

Let U be the subset of S(R2) of functions supported in [− 1
2 ,

1
2 ]2.

Theorem

Let g ∈ L2(R) be such that supp(ĝ) ⊂ K ⊂ (− 1
4 ,

1
4 ), K compact. Then with Λ

as above, {gm,t,u}(m,t,u)∈Λ is a frame for U .

The condition that supp(ĝ) ⊂ K ⊂ (− 1
4 ,

1
4 ), K compact, is required to

invoke Kadec’s 1
4 theorem 12.

12If Λ = {λ = (λ1, ..., λd ) ∈ Rd} and for each λ ∈ Λ, there is a unique k = (k1, ..., kd ) ∈ Zd

such that |λj − kj | < 1
4 for all j = 1, ..., d , then {e−2πi〈λ,·〉}λ∈Λ forms a Riesz basis for

L2([− 1
2 ,

1
2 ]2). This result may be found in: W. Sun and X. Zhou. “On Kadec’s 1

4 -theorem and the
stability of Gabor Frames.” Applied and Computational Harmonic Analysis 7.2 (1999): 239-242.
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Directional Gabor Theory

Proof Sketch (1/2)

The proof of this theorem is based on developing a theory analogous to
the work of Hernández, Labate, and Weiss 13. This theory studies almost
periodic functions to develop necessary and sufficient conditions for a
broad class of representing systems to be discrete frames, including
Gabor and wavelet systems.
Consider, for a fixed f ∈ U , the function

w(x) =
∑

(u,m)

∑
n∈Z
|〈Tx f ,gm,t,u〉|2

=
∑

(u,m)

∑
k∈Z

Ĥ(u,m)(k)e2πi〈ku,x〉.

We show this Fourier series is absolutely convergent and is continuous in
x .

13E. Hernández, D. Labate, and G. Weiss. “A unified characterization of reproducing systems
generated by a finite family, II.” The Journal of Geometric Analysis 12.4 (2002): 615-662.
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Directional Gabor Theory

Proof Sketch (2/2)

Then it suffices to show A‖f‖2
2 ≤ w(0) ≤ B‖f‖2

2.

Directly computing the Fourier coefficients is possible, i.e. to get analytic
expressions for Ĥ(u,m) in terms of f ,g.

The sum of these coefficients can be shown to be bounded by ‖f‖2
2 by

using Kadec’s theorem.

The frame bounds are determined by ‖g‖2
2 and the diameter of K .
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Image Registration with Shearlets

Introduction to Image Registration

The process of image registration seeks to align two or more images of
approximately the same scene, acquired at different times or with
different sensors.

Images can differ in many ways:
1 Geometrically: rotated, translated, warped, dilated.
2 Modally: different sensors, different conditions at time of image capture.

This problem is relevant to, among other fields, microscopy, biomedical
imaging, remote sensing, and image fusion.

Difficult images to register include those with few dominant features and
images from very different sensors, i.e. different modalities.

We are particularly interested in multimodal registration.

Harmonic analytic techniques are well-suited for these types of problems,
when compared to other methods.
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Image Registration with Shearlets

Stages of Image Registration

Image registration may be viewed as the combination of four separate
processes:

1 Selecting an appropriate search space of admissible transformations.
This will depend on whether the images are at the same resolution, and
what type of transformations will carry the input image to the reference
image, i.e. rotation-scale-translation (RST), polynomial warping, etc.

2 Extracting relevant features to be used for matching. These could be
individual pixels that are known to be in correspondence between the two
images, or could be global structures in the images, such as roads,
buildings, rivers, and textures.

3 Selecting a similarity metric, in order to decide if a transformed input
image closely matches the reference image. This metric should make
use of the features which are extracted from the image, be they specific
pixels or global structures.

4 Selecting a search strategy, which is used to match the images based
on maximizing or minimizing the similarity metric.
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Image Registration with Shearlets

Wavelets and Shearlets for Registration

Wavelet features are well-established for image registration; the
separation of edges from textures is often useful for matching 14.

However, the fundamentally isotropic nature of wavelets makes them
suboptimal for registering images with strong edge features.

To improve the registration of images with strong edges, we considered
features generated from the anisotropic representation system of
shearlets.

This is good for registration algorithms, because sparse features increase
the robustness of the optimization algorithm that computes the
registration transformation.

14I. Zavorin and J. Le Moigne. “Use of multiresolution wavelet feature pyramids for automatic
registration of multisensor imagery.” IEEE Transactions on Image Processing, 14.6 (2005):
770-782.
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Image Registration with Shearlets

A Scene from WA

Figure: A grayscale optical image of a mixed land-cover area in Washington state
containing both textural and edge-like features. The image is courtesy of Dr. David
Harding at NASA GSFC.
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Image Registration with Shearlets

WA Features

Figure: Wavelet (left) and shearlet (right) features extracted from previous image
emphasizing textural and edge features, respectively.
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Image Registration with Shearlets

Evaluating Registration Quality

When registering images, there are two significant criteria of registration
algorithm quality:

1 Accuracy of computed registration when compared to the true registration.
2 Robustness of algorithm to initial distance between the two images.

The robustness of the algorithm is important because the initial closeness
of the two images depends greatly on the GPS technology in the sensors
and the distance of the sensing device to the location being imaged.

If the images to be aligned start far apart, the registration algorithm could
fail to converge.

We expected using shearlet features would improve robustness.
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Image Registration with Shearlets

Experimental Overview

As we prototyped, we realized that using shearlets did increase
robustness, but at a slight cost in accuracy, usually a few pixels.

