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A tight frame Φ is a sequence in a separable Hilbert space H satisfying the

frame inequality with equal upper and lower bounds and possessing a simple re-

construction formula. We define and study the theory of frame multiplication in

finite dimensions. A frame multiplication for Φ is a binary operation on the frame

elements that extends to a bilinear vector product on the entire Hilbert space. This

is made possible, in part, by the reconstruction property of frames.

The motivation for this work is the desire to define meaningful vector-valued

versions of the discrete Fourier transform and the discrete ambiguity function. We

make these definitions and prove several familiar harmonic analysis results in this

context. These definitions beget the questions we answer through developing frame

multiplication theory.

For certain binary operations, those with the Latin square property, we give

a characterization of the frames, in terms of their Gramians, that have these frame

multiplications. Combining finite dimensional representation theory and Naimark’s

theorem, we show frames possessing a group frame multiplication are the projections



of an orthonormal basis onto the isotypic components of the regular representations.

In particular, for a finite group G, we prove there are only finitely many inequivalent

frames possessing the group operation of G as a frame multiplication, and we give an

explicit formula for the dimensions in which these frames exist. Finally, we connect

our theory to a recently studied class of frames; we prove that frames possessing a

group frame multiplication are the central G-frames, a class of frames generated by

groups of operators on a Hilbert space.
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Chapter 1

Introduction

Applied harmonic analysis is playing a central role in what is shaping up, to

borrow a phrase, to be the golden age of Mathematical Engineering. Algorithms

which take advantage of the sparsity of natural signals are promising, first steps to-

wards advances in data transmission, imaging, and video to name a few. Dimension

reduction techniques are improving classification methods and dealing with an influx

of data, and the study of functions on graphs is finding applications in our connected

world. Advancement of the theoretical underpinnings of applied harmonic analysis

allows for these technological advancements, and in return the needs of the engineer-

ing and technology communities inform mathematicians posing abstract problems.

We shall study the meaningful extension of a classical harmonic analysis tech-

nique to the realm of vector-valued functions. There is rationale for attempting such

an extension, e.g., to model vector sensing environments. Attempting such a defi-

nition leads us to questions in finite frame theory, which we answer by developing

frame multiplication theory, a prime example of theory being informed by practice.

1.1 Fourier Analysis on Locally Compact Groups

In this section we present the necessary background material on Fourier anal-

ysis. For a more detailed account of Fourier analysis on locally compact groups
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see [19, 35], and for an extensive treatise on abstract harmonic analysis see [28,29].

A locally compact group G is a topological group whose topology is locally

compact and Hausdorff. A left (resp. right) Haar measure on G is a nonzero Radon

measure µ on G that satisfies µ(xE) = µ(E) (resp. µ(Ex) = µ(E)) for every Borel

set E ⊂ G and every x ∈ G. We focus our attention on locally compact groups

because we can guarantee the existence of a left (therefore right) Haar measure.

Theorem 1.1.1 (Theorem 2.10 in [19]). Every locally compact group G possesses a

left Haar measure.

Left Haar measures are unique up to a positive multiplicative constant. If G is

abelian, then left Haar measures are both left and right translation invariant, and

after choosing a normalization, we call one, simply, Haar measure on G. If f is a

function on G, then we denote the integral of f with respect to Haar measure by∫
f(x)dx. As with other measure and topological spaces, we have the usual function

spaces: Lp(G) (1 ≤ p ≤ ∞), C(G), and Cc(G). For the remainder of this section we

will assume G is abelian and write the group operation as addition; such groups are

called locally compact abelian groups (LCAGs).

Definition 1.1.2 (Dual group). Let G be a LCAG. Continuous homomorphisms

from G into the circle group T (complex numbers of modulus 1 under multiplication)

are called characters. The set of all characters of G is the dual group of G, and we

denote it by Ĝ. As the name would suggest, endowed with the weak-∗ topology and

group operation pointwise multiplication, Ĝ is a locally compact abelian group. The

Pontrjagin duality theorem tells us that
̂̂G = G; i.e., G is the dual group of Ĝ. The
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characters of Ĝ are evaluation at x ∈ G. Because of this, we will use the symmetric

notation

〈x, ξ〉 = ξ(x) (x ∈ G, ξ ∈ Ĝ).

Definition 1.1.3 (Fourier transform). Let G be a LCAG. The Fourier transform is

the map from L1(G) to C(Ĝ) defined by

∀f ∈ L1(G), Ff(ξ) = f̂(ξ) =

∫
f(x)〈x, ξ〉 dx.

By the Pontrjagin duality theorem we can also define a Fourier transform on

Ĝ, and we can ask, what happens when we take
̂̂
f ? It turns out, if Haar measure on

Ĝ (dξ) is suitably normalized with respect to Haar measure on G, then we almost

get back to where we started.

Theorem 1.1.4 (Fourier transform inversion). If f ∈ L1(G) and f̂ ∈ L1(Ĝ), then

f(x) =
̂̂
f (−x) for almost every x; i.e.,

f(x) =

∫
f̂(ξ) 〈x, ξ〉 dξ

for almost every x. If f is continuous, these relations hold for every x.

The situation for L2(G) and L2(Ĝ) is even nicer.

Theorem 1.1.5 (Plancherel theorem). The Fourier transform on L1(G) ∩ L2(G)

extends uniquely to a unitary isomorphism from L2(G) to L2(Ĝ).

Definition 1.1.6 (Convolution). Let G be a LCAG, and let f, g ∈ L1(G). The

convolution of f and g in L1(G) is defined by the formula

(f ∗ g)(x) =

∫
f(x− y)g(y) dy.
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The convolution is well defined, ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1, and the resulting function is

in L1(G).

The most important property of convolution that we will utilize is that it

makes the Fourier transform into an algebra homomorphism from L1(G) to C(Ĝ).

Proposition 1.1.7. Let G be a LCAG. If f, g ∈ L1(G), then

f̂ ∗ g = f̂ ĝ.

Example 1.1.8. The real numbers R under regular addition and with the usual

topology are a LCAG. R̂ is isomorphic to R, Haar measure is Lebesgue measure,

and we have the pairing 〈x, ξ〉 = e2πixξ. For f ∈ L1(R) the Fourier transform of f is

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx,

and if f ∈ L2(R), then we may take any sequence {fn}∞n=1 ⊂ L1(R) ∩ L2(R) con-

verging to f and the Fourier transform of f is defined as the limit of the Fourier

transforms of the fn’s. By the Plancherel theorem such a limit exists and is unique.

In particular, we have

f̂(ξ) = lim
n→∞

∫ n

−n
f(x)e−2πixξ dx,

where the convergence is in L2(R).

1.2 Banach Algebras and the Gelfand Transform

The theory of Banach Algebras and the Gelfand transform play a supporting

role in Fourier analysis on LCAGs and are the setting of Section 2.6. Banach algebras
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are studied in Functional analysis for their own sake under the wider umbrella of

operator algebras; we will leverage some of these more general results in Chapter 4.

As a reference for the role of Banach algebras in harmonic analysis we use [19]. For

an introduction to operator algebras we recommend [44], and as references for C∗

and von Neumann operator algebras we use [7, 15,38].

Definition 1.2.1 (Banach algebra). A Banach algebra is an algebra A over the field

of complex numbers equipped with a norm ‖·‖ with respect to which it is a Banach

space and which satisfies

∀x, y ∈ A, ‖xy‖ ≤ ‖x‖ ‖y‖ .

