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Frames

Let H be a separable Hilbert space, e.g., H = L2(Rd ), Rd , or Cd .
F = {xn} ⊆ H is a frame for H if

∃A,B > 0 such that ∀ x ∈ H, A‖x‖2 ≤
∑
|〈x , xn〉|2 ≤ B‖x‖2.

Theorem

If F = {xn} ⊆ H is a frame for H then

∀x ∈ H, x =
∑
〈x ,S−1xn〉xn =

∑
〈x , xn〉S−1xn,

where S : H → H, x 7→
∑
〈x , xn〉xn is well-defined.

Frames are a natural tool for dealing with numerical stability,
overcompleteness, noise reduction, and robust representation
problems.



1 Subsection name for top bar, if any

1

THE NARROW BAND AMBIGUITY FUNCTION



Ambiguity function and STFT

Woodward’s (1953) narrow band cross-correlation ambiguity
function of v ,w defined on Rd :

A(v ,w)(t , γ) =

∫
v(s + t)w(s)e−2πis·γds.

The STFT of v : Vw v(t , γ) =
∫

v(x)w(x − t)e−2πix·γdx .
A(v ,w)(t , γ) = e2πit·γVw v(t , γ).

The narrow band ambiguity function A(v) of v :

A(v)(t , γ) = A(v , v)(t , γ) =

∫
v(s + t)v(s)e−2πis·γds



The discrete periodic ambiguity function

Given u : Z/NZ→ C.
The discrete periodic ambiguity function,

A(u) : Z/NZ× Z/NZ −→ C,

of u is

A(u)(m,n) =
1
N

N−1∑
k=0

u[m + k ]u[k ]e−2πikn/N .



CAZAC sequences

u : Z/NZ −→ C is
Constant Amplitude Zero Autocorrelation (CAZAC) if

∀m ∈ Z/NZ, |u[m]| = 1, (CA)
and

∀m ∈ Z/NZ \ {0}, A(u)(m,0) = 0. (ZAC)

Are there only finitely many non-equivalent CAZAC sequences?
”Yes” for N prime and ”No” for N = MK 2,
Generally unknown for N square free and not prime.



Björck CAZAC sequences

Let p be a prime number, and ( k
p ) the Legendre symbol.

A Björck CAZAC sequence of length p is the function bp : Z/pZ→ C
defined as

bp[k ] = eiθp(k), k = 0,1, . . . ,p − 1,

where, for p = 1 (mod 4),

θp(k) = arccos
(

1
1 +
√

p

)(
k
p

)
,

and, for p = 3 (mod 4),

θp(k) =
1
2

arccos
(

1− p
1 + p

)
[(1− δk )

(
k
p

)
+ δk ].

δk is the Kronecker delta symbol.



Björck CAZAC discrete periodic ambiguity function

Let A(bp) be the Björck CAZAC discrete periodic ambiguity function
defined on Z/pZ× Z/pZ.

Theorem (J. and R. Benedetto and J. Woodworth)

|A(bp)(m,n)| ≤ 2
√

p
+

4
p

for all (m,n) ∈ Z/pZ× Z/pZ \ (0,0).

The proof is at the level of Weil’s proof of the Riemann hypothesis
for finite fields and depends on Weil’s exponential sum bound.
Elementary construction/coding and intricate
combinatorial/geometrical patterns.



(a) (b)

Figure : Absolute value of the ambiguity functions of the Alltop and Björck
sequences with N = 17.



Problems and remarks

For given CAZACs up of prime length p, estimate minimal local
behavior |A(up)|. For example, with bp we know that the lower
bounds of |A(bp)| can be much smaller than 1/

√
p, making them

more useful in a host of mathematical problems, cf. Welch
bound.
Even more, construct all CAZACs of prime length p.
Optimally small coherence of bp allows for computing sparse
solutions of Gabor matrix equations by greedy algorithms such
as OMP.
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AMBIGUITY FUNCTIONS FOR VECT0R-VALUED DATA



Modeling for multi-sensor environments

Multi-sensor environments and vector sensor and MIMO
capabilities and modeling.
Vector-valued DFTs
Discrete time data vector u(k) for a d-element array,

k 7−→ u(k) = (u0(k), . . . ,ud−1(k)) ∈ Cd .

