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Introduction
[ Jelelele}

Time-Variant Linear Channels

» Time-variant channels arise in mobile communications [Str06] and super-resolution
radar [BGE11].
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Introduction
[ Jelelele}

Time-Variant Linear Channels

» Time-variant channels arise in mobile communications [Str06] and super-resolution
radar [BGE11].

» Time-invariant operators = convolution operators:

g%/T(-*y)g(y) dy

» Time-variant operators:

£ / (- — y)gly) dy

v

Set k(x,y) =1(x,x — y):

g—>/ﬁ(~,y)g(y) dy
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Introduction
[e] ele]e}

Time-Variant Linear Channels (cont.)

> The spreading function:

n(x,w) = / Ky, y — x)e~2 dy

n is a function of time and frequency.
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[e] ele]e}

Time-Variant Linear Channels (cont.)

> The spreading function:
ncw) = [ nlyy = x)e > dy
n is a function of time and frequency.

g— /n(x,w)Mwagdxdw

T.: translation (time delay)
M.,: modulation (Doppler shift)
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Introduction
[e] ele]e}

Time-Variant Linear Channels (cont.)

> The spreading function:

n(x,w) = / Ky, y — x)e~2 dy

n is a function of time and frequency.

g— /n(x,w)Mwagdxdw

T.: translation (time delay)
M.,: modulation (Doppler shift)

> g is transformed into a weighted sum of time-frequency shifts of itself.
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Introduction
[e]e] lele}

Work of Kailath and Bello

» Kailath [Kai62] considered a family of operators where 7 is supported in a fixed
rectangle R in the time-frequency plane.
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[e]e] lele}

Work of Kailath and Bello

» Kailath [Kai62] considered a family of operators where 7 is supported in a fixed
rectangle R in the time-frequency plane.

» Is it possible to identify this family by a single probing signal?
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[e]e] lele}

Work of Kailath and Bello

» Kailath [Kai62] considered a family of operators where 7 is supported in a fixed
rectangle R in the time-frequency plane.

» Is it possible to identify this family by a single probing signal?

» Kailtah's conjecture:
Yes if u(R) <1
No if u(R) >1
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Introduction
[e]e] lele}

Work of Kailath and Bello

» Kailath [Kai62] considered a family of operators where 7 is supported in a fixed
rectangle R in the time-frequency plane.

» Is it possible to identify this family by a single probing signal?

» Kailtah's conjecture:
Yes if u(R) <1
No if u(R) >1

> Bello [Bel69] removed the restriction that R should be a rectangle.
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000e0

Work of Kozek and Pfander

Theorem (Kozek-Pfander [KP05])

Let R be a rectangle in the time-frequency plane. Consider a family of operators with

spreading supports contained in R. If u(R) < 1, then the operator family is identifiable
by a Dirac comb

g= Z(Ska,a > 0.
kez

If u(R) > 1, then there exists no signal which identifies.
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0000e
Work of Pfander and Walnut

Theorem (Pfander-Walnut [PWO06a])

Let S be a set in the time-frequency plane. Consider a family of operators with spreading
supports contained in S. If S is compact with u(S) < 1, then the operator family is
identifiable by a periodically weighted Dirac comb

g= ch&(a, Ck+L = Ck,a > 0.
kez

If S is open with ;(S) > 1, then there exists no signal which identifies.

» Support sets for which identification by a periodically weighted Dirac comb is
possible are characterized in [PW15] in addition to many other results and
reconstruction formulas.

» Many of these results are generalized to arbitrary modulation spaces in [Pfal3b].
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The Identification Problem
®00000000

The Identification Problem

» Banach spaces X and Y
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The Identification Problem

» Banach spaces X and Y
» Banach space O of bounded linear maps £ : X — Y

»geX
Evaluation map ez : O = Y, K = Kg
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The Identification Problem
®00000000

The Identification Problem

v

Banach spaces X and Y

v

Banach space O of bounded linear maps £ : X — Y

»geX
Evaluation map ez : O = Y, K = Kg

> If e is injective, then O is weakly identifiable by g.
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The Identification Problem
®00000000

The Identification Problem

» Banach spaces X and Y
» Banach space O of bounded linear maps £ : X — Y
»geX
Evaluation map ez : O = Y, K = Kg
> If e is injective, then O is weakly identifiable by g.