A is called unital if it possesses a multiplicative identity, which we denote by e. An

involution on an algebra A is a map x 7→ x∗ from A to A that satisfies

∀x, y ∈ A, λ ∈ C, (x+ y)∗ = x∗ + y∗, (λx)∗ = λx∗, (xy)∗ = y∗x∗, x∗∗ = x.

An algebra with an involution is called a ∗-algebra.

If S is a subset of the Banach algebra A, we say A is generated by S if the

linear combinations of products of elements of S are dense in A. Often we can

reduce a problem in a Banach algebra to a problem which deals only with a set of

generators.

Example 1.2.2. Let `1 = `1(Z) be the space of all sequences x = (xn)∞n=−∞ such

that ‖x‖1 =
∑∞

n=−∞ |xn| <∞. `1 is a Banach space under coordinate-wise addition,

and we may define a multiplication by convolution

(x ∗ y)n :=
∞∑

k=−∞

xkyn−k
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and an involution by (x∗)n = x−n. With these operations `1 is a unital ∗-algebra

with unit element δ defined by

δn =


1 n = 0

0 n 6= 0.

For each k ∈ Z, define δk ∈ `1 by (δk)n = 1 if n = k and 0 otherwise. For

k ≥ 1, it can be shown δk = δ1 ∗ . . . ∗ δ1 and δ−k = δ−1 ∗ . . . ∗ δ−1, where the

products on the right have k factors, and δ = δ1 ∗ δ−1. Also, for any x ∈ `1, we

have x = limN→∞
∑N

k=−N xkδ
k. Therefore, `1 is generated by the two element set

{δ1, δ−1}.

Example 1.2.3. For our second example of a Banach ∗-algebra, let H be a complex

Hilbert space, and let B(H) be the set of bounded linear operators on H. B(H) is

a unital ∗-algebra with operations addition and composition of operators and with

involution the adjoint operation. B(H) satisfies

∀A ∈ B(H), ‖A∗A‖ = ‖A∗‖ ‖A‖ ,

which is called the C∗-identity. Banach ∗-algebras satisfying the C∗-identity are

called C∗-algebras. It turns out B(H) is essentially the only kind of C∗-algebra.

The Gelfand-Naimark theorem states that any C∗-algebra is ∗-isomorphic to an

algebra of bounded operators on some Hilbert space. It was not necessary for us

to consider all of B(H); we could take a norm and adjoint closed subspace of B(H)

and we would have a ∗-subalgebra of B(H).

We have some additional terminology and a theorem involving the ∗-algebra
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described in the above example. We make use of the theorem in Section 4.3.2 where

we apply it to the case of groups of operators generated by a representation.

Definition 1.2.4 (Commutant). Let S be a set of bounded linear operators on a

Hilbert space H. The commutant of S is the algebra of operators that commute

with every member of S. We denote the commutant of S by S ′. In symbols,

S ′ = {A ∈ B(H) : ∀B ∈ S, AB = BA}.

It is immediate from the definition of the commutant that

S ⊆ S ′′ ⊆ S ′′′′ . . . and S ′ ⊆ S ′′′ ⊆ S ′′′′′ . . . . (1.1)

Also immediate is that any commutant is closed under the strong operator topology.

The question of whether the sequences of subsets in (1.1) terminate is tied neatly

to the strong closure of S by von Neumann’s double commutant theorem.

Theorem 1.2.5 (von Neumann double commutant, Theorem 0.4.2 in [38]). Let H be

a Hilbert space and B(H) its algebra of bounded operators. Let M be a ∗-subalgebra

of B(H) that contains the identity operator. The following are equivalent:

1. M′′ =M, i.e., M equals its double commutant.

2. M is closed in the weak operator topology.

3. M is closed in the strong operator topology.

Von Neumann’s double commutant (or bicommutant) theorem is surprising

because it connects a topological property, strong and weak closure, with a purely

algebraic property, an algebra being equal to its double commutant.
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Definition 1.2.6 (Spectrum). Let A be a commutative unital Banach algebra. If

x ∈ A, the spectrum of x is

σ(x) = {λ ∈ C : λe− x is not invertible}.

Definition 1.2.7 (Multiplicative linear functionals). LetA be a commutative unital

Banach algebra. A multiplicative linear functional on A is a nonzero homomorphism

from A to C, i.e., a linear functional in the usual Banach space sense that addition-

ally satisfies h(xy) = h(x)h(y). The set of all multiplicative functionals on A is

called the spectrum of A. The spectrum of A is denoted the same as the spectrum

of an element: σ(A). σ(A) is a subset of the closed unit ball B of the dual space

A∗, and when σ(A) is endowed with the weak-∗ topology, the topology of pointwise

convergence on A, it is a topological space. Because the pointwise limit of a multi-

plicative linear functional is multiplicative, σ(A) is a closed subset of B, and so, by

Alaoglu’s theorem, σ(A) is a compact Hausdorff space.

The spectrum of a commutative unital Banach algebra is sometimes referred

to as the maximal ideal space, or simply, ideal space, for reasons which the next

theorem makes clear.

Theorem 1.2.8 (Theorem 1.12 in [19]). Let A be a commutative unital Banach

algebra. The map h 7→ ker(h) is a one-to-one correspondence between σ(A) and the

set of maximal ideals in A.

Definition 1.2.9 (Gelfand transform). Let A be a commutative unital Banach

algebra. For each x ∈ A define the function x̂ on σ(A) by

x̂(h) = h(x).
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x̂ is continuous on σ(A) since a net {hλ}λ in σ(A) converges to h precisely when

the net hλ(x) converges to h(x) for every x ∈ A. The map

Γ : A → C(σ(A)), x 7→ x̂

is called the Gelfand transform on A. The Gelfand transform is a homomorphism

from A to C(σ(A)), and ê is the constant function 1 on σ(A).

When A is not unital it can be embedded in a unital algebra Ã such that it is

identified with a maximal ideal. The spectrum of a nonunital commutative Banach

algebra is defined in the same way as the unital case, and there is a one-to-one

correspondence between σ(A)∪{0} and σ(Ã). Utilizing this correspondence, it can

be shown σ(A) ∪ {0} is a weak-∗ closed subset of the closed unit ball in A∗, and

therefore, it is a compact Hausdorff space. This means if {0} is an isolated point

of σ(A) ∪ {0}, then σ(A) is compact, and if not, then σ(A) is a locally compact

Hausdorff space whose one-point compactification is σ(A)∪{0}. Lastly, the Gelfand

transform on A is defined in the same way as above, and if we identify σ(Ã) with

σ(A) ∪ {0}, then it is the Gelfand transform on Ã (restricted to the maximal ideal

A) with the resulting functions x̂ restricted to σ(A). The value of x̂ at the extra

point {0} is zero, and therefore, when σ(A) is not compact x̂ vanishes at infinity.

In this case, the Gelfand transform is a homomorphism from A to C0(σ(A)).

Example 1.2.10. Let `1 = `1(Z) be as described in Example 1.2.2. The characters

of Z are the functions n 7→ e2πinξ for ξ ∈ [0, 1); hence, the dual group Ẑ can be

identified with the torus T = {z ∈ C : |z| = 1}. The Fourier transform on `1 is
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given by

Fx(ξ) =
∞∑

n=−∞

xne
−2πinξ.

Linearity and continuity of the Fourier transform implies the evaluation functionals

hξ(x) := Fx(ξ) (ξ ∈ T) are in (`1)∗, and Proposition 1.1.7 implies they belong

to σ(`1). It can be shown for G a general LCAG, that any multiplicative linear

functional on L1(G) is given by integration against a character, so the hξ constitute

all the multiplicative linear functionals on `1. In short, σ(`1) can be identified with

Ẑ by hξ 7→ ξ, and under this identification we have

x̂(ξ) = x̂(hξ) = hξ(x) = Fx(ξ),

i.e., the Fourier transform and Gelfand transform are the same.