We can have RN → GL(d ,C), or even more general.



Ambiguity functions for vector-valued data

Given u : Z/NZ −→ Cd .

For d = 1, A(u) : Z/NZ× Z/NZ −→ C is

A(u)(m,n) =
1
N

N−1∑
k=0

u(m + k)u(k)e−2πikn/N .

Goal
Define the following in a meaningful, computable way:

Generalized C-valued periodic ambiguity function
A1(u) : Z/NZ× Z/NZ −→ C
Cd -valued periodic ambiguity function Ad (u).

The STFT is the guide and the theory of frames is the technology to
obtain the goal.



Preliminary multiplication problem

Given u : Z/NZ −→ Cd .
If d = 1 and en = e2πin/N , then

A(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k)enk 〉.

Preliminary multiplication problem

To characterize sequences {ϕk} ⊆ Cd and compatible multiplications
∗ and • so that

A1(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ ϕn•k 〉 ∈ C

is a meaningful and well-defined ambiguity function. This formula is
clearly motivated by the STFT.



A1(u) for DFT frames

Given u : Z/NZ −→ Cd ,d ≤ N.
Let {ϕk}N−1

k=0 be a DFT frame for Cd , let ∗ be componentwise
multiplication in Cd with a factor of

√
d , and let • = + in Z/NZ.

In this case A1(u) is well-defined by

A1(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ ϕn•k 〉

=
d

N2

N−1∑
k=0

N−1∑
j=0

〈ϕj ,u(k)〉〈u(m + k), ϕj+nk 〉.



A1(u) for cross product frames

Take ∗ : C3 ×C3 −→ C3 to be the cross product on C3 and let {i , j , k} be
the standard basis.

i ∗ j = k , j ∗ i = −k , k ∗ i = j , i ∗ k = −j , j ∗ k = i , k ∗ j = −i ,
i ∗ i = j ∗ j = k ∗ k = 0. {0, i , j , k ,−i ,−j ,−k , } is a tight frame for C3 with
frame constant 2. Let

ϕ0 = 0, ϕ1 = i , ϕ2 = j , ϕ3 = k , ϕ4 = −i , ϕ5 = −j , ϕ6 = −k .

The index operation corresponding to the frame multiplication is the
non-abelian operation • : Z7 × Z7 −→ Z7, where
1 • 2 = 3, 2 • 1 = 6, 3 • 1 = 2, 1 • 3 = 5, 2 • 3 = 1, 3 • 2 = 4, etc.

We can write the cross product as

u × v = u ∗ v =
1
22

6∑
s=1

6∑
t=1

〈u, ϕs〉〈v , ϕt〉ϕs•t .

Consequently, A1(u) is well-defined.

Generalize to quaternion groups, order 8 and beyond.



Frame multiplication

Definition (Frame multiplication)

Let H be a finite dimensional Hilbert space over C, and let
Φ = {ϕj}j∈J be a frame for H. Assume • : J × J → J is a binary
operation. The mapping • is a frame multiplication for Φ if it extends
to a bilinear product ∗ on all of H.

The mapping • is a frame multiplication for Φ if and only if there
exists a bilinear product ∗ : H×H → H such that

∀j , k ∈ J, ϕj ∗ ϕk = ϕj•k .

There are frames with no frame multiplications.



Harmonic frames

Slepian (1968) - group codes.
Forney (1991) - geometrically uniform signal space codes.
Bölcskei and Eldar (2003) - geometrically uniform frames.
Han and Larson (2000) - frame bases and group representations.
Zimmermann (1999), Pfander (1999), Casazza and Kovacević
(2003), Strohmer and Heath (2003), Vale and Waldron (2005),
Hirn (2010), Chien and Waldron (2011) - harmonic frames.
Han (2007), Vale and Waldron (2010) - group frames, symmetry
groups.



Harmonic frames

(G, •) = {g1, . . . ,gN} abelian group with Ĝ = {γ1, . . . , γN}.
N × N matrix with (j , k) entry γk (gj ) is character table of G.
K ⊆ {1, . . . ,N}, |K | = d ≤ N, and columns k1, . . . , kd .