> If ez is continuous with a bounded inverse (bounded and stable), then O is strongly
identifiable by g.
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The Identification Problem
O®0000000

Finite Dimensional Theory

> Finite abelian group A (A = A)
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The Identification Problem
O®0000000

Finite Dimensional Theory

> Finite abelian group A (A = A)
> e (CAX&
K:C*—c*
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The Identification Problem
O®0000000

Finite Dimensional Theory

> Finite abelian group A (A = A)
> e CAXA
K:Ch—cC*
» gcCt
A(g) = {MT TAg})\EA,TEA\
Kg = |A[""A(g)n
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The Identification Problem
O®0000000

Finite Dimensional Theory

Finite abelian group A (A = A)
ne CAX&

K:C—c*

gecCt

A(g) ={M-Trg}sen rei

Kg = |A[""A(g)n

» SCAxA

Os = {n e C** :suppn C S}

v

v

v
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The Identification Problem
O®0000000

Finite Dimensional Theory

v

Finite abelian group A (A = A)
ne CAX&

K:Ch—cC*

gecCt

A(g) = {MT TAg})\EA,TEA\

Kg = |A[""A(g)n

> SCAxA

Os = {n e C** :suppn C S}
€ 1 Os — C*

v

v

v
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The Identification Problem
O®0000000

Finite Dimensional Theory

> Finite abelian group A (A = A)
> e CAX&

K:Ch—cC*
» gcCt

A(g) = {MT TAg})\EA,TEA\

Kg = |A[""A(g)n
> SCAxA

Os = {n e C** :suppn C S}
> g Os — C*

» A(g)s: A(g) with columns (A x A)\ S removed
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The Identification Problem
O®0000000

Finite Dimensional Theory

> Finite abelian group A (A = A)
> e CAX&

K:Ch—cC*
» gcCt

A(g) = {MT TAg})\EA,TEA\

Kg = |A[""A(g)n
> SCAxA

Os={ne cAxh suppn C S}
> g Os — C*
» A(g)s: A(g) with columns (A x A)\ S removed
» Matrix of e,: |A|7A(g)s
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The Identification Problem
O®0000000

Finite Dimensional Theory

» Finite abelian group A (1& = A)
> e CAX&
K:Ch—cC*
» gcCt
A(g) = {M:Txg}scu rer
Keg = A7 A(g)n
> SCAxA
Os = {n e C** :suppn C S}
> g Os — C*
» A(g)s: A(g) with columns (A x A)\ S removed
» Matrix of e,: |A|7A(g)s
> Immediate observation: If Os is identifiable by g, then |S| < |A| (1, ,2(S) < 1).
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The Identification Problem
0O0@000000

Cyclic Case

» A=7Z/NZ
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The Identification Problem
0O0@000000

Cyclic Case

» A=7Z/NZ
> gc CZ/NE
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The Identification Problem
0O0@000000

Cyclic Case

» A=7Z/NZ

> g e CH/NE

> wy = e2Ti/N
1 1 1
1 wn w,'\\,’_l

pq\N
Wi = (wi')p.g=0 = :

1wyt w}VN_l)z
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The Identification Problem
0O0@000000

Cyclic Case
» A=7Z/NZ
> ge CZ/NZ
> wy = e2m/N
1 1 1
1 wn w,'\\,’_l
pq\N
Wy = (WN )p,qzo =
1 w,’:,’_l w}VN_l)z
> Ti(g) = diag(g(k),g(k +1),...,g(k — 1))
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The Identification Problem
0O0@000000

Cyclic Case
» A=7Z/NZ
> ge CZ/NZ
> wy = e2m/N
1 1 1
1 wn w,'\\,’_l
pq\N
Wy = (WN )p,qzo =
1 w,’:,’_l w}VN_l)z
> Ti(g) = diag(g(k),g(k +1),...,8(k = 1))
> Alg) = (To(g)Wn | To(g)Wn | -+ | Tn-1(g)Whn)
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The Identification Problem
[e]o]e] Je]ele]ele]

Cyclic Case (cont.)

Theorem (Lawrence-Pfander-Walnut [LPW05])

Suppose that N is prime. The product of all K x K (1 < K < N) determinants of A(g),
interpreted as a polynomial in the indeterminates g(0), ..., g(N — 1), does not vanish
identically.

Theorem (Malikiosis [Mal15])
The product of all N x N determinants of A(g), interpreted as a polynomial in the

indeterminates g(0),...,g(N — 1), does not vanish identically.

» Choose g in the complement of the zero set of this polynomial. Then every N x N
minor of A(g) is invertible.

> |S| < N implies Os is identifiable by g.

Identification of Operators on Elementary Locally Compact Abelian Groups Gékhan Civan (UMD)



ati
[e]o]e]e] Jelelele]

Counterexample: Z/27 x 7./27

> A=27/27 x L/2Z
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The Identification Problem
[e]o]e]e] Jelelele]

Counterexample: Z/27 x 7./27

> A=27/27 x L/2Z

> g € CL/22xZ/2
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The Identification Problem
[e]o]e]e] Jelelele]

Counterexample: Z/27 x 7./27

> A=27/27 x L/2Z
> ge (CZ/2LXL/2L

> (C17 €2, C3, C4) = (g(07 0)7g(07 1)7g(1’ O)>g(17 1))
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The Identification Problem
[e]o]e]e] Jelelele]