The example above holds in general. For a locally compact abelian group G

we can always identify Ĝ with σ(L1(G)) so that the Fourier transform on L1(G) is

the same as the Gelfand transform on the convolution ∗-algebra L1(G). Because of

this correspondence, whenever investigating a transform with Fourier transform like

properties or attempting to define a Fourier transform, it is helpful to look for a

Banach algebra structure lurking in the background. We take this route in Section

2.6.

1.3 Unitary Representations of Locally Compact Groups

Definition 1.3.1 (Unitary representation). Let G be a locally compact group. A

unitary representation of G is a Hilbert space H over C and a homomorphism π :
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G → U(H) from G into the group of unitary operators on H that is continuous with

respect to the strong operator topology. We enumerate these properties here for

convenience:

1. ∀g, h ∈ G, π(gh) = π(g)π(h),

2. ∀g ∈ G, π(g−1) = π(g)−1 = π(g)∗,

3. for every net {gλ}λ converging to g and every x ∈ H, the net {π(gλ)x}λ

converges to π(g)x.

The dimension of H is called the dimension of π. When G is a finite group (as

will be the case for us) G is given the discrete topology and continuity of π holds

trivially. We denote a representation by (H, π) or, when H is understood, π.

Definition 1.3.2 (Equivalence of representations). Let (H1, π1) and (H2, π2) be

representations of G. We say that a bounded linear map T : H1 → H2 is an

intertwining operator for π1 and π2 if

∀g ∈ G, Tπ1(g) = π2(g)T.

π1 and π2 are said to be unitarily equivalent if there is a unitary intertwining operator

U for π1 and π2.

More generally, we could consider non-unitary representations, where π is a

homomorphism into the space of invertible operators on a Hilbert space. We do not

do that here for two reasons. First, we will be mainly interested in the regular repre-

sentations, which are unitary, and second, every finite dimensional representation of
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a finite group is unitarizable. That is, if (H, π) is a finite dimensional representation

(not necessarily unitary) of G and |G| <∞, then there exists an inner product on H

such that π is unitary. See Theorem 1.5 of [32] for a proof of this fact. Given that

our focus will be on finite groups, we may as well consider only unitary representa-

tions. We will freely omit the word “unitary” and speak only of “representations”,

which we assume to be unitary unless stated otherwise. Similarly, we will omit the

word “unitarily” when we speak of equivalence of representations.

Example 1.3.3. Let G be a finite group, and let `2 = `2(G). The action of G on `2

by left translation is a unitary representation of G. More concretely, let {eh}h∈G be

the standard orthonormal basis for `2, and define λ : G → U(`2) by

∀g, h ∈ G, λ(g)eh = egh.

λ is called the left regular representation of G. The right regular representation,

which we denote by ρ, is defined as translation on the right, i.e.,

∀g, h ∈ G, ρ(g)eh = ehg−1 .

The construction is similar for general locally compact groups and takes place on

L2(G).

1.3.1 Irreducible Representations

Definition 1.3.4 (Invariant subspace). An invariant subspace of a unitary repre-

sentation (H, π) is a closed subspace X ⊂ H such that π(g)X ⊂ X for all g ∈ G.

The restriction of π to X is a unitary representation of G called a subrepresentation.
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If π has a nontrivial subrepresentation, i.e., nonzero and not equal to π, or equiv-

alently, has a nontrivial invariant subspace, then π is called reducible. If π has no

nontrivial subrepresentations or, equivalently, has no nontrivial invariant subspaces,

then π is called irreducible.

Definition 1.3.5 (Direct sum of representations). Let (H1, π1) and (H2, π2) be

representations of G. Then

(H1 ⊕H2, π1 ⊕ π2),

where (π1 ⊕ π2)(g)(x1, x2) := (π1(g)(x1), π2(g)(x2)), for g ∈ G, x1 ∈ H1, x2 ∈ H2,

is a representation of G called the direct sum of the representations (H1, π1) and

(H2, π2).

More generally, for a positive integer m, we recursively define the direct sum of

m representations π1⊕ . . .⊕πm. If (H, π) is a representation of G, we denote by mπ

the representation that is the product of m copies of π, i.e., (H⊕ . . .⊕H, π⊕ . . .⊕π),

where each sum has m terms. Clearly, a direct sum of nontrivial representations

cannot be irreducible, e.g., (H1⊕H2, π1⊕π2) will have invariant subspaces H1⊕{0}

and {0} ⊕H2.

Definition 1.3.6 (Complete reducibility). A representation (H, π) is called com-

pletely reducible if it is the direct sum of irreducible representations.

Two classical problems of harmonic analysis on a locally compact group G are

to describe all the unitary representations of G and to describe how unitary repre-

sentations can be built as direct sums of smaller representations. For finite groups
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the forthcoming Maschke’s theorem tells us that the irreducible representations are

the building blocks of representation theory that enable these descriptions.

Lemma 1.3.7. Let (H, π) be a unitary representation of G. If X ⊂ H is invariant

under π, then X⊥ = {y ∈ H : ∀x ∈ X, 〈x, y〉 = 0} is also invariant under π.

Proof. Let y ∈ X⊥. Then for any x ∈ X and g ∈ G, we have 〈x, π(g)y〉 =

〈π(g−1)x, y〉 = 0; therefore, π(g)y ∈ X⊥. �

We are ready to prove a version of Maschke’s theorem for finite dimensional

representations of finite groups.

Theorem 1.3.8 (Maschke’s theorem). Every finite dimensional unitary represen-

tation of a finite group is completely reducible.

Proof. Let (H, π) be a representation of a finite group G with dimension n <∞. If

π is irreducible we are done; otherwise, let X1 be a nontrivial invariant subspace of

π. By Lemma 1.3.7, X2 := X⊥1 is also an invariant subspace of π. Letting π1 and π2

be the restrictions of π to X1 and X2 respectively, we have π = π1⊕π2, dimX1 < n,

and dimX2 < n. Proceeding inductively we obtain a sequence of representations of

strictly decreasing dimension which must terminate and yield a decomposition of π

into a direct sum of irreducible representations. �

If (H, π) is a representation, then we let Aπ denote the algebra of operators

on H generated by {π(g)}g∈G. When G is finite we have

Aπ =

{∑
g

agπ(g) : {ag}g∈G ⊂ C

}
.
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There is a useful lemma that describes the commutant of an irreducible representa-

tion.

Lemma 1.3.9 (Schur’s lemma, Lemma 3.5 of [19]).

1. A unitary representation (H, π) is irreducible if and only if A′π contains only

scalar multiples of the identity.

2. Suppose T is an intertwining operator for irreducible representations (H1, π1)

and (H2, π2) of G. If π1 and π2 are inequivalent, then T = 0.

�

1.3.2 Character Theory

Throughout this section G is a finite group. It will be convenient for us to define

a normalized scalar product on L2(G) by scaling Haar measure on G such that the

measure of the entire group is 1. That is, on L2(G) define the scalar product (·|·) by

(f1|f2) =
1

|G|
∑
g∈G

f1(g)f2(g).

This scalar product defines a norm equivalent to the usual norm on L2.