Definition

Given U ∈ U(Cd ). The harmonic frame Φ = ΦG,K ,U for Cd is

Φ = {U
(
(γk1 (gj ), . . . , γkd (gj ))

)
: j = 1, . . . ,N}.

Given G,K , and U = I. Φ is the DFT − FUNTF on G for Cd . Take
G = Z/NZ for usual DFT − FUNTF for Cd .



Group frames

Definition

Let (G, •) be a finite group, and let H be a finite dimensional Hilbert
space. A finite tight frame Φ = {ϕg}g∈G for H is a group frame if there
exists

π : G → U(H),

a unitary representation of G, such that

∀g,h ∈ G, π(g)ϕh = ϕg•h.

Harmonic frames are group frames.



Abelian results

Theorem (Abelian frame multiplications – 1)

Let (G, •) be a finite abelian group, and let Φ = {ϕg}g∈G be a tight
frame for H. Then • defines a frame multiplication for Φ if and only if
Φ is a group frame.



Abelian results

Theorem (Abelian frame multiplications – 2)

Let (G, •) be a finite abelian group, and let Φ = {ϕg}g∈G be a tight
frame for Cd . If • defines a frame multiplication for Φ, then Φ is
unitarily equivalent to a harmonic frame and there exists U ∈ U(Cd )
and c > 0 such that

cU
(
ϕg ∗ ϕh

)
= cU

(
ϕg
)

cU (ϕh) ,

where the product on the right is vector pointwise multiplication and ∗
is defined by (G, •), i.e., ϕg ∗ ϕh := ϕg•h.



Remarks

There is an analogous characterization of frame multiplication for
non-abelian groups (T. Andrews).
Consequently, vector-valued ambiguity functions Ad (u) exist for
functions u on a finite dimensional Hilbert space H if frame
multiplication is well-defined for a given tight frame for H and a
given finite group G.
It remains to extend the theory to infinite Hilbert spaces and
groups.
It also remains to extend the theory to the non-group case, e.g.,
our cross product example.
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GRAPH UNCERTAINTY PRINCIPLES



Uncertainty principles – 1

The Heisenberg uncertainty principle inequality is

∀f ∈ L2(R), ‖f‖2
L2(R) ≤ 4π ‖t f (t)‖L2(R)

∥∥∥γ f̂ (γ)
∥∥∥

L2(R̂)
.

Additively, we have

∀f ∈ L2(R), ‖f‖2
L2(R) ≤ 2π

(
‖t f (t)‖2

L2(R) +
∥∥∥γ f̂ (γ)

∥∥∥2

L2(R̂)

)
.

Equivalently, for f ∈ S(R),

‖f‖2
L2(R) ≤

∥∥∥f̂ ′
∥∥∥2

L2(R̂)
+ ‖f ′‖2

L2(R) .

We shall extend this inequality to graphs.



Uncertainty principles – 2

In signal processing, uncertainty principles dictate the trade off
between high spectral and high temporal accuracy, establishing
limits on the extent to which the “instantaneous frequency” of a
signal can be measured (Gabor, 1946)
Weighted, Euclidean, LCAG, non-L2 uncertainty principles,
proved by Fourier weighted norm inequalities, e.g., Plancherel,
generalizations of Hardy’s inequality, e.g., integration by parts,
and Hölder (alas).
DFT: Chebatorov, Grünbaum, Donoho and Stark,Tao.
Generalize the latter to graphs.



Graph theory – background

Problem: propose, prove, and understand uncertainty principle
inequalities for graphs, see A. Agaskar and Y. M. Lu on A
spectral graph uncertainty principle
Generally: There is no obvious solution because of the loss on
general graphs of the cyclic structure associated with the DFT.
Locally: Radar/Lidar data analysis at NWC uses non-linear
spectral kernel methods, with essential graph theoretic
components for dimension reduction and remote sensing.



Graph theory – definition

Definition

A graph is G = {V ,E ⊆ V × V ,w} consisting of a set V called
vertices, a set E called edges, and a weight function

w : V × V −→ [0,∞).