Counterexample: Z/27 x 7./27

v

A=7/27 x 1.2
> ge (CZ/2LXL/2L

> (Ch e, C3, C4) = (g(07 0)7 g(07 1)7 g(la O)>g(17 1))
>
(5} 1 (s} G @ @ @ (&}
G —C (o] —C a —a C1 —C
Alg) =
C3 C3 —C3 —C3 Ca Ca —C4 —C4
Ca —C4 —C4 Cy Cc3 —C3 —C3 C3
C3 C3 C3 C3 Ca Ca Cy Cy
Ca —C4 Cy —C4 C3 —C3 C3 —C3
a1 (5} - —-a @ @ - —Q
G - —C (&} i —Ca —a C1
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The Identification Problem
[e]o]e]e] Jelelele]

Counterexample: Z/27 x 7./27

v

A=7/27 x 1.2
> ge (CZ/2LXL/2L

> (Ch e, C3, C4) = (g(07 0)7 g(07 1)7 g(la O)>g(17 1))
>
(5} 1 (s} G @ @ @ (&}
G —C (o] —C a —a C1 —C
Alg) = AP R
C3 C3 C3 C3 Ca Ca Cy Cy
Ca —C4 —C4 Cy Cc3 —C3 —C3 C3
C3 C3 C3 C3 Ca Ca Cy Cy
Ca —C4 Cy —C4 C3 —C3 C3 —C3
a1 (5} - —-a @ @ - —Q
G - —C (&} i —Ca —a C1

> 240 sets S C Z/27Z x Z/2Z X (Z/27Z x Z/2Z) with |S| = 4 for which Os is not
identifiable

Gokhan Civan (
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The Identification Problem
[e]e]e]e]e] lelele]

Necessary and Sufficient Condition: Z/27Z x Z/27

> cc CZ/QZ

Theorem

Let S CZ/2Z X Z/2Z x (Z/2Z x Z/2Z) . Then Os is identifiable by g if and only if (a)
the translations of S by I' X A are disjoint, and (b) no three of the translations of S by
AL x T+ have nonempty intersection.
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The Identification Problem
[e]e]e]e]e] lelele]

Necessary and Sufficient Condition: Z/27Z x Z/27

> cc CZ/QZ
>
A(C) _ (CO Co C1 (o] )
Cc1 —C1 C —Co
Theorem

Let S CZ/2Z X Z/2Z x (Z/2Z x Z/2Z) . Then Os is identifiable by g if and only if (a)
the translations of S by I' x A are disjoint, and (b) no three of the translations of S by
AL x T+ have nonempty intersection.
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The Identification Problem
[e]e]e]e]e] lelele]

Necessary and Sufficient Condition: Z/27Z x Z/27

> cc CZ/QZ

>
Co Co C1 (o]
A(e) =
Cc1 —C1 C —Co

» Choose ¢ so that cyci(co — c1)(co + 1) # 0. Then every 2 X 2 minor is invertible.

Theorem

Let S CZ/2Z X Z/2Z x (Z/2Z x Z/2Z) . Then Os is identifiable by g if and only if (a)
the translations of S by I' x A are disjoint, and (b) no three of the translations of S by
AL x T+ have nonempty intersection.
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The Identification Problem
[e]e]e]e]e] lelele]

Necessary and Sufficient Condition: Z/27Z x Z/27

> cc CZ/QZ

G —a G —G

A(C):(co — q)

» Choose ¢ so that cyci(co — c1)(co + 1) # 0. Then every 2 X 2 minor is invertible.
[ =17/2Z x {0}, A = {0} x {0}

v

Theorem

Let S CZ/2Z X Z/2Z x (Z/2Z x Z/2Z) . Then Os is identifiable by g if and only if (a)
the translations of S by I' x A are disjoint, and (b) no three of the translations of S by
AL x T+ have nonempty intersection.
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The Identification Problem
[e]e]e]e]e] lelele]

Necessary and Sufficient Condition: Z/27Z x Z/27

> cc CZ/QZ

0-(3 55 %)
» Choose ¢ so that cyci(co — c1)(co + 1) # 0. Then every 2 X 2 minor is invertible.
[ =17/2Z x {0}, A = {0} x {0}
r+ ={0} x /2%, N* =7/27 x 7./]2Z

v

v

Theorem

Let S CZ/2Z X Z/2Z x (Z/2Z x Z/2Z) . Then Os is identifiable by g if and only if (a)
the translations of S by I' x A are disjoint, and (b) no three of the translations of S by
AL x T+ have nonempty intersection.
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The Identification Problem
[e]e]e]e]e] lelele]

Necessary and Sufficient Condition: Z/27Z x Z/27

> cc CZ/QZ

A(C):(co — q)

a —a o —o
» Choose ¢ so that cyci(co — c1)(co + 1) # 0. Then every 2 X 2 minor is invertible.
[ =17/2Z x {0}, A = {0} x {0}
r+ ={0} x /2%, N* =7/27 x 7./]2Z

» g = (co, 1,00, 1)

v

v

Theorem

Let S CZ/2Z X Z/2Z x (Z/2Z x Z/2Z) . Then Os is identifiable by g if and only if (a)
the translations of S by I' x A are disjoint, and (b) no three of the translations of S by
AL x T+ have nonempty intersection.