Definition 1.3.10 (Characters). Let (H, π) be a representation of G. The character

of π is the function χπ on G taking complex values defined by

∀g ∈ G, χπ(g) = Tr(π(g)),

where Tr(π(g)) is the trace of π(g). The irreducible characters of G is the set of

characters of inequivalent irreducible representations of G.
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The trace of a product of matrices is invariant under cyclic permutations. This

implies equivalent representations have the same character and on each conjugacy

class the function χπ is constant.

Definition 1.3.11 (Class function). A class function on G is a function constant

on each conjugacy class of G. The class functions form a subspace of L2(G).

The following theorems are standard facts about characters.

Theorem 1.3.12 (Theorem 3.6 of [32]). The irreducible characters form an or-

thonormal basis of the vector space of class functions. �

That the irreducible characters form an orthogonal set in L2(G) implies there

are at most |G| irreducible characters. Consequently, there are finitely many in-

equivalent irreducible representations for any finite group G. Furthermore, the vec-

tor space of class functions clearly has dimension equal to the number of conjugacy

classes of G. Therefore, the number of irreducible characters, and equivalence classes

of irreducible representations, of a finite group is equal to the number of conjugacy

classes of that group.

Let N be the number of conjugacy classes of G. We denote by π1, π2, . . . , πN

the inequivalent irreducible representations of G. More precisely, each πi is a choice

of representative from an equivalence class of irreducible representations of G.

Theorem 1.3.13 (Theorem 2.15 of [32]). Let π be a representation of G and χπ its

character. Then

π =
N⊕
i=1

miπi,
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where

mi = (χπ|χπi).

�

Definition 1.3.14 (Isotypic components). Let (H, π) be a representation of G. If

(H, π) admits the decomposition

π = m1π1 ⊕m2π2 ⊕ . . .⊕mNπN ,

H = H1 ⊕H2 ⊕ . . .⊕HN ,

where Hi = miKi and π|Ki
= πi, i.e., Hi is the direct sum of mi copies of Ki and

π acts on Ki as πi. Then the nonnegative integer mi is the multiplicity of πi in π,

miπi is the isotypic component of type πi of π or the i-th isotypic component, and

Hi is the support of the i-th isotypic component. If we let Ki,j = Ki for 1 ≤ j ≤ mi,

then H has the decomposition

H =
N⊕
i=1

mi⊕
j=1

Ki,j,

and the restriction of π to Ki,j is πi.

As consequences of Theorem 1.3.13 we have that the decomposition of a repre-

sentation into its isotypic components is unique up to order and two representations

with the same character have the same isotypic decomposition and are equivalent.

1.4 Frames

The setting for our later chapters is frame theory. Frames are a generalization

of orthonormal bases where we relax Parseval’s identity to allow for overcomplete-
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ness. Frames were first introduced in 1952 by Duffin and Schaeffer [17] and have

become the subject of intense study since the 1980s. Christensen’s book [11] con-

tains a succinct overview of elementary frame theory, and Heil’s book [26] is an

excellent introduction to basis theory and a foundation for studying Frames. We

also recommend the introduction to finite frame theory [9].

Definition 1.4.1 (Frame). Let H be a separable Hilbert space. A sequence Φ =

{ϕj}j∈J (finite or countably infinite) of elements of H is a frame if there are positive

constants A and B such that

∀x ∈ H, A ‖x‖2 ≤
∑
j∈J

|〈x, ϕj〉|2 ≤ B ‖x‖2 . (1.2)

The optimal constants, the supremum over all such A and infimum over all such B,

are called the lower and upper frame bounds respectively. A λ-tight frame (a λ-TF)

is a frame with frame bounds A = B = λ, and if A = B = 1 the frame is Parseval

tight. A frame is equal-norm (a ENF) if all the elements in the frame sequence have

the same norm and unit-norm (a UNF) if all the elements have norm 1. A sequence

of elements of H satisfying an upper frame bound is a Bessel sequence.

Remark 1.4.2. The series in (1.2) is an absolutely convergent series of positive num-

bers; and so, any reordering of the sequence of frame elements or reindexing by

another set of the same cardinality will remain a frame. We allow for repetitions

of vectors in a frame so that strictly speaking the set of vectors, which we also call

Φ, is a multiset. We will index frames by either an arbitrary set (such as J in the

definition) or the positive integers when it is convenient to do so.
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Remark 1.4.3. Geometrically pleasing examples of finite equal-norm tight frames

abound, e.g., the vertices of the Platonic solids. Finite ENTFs also have an inter-

esting characterization as the minima of a potential energy function, see [6] for the

details of this result.

Let Φ = {ϕj}j∈J be a frame for H. We define four operators associated with

every frame; these operators are crucial to frame theory and will be used extensively.

The analysis operator L : H → `2(J) is defined by

Lx = {〈x, ϕj〉}j∈J .

Inequality (1.2) ensures that the analysis operator L is bounded and ‖L‖op ≤
√
B.

The adjoint of the analysis operator is the synthesis operator L∗ : `2(J) → H, and

it is defined by

L∗a =
∑
j∈J

ajϕj.

From Hilbert space theory, we know that any bounded linear operator T on H

satisfies ‖T‖op = ‖T ∗‖op; therefore, the synthesis operator L∗ is bounded and

‖L∗‖op ≤
√
B.

The frame operator is the map S : H → H defined as S = L∗L, i.e.,

∀x ∈ H, Sx =
∑
j∈J

〈x, ϕj〉ϕj.

We will go into detail in describing S; first,

∀x ∈ H, 〈Sx, x〉 =
∑
j∈J

|〈x, ϕj〉|2 .

Thus, S is a positive and self-adjoint operator, and (1.2) can be rewritten as

∀x ∈ H, A ‖x‖2 ≤ 〈Sx, x〉 ≤ B ‖x‖2
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or, more compactly,

AI ≤ S ≤ BI.

It follows that S is invertible (Lemma 3.2.2 in [13]), S is a multiple of the identity

precisely when Φ is a tight frame, and

B−1I ≤ S−1 ≤ A−1I. (1.3)

Hence, S−1 is a positive self-adjoint operator and has a square root S−1/2 (Theorem

12.33 in [36]). This square root can be written as a power series in S−1; consequently,

it commutes with every operator that commutes with S−1 (in particular S). Utilizing

these facts we can prove a theorem that tells us frames share an important property

with orthonormal bases: a reconstruction formula.

Theorem 1.4.4 (Frame reconstruction formula). Let H be a separable Hilbert space,

and let Φ = {ϕj}j∈J be a frame for H with frame operator S. Then

∀x ∈ H, x =
∑
j∈J

〈x, ϕj〉S−1ϕj =
∑
j∈J

〈
x, S−1ϕj

〉
ϕj =

∑
j∈J

〈
x, S−1/2ϕj

〉
S−1/2ϕj.

Proof. The proof is three computations. From I = S−1S, we have

∀x ∈ H, x = S−1Sx = S−1
∑
j∈J

〈x, ϕj〉ϕj =
∑
j∈J

〈x, ϕj〉S−1ϕj;

from I = SS−1, we have

∀x ∈ H, x = SS−1x =
∑
j∈J

〈
S−1x, ϕj

〉
ϕj =

∑
j∈J

〈
x, S−1ϕj

〉
ϕj;

and from I = S−1/2SS−1/2, it follows that

∀x ∈ H, x = S−1/2SS−1/2x = S−1/2
∑
j∈J

〈
S−1/2x, ϕj

〉
ϕj =

∑
j∈J

〈
x, S−1/2ϕj

〉
S−1/2ϕj.