Write V = {vj}N−1
j=0 and keep the ordering fixed, but arbitrary.



Graph theory – assumptions

For any (vi , vj ) ∈ V × V we have

w(vi , vj ) =

{
0 if (vi , vj ) ∈ Ec

c > 0 if (vi , vj ) ∈ E.

G is undirected, i.e., w(vi , vj ) = w(vj , vi ).

w(vi , vi ) = 0, i.e., G has no loops.
G is connected, i.e., given any vi and vj , there exists at most one
edge between them, and there exists a sequence of vertices
{vk}, k = 0, ...,d ≤ |V | = N, such that

(vi , v0), (v0, v1), ..., (vd , vj ) ∈ E.

G is unit weighted if w takes only the values 0 and 1.



Graph Laplacian

N × N symmetric adjacency matrix, A, for G :

A = (Aij ) = (w(vi , vj )).

The degree matrix, D, is the N × N diagonal matrix,

D = diag

N−1∑
j=0

A0j ,

N−1∑
j=0

A1j , · · · ,
N−1∑
j=0

A(N−1)j

 .

The graph Laplacian,
L = D − A,

is the N × N symmetric, positive semi-definite matrix, with real
ordered eigenvalues 0 = λ0 ≤ . . . ≤ λN−1 and orthonormal
eigenbasis, {χj}N−1

j=0 , for RN .



Graph Fourier transform

Formally, the Fourier transform f̂ at γ of f defined on R is the
inner product of f with the complex exponentials, that are the
eigenfunctions of the Laplacian operator d2

dt2 on R.

Thus, define the graph Fourier transform, f̂ , of f ∈ `2(G) in the
graph Laplacian eigenbasis:

f̂ [j] = 〈χj , f 〉, j = 0, . . . ,N − 1.

If
χ = [χ0, χ1, ..., χN−1],

then f̂ = χ∗f , and, since χ is unitary, we have the inversion formula:

f = χχ∗f = χf̂ .



Difference operator for graphs

The difference operator,

Dr : `2(G) −→ R|E|,

with coordinate values representing the change in f over each edge,
is defined by

(Dr f )[k ] = (f [j]− f [i]) (w(ek ))1/2
,

where ek = (vj , vi ) and j < i .
Dr can be defined by the incidence matrix of G.
If G is a unit weighted circulant graph, then Dr is the intuitive
difference operator of Lammers and Maeser.



Difference uncertainty principle for graphs

Theorem

Let G be a connected and undirected graph. Then,

∀f ∈ `2(G), 0 < λ̃0 ‖f‖2 ≤ ‖Dr f‖2 +
∥∥∥Dr f̂

∥∥∥2
≤ λ̃N−1 ‖f‖2

,

where
∆ = diag{λ0, . . . , λN−1}

and where 0 < λ̃0 ≤ λ̃1 ≤ . . . ≤ λ̃N−1 are the eigenvalues of L + ∆.
The bounds are sharp.



Frame difference uncertainty principle for graphs
{ej}N−1

j=0 ⊆ Cd is a frame for Cd if

∃0 < A ≤ B such that∀f ∈ Cd , 0 < A ‖f‖2 ≤
N−1∑
j=0

|〈f ,ej〉|2 ≤ B ‖f‖2
.

If A = B = 1 then the frame is a Parseval frame.
Define the d × N matrix E = [e0,e1, . . . ,eN−1], where {ej}N−1

j=0 is
a Parseval frame for Cd . Then EE∗ = Id×d .

Theorem

Let G be a connected and undirected graph. Then, for every d × N
Parseval frame E,

d−1∑
j=0

λ̃j ≤ ‖Drχ
∗E∗‖2

fr + ‖Dr E∗‖2
fr ≤

N−1∑
j=N−d

λ̃j .

The bounds are sharp.



Feasibility region

The difference operator feasibility region FR is

FR = {(x , y) : ∃f ∈ `2(G), ‖f‖ = 1, such that ‖Dr f‖2 = x and
∥∥∥Dr f̂

∥∥∥2
= y}.