Identification of Operators on Elementary Locally Compact Abelian Groups Gokhan Civan (UMD)



The Identification Problem
[e]e]e]e]e]e] lele]

Necessary and Sufficient Condition: Z/2Z x Z/27Z (cont.)

> 576 sets S C Z/27Z x Z/2Z x (Z/2Z x Z/2Z) with |S| = 4 satisfying both (a) and
(b)
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The Identification Problem
[e]e]e]e]e]e] lele]

Necessary and Sufficient Condition: Z/2Z x Z/27Z (cont.)

> 576 sets S C Z/27Z x Z/2Z x (Z/2Z x Z/2Z) with |S| = 4 satisfying both (a) and
(b)
» Corresponding 4 x 4 determinants all belong to the list
+16¢5c;, +8cci(c — a)(c + 1), =8coci(ch + i),
+4(co — a)’(e+a)’, +4(c—a)la+a)lg + ),
+4(c3 + i)
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The Identification Problem
[e]e]e]e]e]e] lele]

Necessary and Sufficient Condition: Z/2Z x Z/27Z (cont.)

> 576 sets S C Z/27Z x Z/2Z x (Z/2Z x Z/2Z) with |S| = 4 satisfying both (a) and
(b)
» Corresponding 4 x 4 determinants all belong to the list
+16¢5c;, +8cci(c — a)(c + 1), =8coci(ch + i),
+4(co — a)’(e+a)’, +4(c—a)la+a)lg + ),
+4(c3 + i)

» Qs is indeed identifiable by g for these sets.
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The Identification Problem
[e]e]e]e]e]e] lele]

Necessary and Sufficient Condition: Z/2Z x Z/27Z (cont.)

576 sets S C Z/27Z x /27 x (Z/2Z x Z/2Z) with |S| = 4 satisfying both (a) and
(b)

Corresponding 4 x 4 determinants all belong to the list

v

v

+16¢5c;, +8cci(c — a)(c + 1), =8coci(ch + i),
+4(co — a)’(e+a)’, +4(c—a)la+a)lg + ),
+4(c3 + i)
» Qs is indeed identifiable by g for these sets.

» Remaining 4 x 4 determinants are all zero.
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The Identification Problem
[e]e]e]e]e]e] lele]

Necessary and Sufficient Condition: Z/2Z x Z/27Z (cont.)

576 sets S C Z/27Z x /27 x (Z/2Z x Z/2Z) with |S| = 4 satisfying both (a) and
(b)

Corresponding 4 x 4 determinants all belong to the list

v

v

+16¢5c;, +8cci(c — a)(c + 1), =8coci(ch + i),
+4(co — a)’(e+a)’, +4(c—a)la+a)lg + ),
+4(c3 + i)
» Qs is indeed identifiable by g for these sets.

» Remaining 4 x 4 determinants are all zero.

v

For the remaining sets, Os is indeed not identifiable by g.
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT x2¥ xA
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT x2¥ xA

» g€ 8(G), feS(G)

Vef(a,a) = (f, M3 T.g) (ac G, 3€G)
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT x2¥ xA

> g €S(G), fe8(6)
Vef(a,3) = (f,MaT,g) (ac G, 3€G)

» g €8'(G), feS'(G)
Vo f = FHT6(f ®8)
T¢: coordinate transform (a,t) — (t,t —a) on G X G
F>: Fourier transform in the second (t) variable
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT? xZ7 x A
» g €8(G), feS'(G)
Vef(a,a) = (f, M3 T.g) (ac G, 3€G)
» g €8'(G), feS'(G)
Vo f = FHT6(f ®8)

T¢: coordinate transform (a,t) — (t,t —a) on G X G

F>: Fourier transform in the second (t) variable
> MP(G) ={f € 8'(G): Vof € L’(G x G)}

[Ifllme = || Vef]le (not depending on g € S(G) \ {0})
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT x2¥ xA

v

g €8(G), f € 5(G)
Vef(a,3) = (f,M:T.g) (a€G, a€G)
gc S'(G), fe S/(G)

v

Vo f = FHT6(f ®8)
T¢: coordinate transform (a,t) — (t,t —a) on G X G
F>: Fourier transform in the second (t) variable
MP(G) = {f € 8'(G) : Vo f € L”(G x G)}
[Ifllme = || Vef]le (not depending on g € S(G) \ {0})
M*(G) = So(G): Feichtinger's algebra

v

v
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT x2¥ xA

v

g €8(G), f € 5(G)
Vef(a,3) = (f,M:T.g) (a€G, a€G)
gc S'(G), fe S/(G)

v

Vo f = FHT6(f ®8)
T¢: coordinate transform (a,t) — (t,t —a) on G X G
F>: Fourier transform in the second (t) variable
MP(G) = {f € 8'(G) : Vo f € L”(G x G)}
[Ifllme = || Vef]le (not depending on g € S(G) \ {0})
M*(G) = So(G): Feichtinger's algebra
M>(G) = M(G)*

v

v

v
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT x2¥ xA

v

g €8(G), f € 5(G)
Vef(a,3) = (f,M:T.g) (a€G, a€G)
gc S'(G), fe S/(G)

v

Vo f = FHT6(f ®8)
T¢: coordinate transform (a,t) — (t,t —a) on G X G
F>: Fourier transform in the second (t) variable
MP(G) = {f € 8'(G) : Vo f € L”(G x G)}
[Ifllme = || Vef]le (not depending on g € S(G) \ {0})
M*(G) = So(G): Feichtinger's algebra
M>(G) = M(G)*
MY(G) C L*(G) C M>(G)

v

v

v

v
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The Identification Problem
[e]e]e]e]e]ele] Je]