�
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From the frame reconstruction formula and (1.3), it follows that {S−1ϕj}j∈J

is a frame with frame bounds B−1 and A−1 and {S−1/2ϕj}j∈J is a Parseval tight

frame.

Definition 1.4.5 (Canonical dual). Let Φ = {ϕj}j∈J be a frame for a separable

Hilbert space H with frame operator S. The frame S−1Φ = {S−1ϕj}j∈J is called the

canonical dual frame of Φ. The frame S−1/2Φ = {S−1/2ϕj}j∈J is called the canonical

tight frame of Φ.

The Gramian operator is the map G : `2(J) → `2(J) defined as G = LL∗. If

{ej}j∈J is the standard orthonormal basis for `2(J), then

∀a = {aj}j∈J ∈ `2(J), 〈Ga, ek〉 =
∑
j∈J

aj 〈ϕj, ϕk〉 . (1.4)

The following theorem, a weak variant of Naimark’s dilation theorem, tells us

every Parseval tight frame is the projection of an orthonormal basis in a larger space.

The general form of Naimark’s dilation theorem is a result for an uncountable family

of increasing operators on a Hilbert space satisfying some additional conditions. It

states that it is possible to construct an embedding into a larger space such that the

dilation of the operators to this larger space commute and are a resolution of the

identity. For an excellent description of this dilation problem and an independent

geometric proof of a finite version of Naimark’s dilation theorem we recommend an

article by C. H. Davis, [14]. To see the connection of this general theorem with the

one below, consider the finite sums of the rank one projections onto the subspaces

spanned by elements of a Parseval frame.
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Theorem 1.4.6 (Naimark’s Theorem, Theorem 2.1 of Casazza and Kovačević [8],

cf. Naimark [1] and Han and Larson [25]). A set Φ = {ϕj}j∈J in a Hilbert space

H is a Parseval tight frame for H if and only if there is a larger Hilbert space

K containing H and an orthonormal basis {ej}j∈J for K such that the orthogonal

projection P of K onto H satisfies

∀j ∈ J, Pej = ϕj.

Proof. Let Φ = {ϕj}j∈J be a Parseval tight frame for H, let K = `2(J), and let L

be the analysis operator of Φ. Since Φ is a Parseval tight frame for H, we have

‖Lx‖2 =
∑
j∈J

|〈x, ϕj〉|2 = ‖x‖2 .

Thus, L is an isometry, and we can embedH into K by identifyingH with L(H). Let

P be the orthogonal projection fromK onto L(H). Denote the standard orthonormal

basis for K by {ej}j∈J . We claim that Pen = Lϕn. For any m ∈ J , we have

〈Lϕm, P en〉 = 〈PLϕm, en〉 = 〈Lϕm, en〉

= 〈ϕm, ϕn〉 = 〈Lϕm, Lϕn〉 . (1.5)

In (1.5) we use the fact that P is an orthogonal projection for the first equality,

that Lϕm is in the range of P for the second, the definition of L and {ej}j∈J for the

third, and that L is an isometry for the last. Rearranging (1.5) yields

〈Lϕm, P en − Lϕn〉 = 0.

Since the vectors Lϕm span L(H) it follows that Pen−Lϕn ⊥ L(H), but Pen−Lϕn ∈

L(H). Thus, Pen − Lϕn = 0 as claimed.
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For the converse, assume thatH ⊂ K, {ej}j∈J is an orthonormal basis for K, P

is the orthogonal projection of K onto H, and Pej = ϕj. We claim that Φ = {ϕj}j∈J

is a Parseval tight frame for H. For any x ∈ K, we have Parseval’s identity

‖x‖2 =
∑
j∈J

|〈x, ej〉|2 .

For x ∈ H, we additionally have Px = x. Thus,

∀x ∈ H, ‖x‖2 =
∑
j∈J

|〈x, ej〉|2 =
∑
j∈J

|〈Px, ej〉|2 =
∑
j∈J

|〈x, Pej〉|2 ,

i.e., {ϕj}j∈J = {Pej}j∈J is a Parseval tight frame for H. �

Remark 1.4.7. If Φ is a Parseval tight frame, then L∗L = S = I, so G2 = LL∗LL∗ =

LL∗ = G. Hence, G is a projection, and since it is self-adjoint it is an orthogonal

projection. Furthermore, Gej = LL∗ej = Lϕj. So the orthogonal projection P onto

L(H) from Naimark’s theorem is precisely G.

When H is finite dimensional (Cd or Rd) and Φ = {ϕj}N−1
j=0 , each of the above

operators can be realized as multiplication on the left by a matrix. The synthesis

operator is the d×N matrix with the frame elements as its columns

L∗ =

(
ϕ0 ϕ1 . . . ϕN−1

)
,

and the analysis operator is the N × d matrix with the conjugate transpose of the

frame elements as its rows

L =



ϕ∗0

ϕ∗1

...

ϕ∗N−1


.
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The frame operator and Gramian are the proper products of these matrices. From

direct multiplication of LL∗ or (1.4) it is apparent that the Gramian or Gram matrix

has entries

Gjk = 〈ϕk, ϕj〉 .

1.5 Outline of Results

In Section 2.1, we define the vector-valued discrete Fourier transform (DFT),

and in Section 2.2 we prove the invertibility of the vector-valued DFT and its mod-

ulation and translation properties. Leveraging this theory, in Section 2.3, we define

the discrete vector-valued ambiguity function Adp, a goal we introduce at the begin-

ning of Chapter 2. In Section 2.5.2, we expand on the vector-valued DFT theory by

proving an uncertainty principle, and in Section 2.6 we describe the Banach algebra

from which the vector-valued DFT arises.

In Chapter 3, we introduce the notion of frame multiplication, which is mo-

tivated by the vector-valued theory of Chapter 2. In Section 3.2, we define frame

multiplication and prove necessary and sufficient conditions for an operation to de-

fine a frame multiplication. We also define the multiplications of a frame and prove

equivalent tight frames share the same set of multiplications while the converse is

false. In particular, there exists an uncountable family of inequivalent tight frames

all of which share the same frame multiplications. In Section 3.3, we prove a neces-

sary and sufficient condition on the Gramian of a frame for a quasigroup operation

to be a frame multiplication.
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In Chapter 4, we specialize to the case of group frame multiplications. In

Section 4.2, we prove the equivalence of G-frames with the family of frames for which

an abelian group G defines a frame multiplication. We then describe the equivalence

classes of frames and the associated bilinear products for which an abelian group

defines a frame multiplication. In Section 4.3, we generalize to the case of non-

abelian groups. In Section 4.3.2, we characterize frames for which an arbitrary

group defines a frame multiplication as those whose Gramian is in the commutant

of the regular representations. We then prove an explicit formula for these Gramian

operators as finite sums of certain projections. In particular, we show that for any

group G, there are only finitely many inequivalent tight frames for which G defines

a frame multiplication. We also give a formula for the dimensions in which such

frames exist. In Section 4.3.3, we prove the equivalence of frames for which G defines

a frame multiplication with the family of central G-frames as defined by Vale and

Waldron in [41].
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Chapter 2

Vector-valued Harmonic Analysis

In 1953, P. M. Woodward [43] defined the narrow band radar ambiguity func-

tion or, simply, ambiguity function. The ambiguity function is a two-dimensional

function of delay t and Doppler frequency γ that measures the correlation between

a waveform w and its Doppler distorted version. The information given by the

ambiguity function is important for practical purposes in radar. In fact, the wave-

form design problem is the problem of designing waveforms with “good” ambiguity

functions for practical purposes. The ambiguity function A(w) of w ∈ L2(R) is

A(w)(t, γ) =

∫
w(s+ t)w(s)e−2πisγ ds (2.1)

for (t, γ) ∈ R2. We shall only be interested in the discrete version of (2.1). For an

N -periodic function u : Z/NZ→ C the discrete periodic ambiguity function is

Ap(u)(m,n) =
1

N

N−1∑
k=0

u(m+ k)u(k)e−2πikn/N ,

for (m,n) ∈ Z/NZ× Z/NZ.