Consequently, we devised a two-stage registration algorithm: first, use
shearlets to get an approximate registration, then refine this with another
iteration of the algorithm, using wavelet features.

We compared this algorithm to using wavelets alone.

We performed experiments on synthetic images, as well as multimodal
image pairs.
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Image Registration with Shearlets

Basic Description of Algorithm

1 Search Space: RST. All of our examples feature images at the same
scale, so effectively, our search space is the space of rotations and
translations (RT).

2 Features: Wavelet features in one case and shearlet features coupled
with wavelet features in another.

3 Similarity Metric: Unconstrained least squares. That is, if FR and FI are
the reference and input features, N the number of relevant pixels, (xi , yi )
the integer coordinates of each pixel, and Tp the transformation
associated to parameters p, we seek to minimize the similarity metric
given by

χ2(p) =
1
N

N∑
i=1

(FR(Tp(xi , yi ))− FI(xi , yi ))2

4 Search Strategy: Modified Marquadt-Levenberg method of solving
non-linear least squares problems.
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Image Registration with Shearlets

Algorithm Details (1/2)

1 Input a reference image, Ir , and an input image I i . These will be the
images to be registered.

2 Input an initial registration guess (θ0,Tx0 ,Ty0 ).
3 Apply shearlet feature algorithm and wavelet feature algorithm to Ir and

I i . This produces a set of shearlet features for both, denoted Sr
1, ...,S

r
n

and Si
1, ...,S

i
n, respectively, as well as a set of wavelet features for both,

denoted W r
1 , ...,W

r
n and W i

1, ...,W
i
n. Here, n refers to the level of

decomposition chosen. In general, n is bounded by the resolution of the
images as

n ≤ b1
2

log2(max{M,N})c,

where Ir , Ii are M × N pixels. All our experiments are for 256× 256
images, so n ≤ 4.
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Image Registration with Shearlets

Algorithm Details (2/2)

4 Match Sr
1 with Si

1 with a least-squares optimization algorithm and initial
guess (θ0,Tx0 ,Ty0 ) to get a transformation T S

1 . Using T S
1 as an initial

guess, match Sr
2 with Si

2, to acquire a transformation T S
2 . Iterate this

process by matching Sr
j with Si

j using T S
j−1 as an initial guess, for

j = 2, ...,n. At the end of this iterative matching, we acquire our final
shearlet-based registration, call it T S = (θS,T S

x ,T S
y ).

5 Using T S as our initial guess, match W r
1 with W i

1 with a least-squares
optimization algorithm to acquire a transformation T W

1 . Using T W
1 as an

initial guess, match W r
2 with W i

2, to acquire a transformation T W
2 . Iterate

this process by matching W r
j with W i

j using T W
j−1 as an initial guess, for

j = 2, ...,n. At the end of this iterative matching, we acquire our final
hybrid registration, call it T H .

6 Output T H = (θH ,T H
x ,T H

y ).
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Image Registration with Shearlets

Overview of Experiments

For this talk, we consider one set of experiments, in which multimodal
images are registered.

We shall perform many iterations of our algorithm. Each iteration, we
shall move the initial guess farther apart.

The distance is parametrized by rotation and translation in the x and y
directions. For convenience, these are coupled together as RT . So,
RT = 1.8 means a counterclockwise rotation of 1.8 degrees and a
translation of 1.8 pixels in both the x and y direction. Fraction translations
and rotations are interpolated by splines.
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Image Registration with Shearlets

Belgium Multimodal Images

Figure: Multispectral band 1 (left) and panchromatic band 8 (right) images of Hasselt,
Belguim acquired by Landsat ETM+. The images have been converted to grayscale. A
subset is extracted from these images to ease computation. The images are courtesy
of the IEEE Geoscience and Remote Sensing Society Data Fusion committee.
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Image Registration with Shearlets

Panchromatic-to-Multispectral Results

Registration
Technique

Number of
Converged
Experiments
(out of 101)

Percentage of
Converged
Experiments

RMSE Relative
Improvement

Spline Wavelets 8 7.92% .6376 -

Simoncelli Band-Pass 19 18.81% .7534 -

Simoncelli Low-Pass 14 13.86% .6034 -

Shearlet + Spline Wavelets 20 19.80% .5185 150.00%

Shearlet + Simoncelli Band-Pass 27 26.73% .6494 42.11%

Shearlet + Simoncelli Low-Pass 20 19.80% .5513 42.86%

Table: Comparison of registration algorithms for panchromatic to multispectral
experiment.
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Conclusions and Moving Forward

Experiment conclusions

For automatic image registration, using shearlets and wavelets together
outperforms using only wavelets.

The improvement is pronounced when there are substantial edges.

When the image is texturally dominant, there is less noticeable
improvement.
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Conclusions and Moving Forward

Future Directions

Our theorem characterizing directional Gabor frames is sufficient, but not
necessary. Indeed, our toy example does not fulfill the hypothesis of the
theorem. In the spirit of the work of Hernández, Labate, and Weiss, we
would like to develop necessary and sufficient conditions.

Given the similarity between how directional Gabor frames and ridgelets
incorporate directionality, it is of interest to explore how the theory of
ridgelets relates to the work presented in the middle portion of this
presentation.

A fast, efficient numerical implementation of discrete directional Gabor
frames is also desirable, for use in applications.

In particular, could directional Gabor frames be incorporated into a
registration algorithm? This would require a theoretical understanding
what types of functions are optimally represented by directional Gabor
frames.
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