Technical Interlude: STFT

» ELCA group G:
G=RIxT x2¥ xA

v

g € S(G), f € S(G)

Vef(a,a) = (f, M3 T.g) (ac G, 3€G)

v

g€ S'(G), feS(G)
Vef = RT6(f ®8)

T¢: coordinate transform (a,t) — (t,t —a) on G X G
F>: Fourier transform in the second (t) variable
> MP(G) ={f € 8'(G): Vof € L’(G x G)}

[Ifllme = || Vef]le (not depending on g € S(G) \ {0})
» M(G) = So(G): Feichtinger's algebra
> M>=(G) = M*(G)*
» M'(G) C L*(G) C M>=(G)
> MY(G) € Go(G)
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The Identification Problem
O0000000e

Infinite Dimensional Theory

» O1(G): all linear maps K : M>(G) — M*(G) continuous w.r.t the weak*
topology of M*°(G)
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The Identification Problem
O0000000e

Infinite Dimensional Theory

» O1(G): all linear maps K : M>(G) — M*(G) continuous w.r.t the weak*
topology of M*°(G)

> 0%1(G) = MG x G) C L%(G x G)
KNz = llncll2
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The Identification Problem
O0000000e

Infinite Dimensional Theory

> (9°°’1(G): all linear maps K : M*°(G) — Ml(G) continuous w.r.t the weak*
topology of M*°(G)

» O1(G) = M(G x G) C L*(G x G)
1Kz = lInxl2

> (Kg,f)=(n,Vef)  (f.g € M™(G))
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The Identification Problem
O0000000e

Infinite Dimensional Theory

v

0°-Y(G): all linear maps K : M>(G) — M'(G) continuous w.r.t the weak*
topology of M*°(G)

0=(G) = MY(G x G) C L*(G x G)

| 4

1Kz = lInxl2
> (Kg,f)=(n,Vef)  (f.g € M™(G))
» SCGx G

O=1(G)|S = {K € O<1(G) : suppmxc C S}
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The Identification Problem
O0000000e

Infinite Dimensional Theory

» O1(G): all linear maps K : M>(G) — M*(G) continuous w.r.t the weak*
topology of M*°(G)

> 0%1(G) = MG x G) C L%(G x G)

IKl2 = lInkll2
> (Kg,f) =, Vef)  (f.g € M™(G))
» SCGx G

O=1(G)|S = {K € O=(G) : supprc C S}
> g € M>(G)

e 1 O®1(G) = ML(G) C L2(G)
]S 1 0=1(G)|S — L3(G)
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Sufficient Conditions
@000000

Zak Transform and Quasi-Periodization

» Zak transform of f € M*(G):

Zrf(a,8) = > fa+w)(—w,2)

werl

» Quasi-periodization of n € M*(G x 6)

QPr an(a, d) ZZn(a—i—w d+v)(—w,3)

wel veA

o

r~

At r
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Sufficient Conditions
0®@00000

Zak Transform, Quasi-Periodization, and Operators

> K € 0°(G)

o
Y]

r
ZiKg QPr (i)
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Sufficient Conditions
0®@00000

Zak Transform, Quasi-Periodization, and Operators

» K€ 0°}G)
> x(a,3) =(a,3) forac Gand 3€ G

o
Y]

r
ZKg QPra(xiK)
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Sufficient Conditions
0®@00000

Zak Transform, Quasi-Periodization, and Operators

» K€ 0°}G)
> x(a,3)=(a,8) forac Gand 3€ G
> 8= 2 wer Twic
ZrKg = p1g(D")QPr 2 (xnx)

o
Y]

r
ZKg QPra(xiK)
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Sufficient Conditions
0®@00000

Zak Transform, Quasi-Periodization, and Operators

» K € 0°YG)
> x(a,3)=(a,8) forac Gand 3€ G
> &= uer Twic
ZrKg = ug(D7)QPr r1 (x7ixc)
» ceCM /T

8 = Z CUL+|— TUL Z Tw5G

vl4rent/r wel

o
Y]

-

ZKg QPra(xiK)
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Sufficient Conditions
0®@00000

Zak Transform, Quasi-Periodization, and Operators

v

K € 0°(G)
x(a,8) =(a,3)forace Gand 53€ G
8= Dwer Twie

vy

ZrKg = pg(D)QPr r1 (xnk)