Remark 2.0.1. If v, w ∈ L2(R), the narrow band cross-ambiguity function A(v, w) of

v and w is

A(v, w)(t, γ) =

∫
v(s+ t)w(s)e−2πisγ ds

= e2πitγ

∫
v(s)w(s− t)e−2πisγ ds. (2.2)
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Evidently, A(w) = A(w,w), so that the ambiguity function is a special case of the

cross-ambiguity function. From (2.2) we see that the cross-ambiguity function is

the short-time Fourier transform (STFT) of v with window w multiplied by e2πitγ,

which has modulus 1; hence, |A(v, w)| is the spectrogram of v.

For u : Z/NZ → Cd, Benedetto and Donatelli [5] defined the discrete vector-

valued ambiguity function Adp(u) : Z/NZ×Z/NZ→ Cd by observing the following.

Given u : Z/NZ→ Cd. If d = 1, then we can write Ap(u) as

Ap(u)(m,n) =
1

N

N−1∑
k=0

〈u(m+ k), u(k)Wkn〉

=
1

N

N−1∑
k=0

〈
τ−mu(k), F−1(τnû)(k)

〉
, (2.3)

where Wn = e2πin/N , τk is the usual translation operator, and F−1 is the inverse

Fourier transform on Z/NZ. Note that {Wn}N−1
n=0 is a tight frame for C. If instead

u is vector-valued, i.e., d > 1, then we may define the discrete periodic ambiguity

function of u in two ways: as a C-valued function or as a Cd-valued function.

First, we consider the case of a C-valued ambiguity function. Inspired by (2.3),

for u : Z/NZ→ Cd, we define A1
p(u) : Z/NZ× Z/NZ→ C by

A1
p(u)(m,n) =

1

N

N−1∑
k=0

〈u(m+ k), u(k) ∗ ϕkn〉 (2.4)

where {ϕn}N−1
n=0 ⊂ Cd and ∗ is a vector multiplication. Presented with this definition,

a natural question is: how do we find a sequence of vectors {ϕn} and a multiplication

∗ such that (2.4) makes sense and is a meaningful ambiguity function?

Motivated by the fact that WmWn = Wm+n, Benedetto and Donatelli make

the following ambiguity function assumptions. They assume there is a sequence
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{ϕn}N−1
n=0 ⊆ Cd and multiplication ∗ : Cd × Cd → Cd such that

ϕm ∗ ϕn = ϕm+n, (2.5)

for m,n ∈ Z/NZ. Next, in order to deal with the product u(k) ∗ ϕkn in (2.4),

they assume that {ϕn}N−1
n=0 is a tight frame for Cd and that the multiplication ∗ is

bilinear. This allows u(k) ∗ ϕkn to be carried out using the frame expansion of u(k)

and (2.5). It was known that there exist tight frames satisfying these assumptions,

e.g., DFT frames, but the question of classifying them was open. In Section 4.2, we

characterize all such tight frames and multiplications.

Second, we define the vector-valued version of the ambiguity function Adp as

follows: for u : Z/NZ→ Cd, define Adp(u) : Z/NZ× Z/NZ→ Cd by

Adp(u)(m,n) =
1

N

N−1∑
k=0

u(m+ k) ∗ u(k) ∗ ϕkn,

where {ϕn}N−1
n=0 and ∗ abide by the ambiguity function assumptions. In Section 2.3,

we shall see that this definition is compatible with that of Ap(u) in (2.3). Before we

can make this connection we require an extension of the discrete Fourier transform

to the vector-valued setting.

2.1 Extending the Discrete Fourier Transform

Consider the locally compact abelian group Z/NZ. The characters of Z/NZ

are the functions {γm}N−1
m=0 defined by n 7→ e2πimn/N , so that the dual (Z/NZ)̂ is

isomorphic to Z/NZ under the identification γm 7→ m. Hence, the Fourier transform
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on `2(Z/NZ) ' CN is a linear map that can be expressed as

x̂(m) =
N−1∑
n=0

x(n)e−2πimn/N . (2.6)

Apparently, the Fourier transform has matrix representation

D = (e−2πimn/N)N−1
m,n=0. (2.7)

The Fourier transform on CN is called the discrete Fourier transform (DFT), and the

matrixD of this transform is commonly called the DFT matrix. The DFT has uses in

digital signal processing and a plethora of numerical algorithms. Part of the reason

why its use is so ubiquitous is that fast algorithms exist for its computation. The

Fast Fourier Transform (FFT) allows the computation of the DFT to take place in

O(N logN) operations; this is a significant boost over the O(N2) operations it would

take to compute via (2.6). The fundamental paper on the FFT is due to Cooley

and Tukey [12], in which they describe what is now referred to as the Cooley-Tukey

FFT algorithm. The algorithm employs a divide and conquer method to break the

N dimensional DFT into smaller DFTs that may then be further broken down,

computed, and reassembled. For a more extensive description of the DFT, FFT,

and their relationship to sampling and the Fourier transform on `1(Z) see [4].

Definition 2.1.1 (DFT frame). Let N ≥ d, and let s : Z/dZ→ Z/NZ be injective.

The rows Φ = {ϕm}N−1
m=0 of the N × d matrix

(
e2πims(n)/N

)
m,n

form an equal-norm tight frame for Cd called a DFT frame. The name comes

from the fact that the elements of Φ are projections of the rows of the conjugate
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of the ordinary DFT matrix (2.7). That Φ is an equal-norm tight frame follows

from Naimark’s Theorem (Theorem 1.4.6) and the fact that the DFT matrix is an

orthogonal matrix.

Definition 2.1.2 (Vector-valued discrete Fourier transform). Let {ϕk}N−1
k=0 be a

DFT frame for Cd. Given u : Z/NZ → Cd, we define the vector-valued discrete

Fourier transform (vector-valued DFT) of u by

∀p ∈ Z/NZ, F (u)(p) = û(p) =
N−1∑
m=0

u(m)ϕ−mp, (2.8)

where the product u(m)ϕ−mp is pointwise multiplication. We have that

F : `2(Z/NZ× Z/dZ)→ `2(Z/NZ× Z/dZ)

is a linear operator.

We will carry the convention used in (2.8) through the rest of the chapter, i.e.,

the juxtaposition of vectors of equal dimension is the pointwise product of those

vectors. We naturally extend this to functions whose values are vectors. For two

functions u, v ∈ `2(Z/NZ × Z/dZ), we let uv be the coordinate-wise, where the

coordinates are in Z/NZ, product of u and v, i.e.,

∀m ∈ Z/NZ, (uv)(m) := u(m)v(m),

where the product on the right is pointwise multiplication of vectors in `2(Z/dZ).

Remark 2.1.3.

(1) We write u ∈ `2(Z/NZ × Z/dZ) as a function of two arguments so that

u(m)(n) ∈ C. With this notation we can think of u and û as N × d matrices with

entries u(m)(n) and û(p)(q) respectively.
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(2) We have

û(p)(q) =

(
N−1∑
m=0

u(m)ϕ−pm

)
(q)

=

(
N−1∑
m=0

u(m)(q)ϕ−pm(q)

)
.

