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Time-Variant Linear Channels

I Time-variant channels arise in mobile communications [Str06] and super-resolution
radar [BGE11].

I Time-invariant operators = convolution operators:

g →
∫
τ(· − y)g(y) dy

I Time-variant operators:

g →
∫
τ(·, · − y)g(y) dy

I Set κ(x , y) = τ(x , x − y):

g →
∫
κ(·, y)g(y) dy
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Time-Variant Linear Channels (cont.)

I The spreading function:

η(x , ω) =

∫
κ(y , y − x)e−2πyω dy

η is a function of time and frequency.

I

g →
∫
η(x , ω)MωTxg dx dω

Tx : translation (time delay)
Mω: modulation (Doppler shift)

I g is transformed into a weighted sum of time-frequency shifts of itself.
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Work of Kailath and Bello

I Kailath [Kai62] considered a family of operators where η is supported in a fixed
rectangle R in the time-frequency plane.

I Is it possible to identify this family by a single probing signal?

I Kailtah’s conjecture:
Yes if µ(R) ≤ 1
No if µ(R) > 1

I Bello [Bel69] removed the restriction that R should be a rectangle.
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Work of Kozek and Pfander

Theorem (Kozek-Pfander [KP05])

Let R be a rectangle in the time-frequency plane. Consider a family of operators with
spreading supports contained in R. If µ(R) ≤ 1, then the operator family is identifiable
by a Dirac comb

g =
∑
k∈Z

δka, a > 0.

If µ(R) > 1, then there exists no signal which identifies.

R

η1
η2
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Work of Pfander and Walnut

Theorem (Pfander-Walnut [PW06a])

Let S be a set in the time-frequency plane. Consider a family of operators with spreading
supports contained in S. If S is compact with µ(S) < 1, then the operator family is
identifiable by a periodically weighted Dirac comb

g =
∑
k∈Z

ckδka, ck+L = ck , a > 0.

If S is open with µ(S) > 1, then there exists no signal which identifies.

I Support sets for which identification by a periodically weighted Dirac comb is
possible are characterized in [PW15] in addition to many other results and
reconstruction formulas.

I Many of these results are generalized to arbitrary modulation spaces in [Pfa13b].
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The Identification Problem

I Banach spaces X and Y

I Banach space O of bounded linear maps K : X → Y

I g ∈ X
Evaluation map eg : O → Y , K → Kg

I If eg is injective, then O is weakly identifiable by g .

I If eg is continuous with a bounded inverse (bounded and stable), then O is strongly
identifiable by g .
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Finite Dimensional Theory

I Finite abelian group A (Â = A)

I η ∈ CA×Â

K : CA → CA

I g ∈ CA

A(g) = {MτTλg}λ∈A,τ∈Â
Kg = |A|−1A(g)η

I S ⊆ A× Â
OS = {η ∈ CA×Â : supp η ⊆ S}

I eg : OS → CA

I A(g)S : A(g) with columns (A× Â) \ S removed

I Matrix of eg : |A|−1A(g)S

I Immediate observation: If OS is identifiable by g , then |S | ≤ |A| (µA×Â(S) ≤ 1).
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Kg = |A|−1A(g)η

I S ⊆ A× Â
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Identification of Operators on Elementary Locally Compact Abelian Groups Gökhan Civan (UMD)



Introduction The Identification Problem Sufficient Conditions Necessary Conditions Epilogue References

Finite Dimensional Theory

I Finite abelian group A (Â = A)
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OS = {η ∈ CA×Â : supp η ⊆ S}

I eg : OS → CA

I A(g)S : A(g) with columns (A× Â) \ S removed
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Cyclic Case

I A = Z/NZ

I g ∈ CZ/NZ

I ωN = e2πi/N

WN = (ωpq
N )Np,q=0 =


1 1 · · · 1

1 ωN · · · ωN−1
N

...
...

...

1 ωN−1
N · · · ω

(N−1)2

N


I Tk(g) = diag(g(k), g(k + 1), . . . , g(k − 1))

I A(g) = (T0(g)WN | T1(g)WN | · · · | TN−1(g)WN)
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Cyclic Case (cont.)