8 = Z CUL+|— TUL Z Tw5G

vl4rent/r wel
ZrKg = M(A;(DJ_)A(C)TIIC,I',A

G

v

CE(CAL/'—

v

G

-

ZKg QPra(xiK)
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Sufficient Conditions
[e]e] le]e]e]e)]

Sufficient Conditions for Operator Identification

» A /T cyclic

Identification of Operators on Elementary Locally Compact Abelian Groups Gokhan Civan (:



Sufficient Conditions
[e]e] le]e]e]e)]

Sufficient Conditions for Operator Identification

» A /T cyclic
> c € CN/" such that A(c) is full spark

g = Z Colgr TUL Z TW5G

vl+reat/r wer
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Sufficient Conditions
[e]e] le]e]e]e)]

Sufficient Conditions for Operator Identification

» A /T cyclic
> c € CN/" such that A(c) is full spark

g = Z Colgr TUL Z TW5G

vl+reat/r wer

>SQG><aopen

DY s <1 (1)

kel Len

Z Z g er oty < AT ()

tLendt kltert

and
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Sufficient Conditions
[e]e]e] le]ele]

Sufficient Conditions for Operator ldentification (cont.)

Theorem (generalizing [PW15])

The following statements are equivalent:
1. (1) and (2) hold pointwise everywhere.
2. O°Y(G)|S is strongly identifiable by g.
3. O°1(G)|S is weakly identifiable by g.

Corollary (generalizing [PW06a, Theorem 3.1])

Suppose that G has at most one finite cyclic summand. Let S C G X G be compact
with pi;., 2(S) < 1. Then O°*'(G)|S is strongly identifiable.
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Description of (1)

Z Z Tsike <1

kel Leh

)]
)]
)]

e r r

At r At r At r
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Description of (2)

Z Z Tsipr k1) < N /T

¢Ltent ktert

Y]
o
o

A r A r A r
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Sufficient Conditions
[e]e]e]e]e]e] )

Proof of Theorem (a) = (b)

A 4 N

Vy vy, Vi, Vi,
» JC (AH/T) x (TH/A) with [J] < |A/T]
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Sufficient Conditions
[e]e]e]e]e]e] )

Proof of Theorem (a) = (b)

A 4 N

Vi, Vi, Vi, Vi,

» JC (AH/T) x (TH/A) with [J] < |A/T]

» K c0=HG)|S
ZrKg = “E(DL)A(C)J"]KI,A,J
ME(DL)Um,r,/\,J = A(C)jIZF’Cg
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Sufficient Conditions
[e]e]e]e]e]e] )

Proof of Theorem (a) = (b)

A 4 N

Vi, Vi, Vi, Vi,

» JC (AH/T) x (TH/A) with [J] < |A/T]

» K c0=HG)|S
ZrKg = “E(DL)A(C)J"]KI,A,J
ME(DL)UICJ,/\,J = A(C)jIZF’Cg

122 2 2
N&(D ) aJ”’I}c,r,/\,J [2 < [1ZrKgll2 < N@(DL)2b§”771C,I',A,J”§

on V,
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Sufficient Conditions
[e]e]e]e]e]e] )

Proof of Theorem (a) = (b)

A 4 N

Vy Vi, Vi, Vi,

» JC (AH/T) x (TH/A) with [J] < |A/T]

» e (’)°°‘1(G)|S
ZrKg = “E(DL)A(C)J"]KI,A,J
ME(DL)UICJ,/\,J = A(C)jIZF’Cg

>

ua(Di)zailan,r,/\,J |§ < ||ZF’CgH§ < N@(DL)2b§”771C,I',A,J”§
on V,
>

pe(D7)a nyc r allz < 11ZrKgll2 < pg(D)’ 6 [ rall2
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Sufficient Conditions
[e]e]e]e]e]e] )

Proof of Theorem (a) = (b)

A 4 N

Vy Vi, Vi, vy,

» JC (AH/T) x (TH/A) with [J] < |A/T]

» K c0=HG)|S
ZrKg = “E(DL)A(C)J"]KI,A,J
ME(DL)UICJ,/\,J = A(C)jIZF’Cg

>
ua(Di)zailan,r,/\,J |§ < ||ZF’CgH§ < N@(DL)2b§”771C,I',A,J”§
on V,
>
122 1
pe(D7)a Hnlc,r,/\H% < ||ZzrKegl3 < pg(D )2b2||77;c,r,/\”§
>

ne(D)a|Incl2 < llesKl3 < pg(D™)b* 2
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Necessary Conditions
®0000000
A Duality Principle

> K € 0%Y(G)

Theorem

O>=1(G)|S is strongly identifiable by g if and only if Ow’l(a)|5}- is strongly identifiable
by g.
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Necessary Conditions
®0000000
A Duality Principle

> K€ 0%G)
> Kr € 04(G)
Nk (8,a) = (—a, 3)nc(-a, 3)