From this we see that û(p)(q) depends only on {u(m)(q)}N−1
m=0, i.e., when thought of

as matrices the q-th column of û depends only on the q-th column of u.

2.2 Inversion, Translation, and Modulation

The vector-valued DFT shares many properties with the regular DFT. Under

certain conditions it can be shown to be invertible, this is the contents of Theorem

2.2.1, the expected relationship between translation on the “time” side and mod-

ulation on the “frequency” side holds, and in Section 2.5 we prove an uncertainty

principle for the vector-valued DFT.

Theorem 2.2.1 (Andrews, Benedetto, Donatelli). The vector-valued discrete Fourier

transform is invertible if and only if s, the function defining the DFT frame, has the

property that

∀n ∈ Z/dZ, (s(n), N) = 1.

The inverse is given by

∀ m ∈ Z/NZ, u(m) = (F−1û)(m) =
1

N

N−1∑
p=0

û(p)ϕmp.

In this case, we also have that F ∗F = FF ∗ = NI, where I is the identity operator.
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Proof. We first show the forward direction. Suppose there is n0 ∈ Z/dZ such that

(s(n0), N) 6= 1. Then there exists j, l,M ∈ N such that j > 1, s(n0) = jl, and

N = jM . Define a matrix A by

A := (e2πimks(n0)/N)N−1
m,k=0 = (e2πimkl/M)N−1

m,k=0.

A has rank strictly less than N since the 0-th and M -th rows are all 1’s. Therefore

we may choose a vector v ∈ CN orthogonal to the rows of A. Define u : Z/NZ→ Cd

by

u(m)(n) =


v(m) if n = n0

0 otherwise.

Then

∀n 6= n0, û(m)(n) =
N−1∑
k=0

u(k)(n)ϕ−mk(n) =
N−1∑
k=0

0 · ϕ−mk(n) = 0.

While for n = n0,

û(m)(n0) =
N−1∑
k=0

u(k)(n0)ϕ−mk(n0)

=
N−1∑
k=0

u(k)(n0)e−2πimks(n0)/N

=
N−1∑
k=0

u(k)(n0)e−2πimkl/M

=
〈
u(·)(n0), e2πim(·)l/M〉

·

=
〈
v, e2πim(·)l/M〉

·

= 0.

The final equality follows from the fact that v is orthogonal to the rows of A.
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Hence, the vector-valued Fourier transform given by s has non-trivial kernel and is

not invertible.

We prove the converse and the formula for the inverse with a direct calculation.

We compute

N−1∑
n=0

û(n)ϕmn =
N−1∑
n=0

(
N−1∑
k=0

u(k)ϕ−kn

)
ϕmn

=
N−1∑
k=0

(
u(k)

(
N−1∑
n=0

ϕn(m−k)

))
.

We have the r-th component of the last summation is

N−1∑
n=0

ϕn(m−k)(r) =
N−1∑
n=0

e2πin(m−k)s(r)/N

=


N if (m− k)s(r) ≡ 0 mod N

0 if (m− k)s(r) 6≡ 0 mod N.

Since (s(r), N) = 1, the first cases occurs if and only if k = m. Continuing with the

previous calculation, we have

N−1∑
k=0

(
u(k)

(
N−1∑
n=0

ϕn(m−k)

))
= Nu(m).
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Finally, we compute the adjoint of F .

〈Fu, v〉 =
N−1∑
m=0

d−1∑
n=0

û(m)(n)v(m)(n)

=
N−1∑
m=0

d−1∑
n=0

(
N−1∑
k=0

u(k)(n)ϕ−mk(n)

)
v(m)(n)

=
N−1∑
m=0

d−1∑
n=0

(
N−1∑
k=0

u(k)(n)e−2πimks(n)/N

)
v(m)(n)

=
N−1∑
k=0

d−1∑
n=0

(
N−1∑
m=0

v(m)(n)e2πimks(n)/N

)
u(k)(n)

=
N−1∑
k=0

d−1∑
n=0

u(k)(n)

(
N−1∑
m=0

v(m)(n)ϕmk(n)

)

= 〈u, F ∗v〉 .

Therefore, F ∗ is defined by

(F ∗v)(k) =
N−1∑
m=0

v(m)ϕmk,

and F ∗ = NF−1. �

Given the above theorem, we may define the unitary vector-valued discrete

Fourier transform F by the formula

F =
1√
N
F.

With this definition, we have

FF∗ = F∗F = I,

and F is unitary as described.

Definition 2.2.2 (Translation and modulation). Let u : Z/NZ → Cd, and let
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{ϕk}N−1
k=0 be a DFT frame for Cd. For each j ∈ Z/NZ, define the translation opera-

tors τj : `2(Z/NZ× Z/dZ)→ `2(Z/NZ× Z/dZ) by

τju(m) = u(m− j)

and the modulations ϕj : Z/NZ→ Cd by

ϕj(k) = ϕjk.

The usual translation and modulation properties of the Fourier transform hold.

Proposition 2.2.3. Let u : Z/NZ→ Cd, and let {ϕk}N−1
k=0 be a DFT frame for Cd

with associated vector-valued Fourier transform F . The following translation and

modulation properties hold:

(a) F (τju) = ϕ−jû,

(b) F (ϕju) = τjû.

Proof. (a) We compute

τ̂ju(n) =
N−1∑
m=0

τju(m)ϕ−mn

=
N−1∑
m=0

u(m− j)ϕ−mn

=

N−1−j∑
k=−j

u(k)ϕ−(k+j)n

=
N−1∑
k=0

u(k)ϕ−kn−jn

= ϕ−jn

(
N−1∑
k=0

u(k)ϕ−kn

)

= ϕ−jnû(n).
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The third equality follows by setting k = m − j, the fourth by reordering the sum

and noting that the index of summation is modulo N , and the fifth follows from

ϕj+k = ϕjϕk and bilinearity of pointwise products.

(b) We compute

ϕ̂ju(n) =
N−1∑
m=0

(ϕju)(m)ϕ−mn

=
N−1∑
m=0

ϕjmu(m)ϕ−mn

=
N−1∑
m=0

u(m)ϕ−m(n−j)

= û(n− j).

The third equality follows from commutativity and that ϕj+k = ϕjϕk. �

2.3 The Vector-valued Ambiguity Function

We return to the problem of defining the vector-valued ambiguity function,

Adp. Let {ϕk}N−1
k=0 be a DFT frame for Cd, and let u : Z/NZ → Cd. Recall our

earlier definition:

Adp(u)(m,n) =
1

N

N−1∑
k=0

u(m+ k) ∗ u(k) ∗ ϕkn. (2.9)

Recognizing that for a DFT frame the multiplication ∗ such that ϕm ∗ ϕn = ϕm+n

is pointwise multiplication and utilizing the modulation functions ϕj(k), we can

rewrite (2.9) as

Adp(u)(m,n) =
1

N

N−1∑
k=0

τ−mu(k)u(k)ϕn(k).
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Furthermore, the modulation and translation properties of the vector-valued DFT,

and Proposition 2.2.3, imply

Adp(u)(m,n) =
1

N

N−1∑
k=0

τ−mu(k)F−1 (τnû) (k)

=
1

N

N−1∑
k=0

{
τ−mu(k), F−1 (τnû) (k)

}
,

where {·, ·} is the generalized inner product {u, v} := uv for u, v ∈ Cd. Thus,

utilizing DFT frames our definition (2.9) gives the expected relationship between the

vector-valued ambiguity function and the vector-valued discrete Fourier transform.