Theorem (Lawrence-Pfander-Walnut [LPW05])

Suppose that N is prime. The product of all K × K (1 ≤ K ≤ N) determinants of A(g),
interpreted as a polynomial in the indeterminates g(0), . . . , g(N − 1), does not vanish
identically.

Theorem (Malikiosis [Mal15])

The product of all N × N determinants of A(g), interpreted as a polynomial in the
indeterminates g(0), . . . , g(N − 1), does not vanish identically.

I Choose g in the complement of the zero set of this polynomial. Then every N × N
minor of A(g) is invertible.

I |S | ≤ N implies OS is identifiable by g .
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Counterexample: Z/2Z× Z/2Z

I A = Z/2Z× Z/2Z

I g ∈ CZ/2Z×Z/2Z

I (c1, c2, c3, c4) = (g(0, 0), g(0, 1), g(1, 0), g(1, 1))

I

A(g) =


c1 c1 c1 c1 c2 c2 c2 c2 · · ·
c2 −c2 c2 −c2 c1 −c1 c1 −c1 · · ·
c3 c3 −c3 −c3 c4 c4 −c4 −c4 · · ·
c4 −c4 −c4 c4 c3 −c3 −c3 c3 · · ·

· · · c3 c3 c3 c3 c4 c4 c4 c4

· · · c4 −c4 c4 −c4 c3 −c3 c3 −c3

· · · c1 c1 −c1 −c1 c2 c2 −c2 −c2

· · · c2 −c2 −c2 c2 c1 −c1 −c1 c1


I 240 sets S ⊆ Z/2Z× Z/2Z× (Z/2Z× Z/2Z)̂ with |S | = 4 for which OS is not

identifiable
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c3 c3 −c3 −c3 c4 c4 −c4 −c4 · · ·
c4 −c4 −c4 c4 c3 −c3 −c3 c3 · · ·

· · · c3 c3 c3 c3 c4 c4 c4 c4

· · · c4 −c4 c4 −c4 c3 −c3 c3 −c3

· · · c1 c1 −c1 −c1 c2 c2 −c2 −c2

· · · c2 −c2 −c2 c2 c1 −c1 −c1 c1


I 240 sets S ⊆ Z/2Z× Z/2Z× (Z/2Z× Z/2Z)̂ with |S | = 4 for which OS is not

identifiable
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Necessary and Sufficient Condition: Z/2Z× Z/2Z

I c ∈ CZ/2Z

I

A(c) =

(
c0 c0 c1 c1

c1 −c1 c0 −c0

)
I Choose c so that c0c1(c0 − c1)(c0 + c1) 6= 0. Then every 2× 2 minor is invertible.

I Γ = Z/2Z× {0}, Λ = {0} × {0}
I Γ⊥ = {0} × Z/2Z, Λ⊥ = Z/2Z× Z/2Z
I g = (c0, c1, c0, c1)

Theorem

Let S ⊆ Z/2Z× Z/2Z× (Z/2Z× Z/2Z)̂. Then OS is identifiable by g if and only if (a)
the translations of S by Γ× Λ are disjoint, and (b) no three of the translations of S by
Λ⊥ × Γ⊥ have nonempty intersection.
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Necessary and Sufficient Condition: Z/2Z× Z/2Z (cont.)

I 576 sets S ⊆ Z/2Z× Z/2Z× (Z/2Z× Z/2Z)̂ with |S | = 4 satisfying both (a) and
(b)

I Corresponding 4× 4 determinants all belong to the list

±16c2
0 c2

1 , ±8c0c1(c0 − c1)(c0 + c1), ±8c0c1(c2
0 + c2

1 ),

±4(c0 − c1)2(c0 + c1)2, ±4(c0 − c1)(c0 + c1)(c2
0 + c2

1 ),

±4(c2
0 + c2

1 )2.

I OS is indeed identifiable by g for these sets.

I Remaining 4× 4 determinants are all zero.