Theorem

O>=1(G)|S is strongly identifiable by g if and only if Ow’l(a)|5}- is strongly identifiable
by g.
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Necessary Conditions
®0000000

A Duality Principle

» K € 0%1(G)
> Kr € 0%(G)

nkz(3,3) = (—a,3)nc(—a, 3)
»SCGxG

Sr={(3,a) e Gx G:(—a,3) €S}

Theorem

O>=1(G)|S is strongly identifiable by g if and only if Ow’l(a)|5}- is strongly identifiable
by g.
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Necessary Conditions
®0000000

A Duality Principle

» K € 0Y(G)
Kr € 0%G)
(8, a) = (—a, 3)nc(-a,3)

v

»SCGxG
Sr={(3,3a)e GxG:(—a,3) €S}
| 4
0=YG)|S —*— [%(G)
K:*?K:].‘J/ }"l
0=Y(G)|Sr —2— 2(G)
Theorem

O>=1(G)|S is strongly identifiable by g if and only if Ow’l(a)|5}- is strongly identifiable
by g.
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Necessary Conditions
O®@000000

A Riesz Basis of Operators

o

re r
Theorem

{I\/I'L)+WCi vaCLPTw+vg~ IVI*WCi }(W,U,WCL,'L)CL)GFXI\XFCL ></\g~
is a Riesz basis for its closed linear span in O*(G).
_ 1
> OM T L PT, M = (—ve vv)M(wCL,vCL)T(W;U)nP
c

vtwe wtvg we

> Ui le(Tx AxTEXNE) = 0°(G)
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A Riesz Basis of Operators (cont.)

)]
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Necessary Conditions
[e]e]e] Je]elele)

Restricting the Identification Problem

» JCT x A finite . . .,l\-
BN RN
ENEEE
I
EEEN N

Gokhan Civan (UMD)
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Necessary Conditions
[e]e]e] Je]elele)

Restricting the Identification Problem

>Jg-r></\finite. . . .,l\-
> V,: image of Uo iy . .l.-
ENEEE
I

AN

Gokhan Civan (UMD)
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Necessary Conditions
[e]e]e] Je]elele)

Restricting the Identification Problem

()]

> JCT xA finite
> V,: image of Uo iy
> Arrange V; C O=(G)|S.

| T 0
T
L

c
[ |
L
L
L
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Necessary Conditions
[e]e]e] Je]elele)

Restricting the Identification Problem

()]

v

JCT x A finite
> V,: image of Uo iy
Arrange V; C 0>}(G)|S.
Restrict to V;:

v

v

egolUociyj=elSoUoli

I

|
L

c
[ |
L
L
L
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Introduction ca cie nditions Necessary Conditions

[e]e]e]e] Jelele)

Simplifying the RHS

» V:[3(G) — #(2)
VoelSoUoi

Lemma ([KP05, Lemma 3.4])

Let g € M*°(G). There exists a nonnegative continuous function r on G, decreasing
faster than any polynomial, such that |PM; Tpg| < r. There exists a nonnegative

continuous function rr on G, decreasing faster than any polynomial, such that
|(PM;Tog) | < rr.

Proposition ([Pfa08, Theorem 2.1])

Let A: c(Z7) — (*(Z7) be a (not necessarily bounded) linear map. Let (ax k) xezs be
the matrix representation of A with respect to the orthonormal bases { Ty/6ya } s czq and
{Tdy0}repa. Let F be a nonnegative Borel measurable function on R, decreasing faster
than any polynomial. Let A\ > 1. Suppose that |ay | < F(||AK" — k||oo). In this case,
there does not exist a bounded linear map B : £*(Z%) — (*(Z9) with BA = I.
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Necessary Conditions
[e]e]e]e]e] lele)

Example: The Circle

» L>K
D =[0,1/K), De = [0,1/L)
—
—
\/
\\~/
~ j
\
re r\\ T
Theorem

Let S C T X Z be open with urxz(S) > 1. There exists no g € M*°(T) for which eg|S is
stable.

Corollary

Let S CZ x T be open with uzxt(S) > 1. There exists no g € (°°(Z) for which S is
stable.
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Necessary Conditions
[e]e]e]e]e] lele)

Example: The Circle

» L>K
D =[0,1/K), De = [0,1/L)
> gc MOO(T) T
A;=Foegol T
\/
\\~/
~__ /
~__ /
F:/ I\V\ T
Theorem

Let S C T X Z be open with urxz(S) > 1. There exists no g € M*°(T) for which eg|S is
stable.

Corollary

Let S CZ x T be open with uzxt(S) > 1. There exists no g € (°°(Z) for which S is
stable.

Identification of Operators on Elementary Locally Compact Abelian Groups Gokhan Civan (UMD)



Necessary Conditions
[e]e]e]e]e] lele)

Example: The Circle

» L>K
D:[071/K)' DC:[071/L) 7
> g€ MOO(T) T
Ag =Foegol —
> ag,(kpa) = (PTx M-qig) (€ —p—aL) Y
~__ /
~__ /
re” r\\ T
Theorem

Let S C T X Z be open with urxz(S) > 1. There exists no g € M*°(T) for which eg|S is
stable.