Theorem

a. FR is a closed subset subset of [0, λN−1]× [0, λN−1], where λN−1
is the maximum eigenvalue of the Laplacian L.
b. ( 1

N

∑N−1
j=0 λj , 0) and (0,L0,0) are the only points of FR on the axes.

c. FR is in the half plane defined by x + y ≥ λ̃0 > 0 with equality if
and only if f̂ is in the eigenspace associated with λ̃0.
d. If N ≥ 3, then FR is a convex region.



Complete graph

Figure : A unit weighted complete graph with 16 vertices.



Feasibility region



Difference uncertainty curve

The difference uncertainty curve ω is the lower boundary of FR
defined as

∀x ∈ [0, λN−1], ω(x) = inf
g∈`2(G)

〈g,Lg〉

subject to 〈g,∆g〉 = x .

Given x ∈ [0, λN−1]. gx ∈ `2(G) attains the difference uncertainty
curve at x if, for all g for which 〈g,∆g〉 = x , we have

〈gx ,Lgx〉 ≤ 〈g,Lg〉.



Figure : The difference uncertainty curve (red) for a connected graph G



Uncertainty curve theorem

Theorem

A unit normed function f ∈ `2(G), with ‖Dr f‖2 = x ∈ (0, λN−1),

achieves the uncertainty curve at x if and only if f̂ is a nonzero
eigenfunction for K (α) = L− α∆ associated with the minimal
eigenvalue of K (α), where α ∈ (−∞,∞).



Uncertainty principle problem and comparison

Lammers and Maeser, Grünbaum, Agaskar and Lu.
The Agaskar and Lu problem.
Critical comparison between the graph theoretical feasibility
region and the comparable Bell Labs uncertainty principle region.
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BALAYAGE AND STFT FRAME INEQUALITIES



Balayage and spectral synthesis

Definition

(Balayage – Beurling) Let E ⊆ Rd and Λ ⊆ R̂d be closed sets.
Balayage is possible for (E ,Λ) ⊆ Rd × R̂d if

∀µ ∈ Mb(Rd ), ∃ν ∈ Mb(E) such that µ̂ = ν̂ on Λ.

Define
C(Λ) = {f ∈ Cb(Rd ) : supp(̂f ) ⊆ Λ}.

Definition

(Spectral synthesis) A closed set Λ ⊆ R̂d is a set of spectral synthesis
(S-set) if

∀f ∈ C(Λ) and ∀µ ∈ Mb(Rd ), µ̂ = 0 on Λ⇒
∫

f dµ = 0.



Balayage and a non-uniform Gabor frame theorem

Let S0(Rd ) be the Feichtinger algebra.

Theorem

Let E = {(sn, σn)} ⊆ Rd × R̂d be a separated sequence; and let
Λ ⊆ R̂d × Rd be an S-set of strict multiplicity that is compact, convex,
and symmetric about 0 ∈ R̂d × Rd . Assume balayage is possible for
(E ,Λ). Given g ∈ L2(Rd ), such that ‖g‖2 = 1. Then

∃ A, B > 0, such that ∀f ∈ S0(Rd ), for which supp(V̂g f ) ⊆ Λ,

A ‖f‖2
2 ≤

∑∞

n=1
|Vg f (sn, σn)|2 ≤ B ‖f‖2

2 .



Balayage and a non-uniform Gabor frame theorem
(continued)

Theorem
Consequently, the frame operator, S = Sg,E , is invertible in
L2(Rd )–norm on the subspace of S0(Rd ), whose elements f have the
property, supp (V̂g f ) ⊆ Λ. Further, if f ∈ S0(Rd ) and supp(V̂g f ) ⊆ Λ,
then

f =
∑∞

n=1
〈f , τsn eσn g〉S−1

g,E (τsn eσn g),

where the series converges unconditionally in L2(Rd ).

E does not depend on g.



Remarks

There is a formulation of the non-uniform Gabor frame theorem
in terms of the Woodward ambiguity function.
The theory is also developed for pseudo-differential operators.
Elementary examples satisfy hypotheses of non-uniform Gabor
frame theorem.
Analogous results, with give and take of hypotheses and
conclusions:

Gröchenig’s theorem involving an analysis of convolution operators
on the Heisenberg group;
Meyer - Matei theory involving quasi-crystals.