I For the remaining sets, OS is indeed not identifiable by g .
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Technical Interlude: STFT

I ELCA group G :

G = Rd × Td′ × Zd′′ × A

I g ∈ S(G), f ∈ S ′(G)

Vg f (a, â) = 〈f ,MâTag〉 (a ∈ G , â ∈ Ĝ)

I g ∈ S ′(G), f ∈ S ′(G)
Vg f = F2TG (f ⊗ g)

TG : coordinate transform (a, t)→ (t, t − a) on G × G
F2: Fourier transform in the second (t) variable

I Mp(G) = {f ∈ S ′(G) : Vg f ∈ Lp(G × Ĝ)}
‖f ‖Mp = ‖Vg f ‖Lp (not depending on g ∈ S(G) \ {0})

I M1(G) = S0(G): Feichtinger’s algebra

I M∞(G) = M1(G)∗

I M1(G) ⊆ L2(G) ⊆ M∞(G)

I M1(G) ⊆ C0(G)
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Infinite Dimensional Theory

I O∞,1(G): all linear maps K : M∞(G)→ M1(G) continuous w.r.t the weak*
topology of M∞(G)

I O∞,1(G) ∼= M1(G × Ĝ) ⊆ L2(G × Ĝ)
‖K‖2 = ‖ηK‖2

I 〈Kg , f 〉 = 〈η,Vg f 〉 (f , g ∈ M∞(G))

I S ⊆ G × Ĝ
O∞,1(G)|S = {K ∈ O∞,1(G) : supp ηK ⊆ S}

I g ∈ M∞(G)
eg : O∞,1(G)→ M1(G) ⊆ L2(G)
eg |S : O∞,1(G)|S → L2(G)
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Zak Transform and Quasi-Periodization

I Zak transform of f ∈ M1(G):

ZΓf (a, â) =
∑
w∈Γ

f (a + w)(−w , â)

I Quasi-periodization of η ∈ M1(G × Ĝ):

QPΓ,Λη(a, â) =
∑
w∈Γ

∑
υ∈Λ

η(a + w , â + υ)(−w , â)

Γ

Λ

Γ⊥

Λ⊥
G

Ĝ
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Sufficient Conditions for Operator Identification

I Λ⊥/Γ cyclic

I c ∈ CΛ⊥/Γ such that A(c) is full spark

g =
∑

υ⊥+Γ∈Λ⊥/Γ

cυ⊥+ΓTυ⊥
∑
w∈Γ

TwδG

I S ⊆ G × Ĝ open ∑
k∈Γ

∑
`∈Λ

1S+(k,`) ≤ 1 (1)

and ∑
`⊥∈Λ⊥

∑
k⊥∈Γ⊥

1S+(`⊥,k⊥) ≤ |Λ
⊥/Γ| (2)
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Sufficient Conditions for Operator Identification (cont.)

Theorem (generalizing [PW15])

The following statements are equivalent:

1. (1) and (2) hold pointwise everywhere.

2. O∞,1(G)|S is strongly identifiable by g.

3. O∞,1(G)|S is weakly identifiable by g.

Corollary (generalizing [PW06a, Theorem 3.1])

Suppose that G has at most one finite cyclic summand. Let S ⊆ G × Ĝ be compact
with µG×Ĝ (S) < 1. Then O∞,1(G)|S is strongly identifiable.
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Description of (1)
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Description of (2)
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Proof of Theorem (a) ⇒ (b)