Corollary

Let S CZ x T be open with uzxt(S) > 1. There exists no g € (°°(Z) for which S is
stable.
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Necessary Conditions
[e]e]e]e]e] lele)

Example: The Circle

» L>K
D:[071/K)' DC:[071/L) 7

> g€ MOO(T) T
Ag =Foegol —

> ag,(kpa) = (PTx M-qig) (€ —p—aL) Y

» JCT xA ~ /
A=J]/L>1 ~__ /

r:/r\\ T
Theorem

Let S C T X Z be open with urxz(S) > 1. There exists no g € M*°(T) for which eg|S is
stable.
Corollary

Let S CZ x T be open with uzxt(S) > 1. There exists no g € (°°(Z) for which S is
stable.
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[e]e]e]e]e] lele]
Example: The Circle
» L>K
D =10,1/K), D. = [0,1/L)

g € M>(T) —

Ag =Fo €g O U T

> ac,kpa) = (PTxM-qg) (€ —p—qL) l/

JCTxA t j

A=J/L>1 -~ )
—

|3¢,(k;.1.9)| < F(AE = (alJ] +))) "

v

v

v

Theorem

Let S C T X Z be open with urxz(S) > 1. There exists no g € M*°(T) for which eg|S is
stable.

Corollary

Let S CZ x T be open with uzxt(S) > 1. There exists no g € (°°(Z) for which S is
stable.
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Necessary Conditions
[e]e]e]e]e] lele)

Example: The Circle

» L>K
D = [0,1/K), D = [0,1/L)
Ag =Foegol —
> acpa) = (PTopM-qig) (€~ p—al) Y
» JCI'xA ~_ /
A=J/L>1 - 7
> 1ag 0| < FOE = (1] +)) I '

» e, 0 Uo i, is not stable

Theorem

Let S C T X Z be open with urxz(S) > 1. There exists no g € M*°(T) for which eg|S is
stable.

Corollary

Let S CZ x T be open with uzxt(S) > 1. There exists no g € (°°(Z) for which S is
stable.
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Necessary Conditions
[e]e]e]e]e]e] o)
Product Groups

> =m@n = K(g®g)=(Kig)® (Kg2)

Theorem

Suppose that Gy has the finely tuned overspreadingi)roperty. Let S C Gy X Gy % 61 X 82

be open. Suppose that there exists (a2, 32) € G2 X Gp such that pig & (S(a,2,)) > 1,
where

5(32732) = {(21,31) € Gy X 61 : (31,32,31,52) S 5}
In this case, there exist no g1 € M*°(Gy1) and g2 € M*°(G) for which eg gg,|S is stable.
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Necessary Conditions
[e]e]e]e]e]e] o)
Product Groups

> =men = Kg® )= (Kig) @ (Kag2)
> Ui le(Trx T2 x A x A2 X T X Tae X Afe X A) = O (GL x Gp)

Theorem

Suppose that Gy has the finely tuned overspreadingi)roperty. Let S C Gy X Gy % @1 X 82

be open. Suppose that there exists (a2, 32) € G2 X Gp such that pig & (S(a,2,)) > 1,
where

5(3273,2) = {(21,31) € Gy X 61 : (31,32,31,52) S 5}
In this case, there exist no g1 € M*°(Gy1) and g2 € M*°(G) for which eg gg,|S is stable.
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Necessary Conditions
[e]e]e]e]e]e] o)
Product Groups

> =men = Kg® )= (Kig) @ (Kag2)
> Ui le(Trx T2 x A x A2 X T X Tae X Afe X A) = O (GL x Gp)

>
U(Ul ® T(wz,'ug,wz%c,vz%c)(srz XAzxrichic)(gl ® g2)
:(Ulo-]')g1 ® (U2 T(W2,U2,W2J:C7’U2J:C)6r2 ></\2><r2fc></\2%c )g2
Theorem

Suppose that Gi has the finely tuned overspreadingi)roperty. Let S C Gy X Gy % @1 X 82

be open. Suppose that there exists (a2, 32) € G2 X Gp such that pig & (S(a,2)) > 1,
where

5(3273,2) = {(21,31) € Gy X 61 : (31,32,31,52) S 5}
In this case, there exist no g1 € M*°(Gy1) and g» € M*°(G) for which eg gg,|S is stable.
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Necessary Conditions
0000000

Product Groups (cont.)

G x G

M2 x Ay

G % G,
rox A o
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Epilogue
[ 1]

Further Questions

» The underspread condition is necessary for operator identification on R, T, Z, and A
individually. What about in general?

Conjecture

Let G be an arbitrary ELCA group. Let S C G x G be open with Hgye(S) > 1. There
exists no g € M*°(G) for which e;|S is stable.

» Explicit construction of vectors ¢ € C%/N% such that A(c) is full spark

» Bounds on the Frobenius norms of the N x N minors and their inverses
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Thank You
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