VJ1 VJ2 VJ3 VJ4

I J ⊆ (Λ⊥/Γ)× (Γ⊥/Λ) with |J| ≤ |Λ⊥/Γ|

I K ∈ O∞,1(G)|S

ZΓKg = µĜ (D⊥)A(c)JηK,Γ,Λ,J

µĜ (D⊥)ηK,Γ,Λ,J = A(c)−1
J ZΓKg

I

µĜ (D⊥)2a2
J‖ηK,Γ,Λ,J‖

2
2 ≤ ‖ZΓKg‖2

2 ≤ µĜ (D⊥)2b2
J‖ηK,Γ,Λ,J‖

2
2

on VJ

I

µĜ (D⊥)2a2‖ηK,Γ,Λ‖
2
2 ≤ ‖ZΓKg‖2

2 ≤ µĜ (D⊥)2b2‖ηK,Γ,Λ‖
2
2

I

µĜ (D⊥)a2‖ηK‖2
2 ≤ ‖egK‖2

2 ≤ µĜ (D⊥)b2‖ηK‖2
2
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ZΓKg = µĜ (D⊥)A(c)JηK,Γ,Λ,J
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µĜ (D⊥)2a2‖ηK,Γ,Λ‖
2
2 ≤ ‖ZΓKg‖2
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µĜ (D⊥)ηK,Γ,Λ,J = A(c)−1
J ZΓKg

I
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A Duality Principle

I K ∈ O∞,1(G)

I KF ∈ O∞,1(Ĝ)
ηKF (â, a) = (−a, â)ηK(−a, â)

I S ⊆ G × Ĝ
SF = {(â, a) ∈ Ĝ × G : (−a, â) ∈ S}

I

O∞,1(G)|S
eg−−−−−→ L2(G)

K→KF

y F
y

O∞,1(Ĝ)|SF
eĝ−−−−−→ L2(Ĝ)

Theorem

O∞,1(G)|S is strongly identifiable by g if and only if O∞,1(Ĝ)|SF is strongly identifiable
by ĝ .
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A Riesz Basis of Operators

ΓΓc

Λ

Λc

G

Ĝ

Theorem

{Mυ+w⊥c
T−υ⊥c PTw+υ⊥c

M−w⊥c
}(w,υ,w⊥c ,υ

⊥
c )∈Γ×Λ×Γ⊥c ×Λ⊥c

is a Riesz basis for its closed linear span in O2(G).

I ηM
υ+w⊥c

T−υ⊥c
PT

w+υ⊥c
M−w⊥c

= (−υ⊥c , υ)M(w⊥c ,υ
⊥
c )T(w,υ)ηP

I U : `c(Γ× Λ× Γ⊥c × Λ⊥c )→ O∞,1(G)
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A Riesz Basis of Operators (cont.)

ηM
υ+w⊥c

T−υ⊥c
PT

w+υ⊥c
M−w⊥c

= (−υ⊥c , υ)M(w⊥c ,υ
⊥
c )T(w,υ)ηP

Γ

Λ

G

Ĝ
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Restricting the Identification Problem

I J ⊆ Γ× Λ finite

I VJ : image of U ◦ iJ

I Arrange VJ ⊆ O∞,1(G)|S .

I Restrict to VJ :

eg ◦ U ◦ iJ = eg |S ◦ U ◦ iJ

Γ

Λ

G

Ĝ

S
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Simplifying the RHS

I V : L2(G)→ `2(Z)
V ◦ eg |S ◦ U ◦ iJ

Lemma ([KP05, Lemma 3.4])

Let g ∈ M∞(G). There exists a nonnegative continuous function r on G, decreasing
faster than any polynomial, such that |PMb̂Tbg | ≤ r . There exists a nonnegative

continuous function rF on Ĝ , decreasing faster than any polynomial, such that
|(PMb̂Tbg)̂| ≤ rF .

Proposition ([Pfa08, Theorem 2.1])

Let A : `c(Zd)→ `2(Zd) be a (not necessarily bounded) linear map. Let (ak′,k)k′,k∈Zd be
the matrix representation of A with respect to the orthonormal bases {Tk′δZd }k′∈Zd and
{TkδZd }k∈Zd . Let r̃ be a nonnegative Borel measurable function on R, decreasing faster
than any polynomial. Let λ > 1. Suppose that |ak′,k | ≤ r̃(‖λk ′ − k‖∞). In this case,
there does not exist a bounded linear map B : `2(Zd)→ `2(Zd) with BA = I .
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Example: The Circle

I L > K
D = [0, 1/K), Dc = [0, 1/L)

I g ∈ M∞(T)
Ag = F ◦ eg ◦ U

I aξ,(k,p,q) = (PTωk
K

M−qLg)̂(ξ − p − qL)

I J ⊆ Γ× Λ
λ = |J|/L > 1

I |aξ,(kj ,pj ,q)| ≤ r̃(λξ − (q|J|+ j))

I eg ◦ U ◦ iJ is not stable

�
Γc

Γ
T

Z

Theorem

Let S ⊆ T×Z be open with µT×Z(S) > 1. There exists no g ∈ M∞(T) for which eg |S is
stable.

Corollary

Let S ⊆ Z× T be open with µZ×T(S) > 1. There exists no g ∈ `∞(Z) for which eg |S is
stable.
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Example: The Circle

I L > K
D = [0, 1/K), Dc = [0, 1/L)

I g ∈ M∞(T)
Ag = F ◦ eg ◦ U

I aξ,(k,p,q) = (PTωk
K

M−qLg)̂(ξ − p − qL)

I J ⊆ Γ× Λ
λ = |J|/L > 1
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Product Groups

I η = η1 ⊗ η2 ⇒ K(g1 ⊗ g2) = (K1g1)⊗ (K2g2)

I U : `c(Γ1 × Γ2 × Λ1 × Λ2 × Γ⊥1,c × Γ⊥2,c × Λ⊥1,c × Λ⊥2,c)→ O∞,1(G1 × G2)

I

U(σ1 ⊗ T(w2,υ2,w
⊥
2,c ,υ

⊥
2,c )δΓ2×Λ2×Γ⊥2,c×Λ⊥2,c

)(g1 ⊗ g2)

=(U1σ1)g1 ⊗ (U2T(w2,υ2,w
⊥
2,c ,υ

⊥
2,c )δΓ2×Λ2×Γ⊥2,c×Λ⊥2,c

)g2

Theorem

Suppose that G1 has the finely tuned overspreading property. Let S ⊆ G1 ×G2 × Ĝ1 × Ĝ2

be open. Suppose that there exists (a2, â2) ∈ G2 × Ĝ2 such that µG1×Ĝ1
(S(a2,â2)) > 1,

where
S(a2,â2) = {(a1, â1) ∈ G1 × Ĝ1 : (a1, a2, â1, â2) ∈ S}

In this case, there exist no g1 ∈ M∞(G1) and g2 ∈ M∞(G2) for which eg1⊗g2 |S is stable.
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be open. Suppose that there exists (a2, â2) ∈ G2 × Ĝ2 such that µG1×Ĝ1
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(S(a2,â2)) > 1,

where
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Product Groups (cont.)

Γ1 × Λ1

Γ2 × Λ2

G1 × Ĝ1

G2 × Ĝ2

S
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Further Questions

I The underspread condition is necessary for operator identification on R, T, Z, and A
individually. What about in general?

Conjecture

Let G be an arbitrary ELCA group. Let S ⊆ G × Ĝ be open with µG×Ĝ (S) > 1. There
exists no g ∈ M∞(G) for which eg |S is stable.

I Explicit construction of vectors c ∈ CZ/NZ such that A(c) is full spark

I Bounds on the Frobenius norms of the N × N minors and their inverses
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Thank You
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variété”. In: C. R. Acad. Sci. Paris 228 (1949), pp. 1549–1551.

K. A. Okoudjou. “A Beurling-Helson Type Theorem for Modulation Spaces”.
In: J. Funct. Spaces Appl. 7.1 (2009), pp. 33–41.

G. E. Pfander. “On the Invertibility of ”Rectangular” Bi-Infinite Matrices and
Applications in Time-Frequency Analysis”. In: Linear Algebra Appl. 429.1
(2008), pp. 331–345.

G. E. Pfander. “Gabor Frames in Finite Dimensions”. In: Finite Frames:
Theory and Applications. Ed. by P. G. Casazza and G. Kutyniok. Birkhäuser,
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Identification of Operators on Elementary Locally Compact Abelian Groups Gökhan Civan (UMD)


	Introduction
	The Identification Problem
	Sufficient Conditions
	Necessary Conditions
	Epilogue