This is also compatible with our view of defining the ambiguity function in the

context of the STFT.

2.4 An Alternative Description of the Vector-valued DFT

In this brief section we describe a different way of viewing the vector-valued

discrete Fourier transform that makes some of the above properties more apparent.

Given N ∈ N, define matrices D` by the formula

D` := (e−2πimn`/N)N−1
m,n=0.

By definition of the vector-valued discrete Fourier transform,

û(p)(q) =

(
N−1∑
m=0

u(m)(q)ϕ−pm(q)

)

=

(
N−1∑
m=0

u(m)(q)e−2πipms(q)/N

)

=
(
Ds(q)u(·)(q)

)
(p).
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That is, the vector û(·)(q) is equal to the vector Ds(q)u(·)(q). In other words, we

get û by applying the matrix Ds(q) to the q–th column of u for each 0 ≤ q ≤ d− 1.

Therefore, F is invertible if and only if each matrix Ds(q) is invertible.

The rows of D` are a subset of the rows of the regular DFT matrix, and each

row of the DFT matrix is a character of Z/NZ. Taken as a collection, the characters

form the dual group (Z/NZ)̂ ' Z/NZ under pointwise multiplication. With this

group operation and the fact that

∀m,n ∈ Z/NZ, e−2πimn`/N = (e−2πin`/N)m,

we see the rows of D` are the orbit of some element γ ∈ (Z/NZ)̂ repeated |γ|/N

times. Hence, D` is invertible if and only if γ generates the entire dual group.

From the theory of cyclic groups, γ is a generator of (Z/NZ)̂ if and only if γ =

(e−2πin`/N)N−1
n=0 for some ` relatively prime to N . Therefore, F is invertible if and

only if s(q) is relatively prime to N for each q.

Example 2.4.1. Let N = 4 and ω = e−2πi/4. We compute some of the matrices D`.

D1 =



1 1 1 1

1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω


D2 =



1 1 1 1

1 ω2 1 ω2

1 1 1 1

1 ω2 1 ω2


D3 =



1 1 1 1

1 ω3 ω2 ω

1 ω2 1 ω2

1 ω1 ω2 ω3


It is easy to see that D1 and D3 are invertible while D2 is not invertible. In each

case the matrix Di is generated by pointwise powers of its second row, which have

orders 4, 2, and 4 respectively.
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2.5 Uncertainty Principles

Loosely speaking, inequalities involving both a function f and its Fourier trans-

form f̂ are called uncertainty principles. In their excellent survey [20], Folland and

Sitaram sum up the family of theorems in a single meta theorem:

A non-zero function and its Fourier transform cannot both be sharply

localized.

The most famous of these theorems is the classical Heisenberg uncertainty principle

for L2(Rd). The Heisenberg uncertainty principle has an interpretation in quan-

tum mechanics where it asserts a limit to the precision in which the position and

momentum of a particle may be known simultaneously. The theorem is named for

theoretical physicist Werner Heisenberg who first developed the associated physical

ideas in 1927 [27]. Donoho and Stark proved in [16] a refinement of the classical

uncertainty principle. They showed that a function and its Fourier transform cannot

both be highly concentrated on any two “sets of concentration”. The Donoho-Stark

uncertainty principle has a natural discrete analog, and in [39] Tao proved a refine-

ment of this for the group Z/pZ when p is a prime. For an overview of the role of

uncertainty principles in time-frequency analysis we recommend [22].

2.5.1 Self-adjoint Operators and the Classical Uncertainty Principle

We begin our background material on uncertainty principles with the classical

Heisenberg uncertainty principle for dimension d = 1.
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Theorem 2.5.1 (Heisenberg uncertainty principle). If f ∈ L2(R) and a, b ∈ R,

then (∫
(x− a)2|f(x)|2 dx

)1/2(∫
(γ − b)2|f̂(γ)|2 dγ

)1/2

≥ 1

4π
‖f‖2

2 .

Equality holds if and only if f(x) = z0e
2πibxe−c(x−a)2 for some z0 ∈ C and c > 0.

The theorem can be proved using a combination of integration by parts, the

Cauchy-Schwarz inequality, and Plancherel’s theorem, but we shall take a higher

level approach which generalizes to the vector-valued discrete Fourier transform.

For two linear operators A and B on a Hilbert space H, we denote their

commutator by

[A,B] = AB −BA.

The expected value of a self-adjoint operator A in a state a is defined by the expres-

sion

〈A〉 = 〈Aa, a〉,

and since A is self-adjoint we have

〈A2〉 = 〈Aa,Aa〉 = ‖Aa‖2 .

Lemma 2.5.2. Let A and B be self-adjoint operators on a Hilbert space H. Define

the self-adjoint operators T = AB + BA (the anti-commutator) and S = 1
i
[A,B].

Then

〈A2〉〈B2〉 ≥ 1

4

(
〈a, Ta〉2 + 〈a, Sa〉2

)
. (2.10)

Equality holds in (2.10) if and only if there exists z0 ∈ C such that Aa = z0Ba.
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Proof. Applying the Cauchy-Schwarz inequality and self-adjointness of A we obtain

〈A2〉〈B2〉 = ‖Aa‖2 ‖Ba‖2 ≥ |〈Aa,Ba〉|2 = |〈a,ABa〉|2 . (2.11)

By definition of T and S, we have AB = 1
2
T + i

2
S. Therefore,

|〈a,ABa〉|2 =
1

4
|〈a, (T + iS)a〉|2

=
1

4
|〈a, Ta〉 − i 〈a, Sa〉|2

=
1

4

(
〈a, Ta〉2 + 〈a, Sa〉2

)
. (2.12)

The final equality holds because 〈a, Ta〉 and 〈a, Sa〉 are real, and (2.10) follows

from (2.11) and (2.12). Lastly, equality holds if and only if we have equality in

the application of Cauchy-Schwarz, and this occurs when Aa and Ba are linearly

dependent. �

Lemma 2.5.2 implies the more frequently used inequality for self-adjoint oper-

ators A and B:

‖Aa‖ ‖Ba‖ ≥ 1

2
|〈[A,B]a, a〉| . (2.13)

Indeed, dropping the anti-commutator term from the right side of (2.10) leaves

1

4
〈a, Sa〉2 =

1

4
|〈[A,B]a, a〉|2 .

We have equality in (2.13) when Aa and Ba are linearly dependent (as above) and

〈a, Ta〉 = 0, i.e., when 〈Aa,Ba〉 is completely imaginary. This weaker form of (2.10)

is enough to prove Theorem 2.5.1, and thus the original is usually neglected; we,

however, will make use of it.
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Define the position and momentum operators respectively by

Qf(x) = xf(x), Pf(x) =
1

2πi
f ′(x).

Q and P are densely defined linear operators on L2(R); we denote the domain of an

operator A by D(A). When employing Hilbert space operator inequalities, such as

(2.10) and (2.13), they are valid only for a ∈ H in the domain of all the operators

in question, i.e., A, B, AB, and BA. We do not run into a problem with this here,

but in general it can yield the inequalities useless, see [20] for a discussion of this

problem. We are now ready to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Let Q and P be as defined above. Then for f, g ∈ D(Q),

〈Qf, g〉 =

∫
xf(x)g(x) dx =

∫
f(x)xg(x) dx = 〈f,Qg〉 ,

and for f, g ∈ D(P ),

〈Pf, g〉 =
1

2πi

∫
f ′(x)g(x) dx = − 1

2πi

∫
f(x)g′(x) dx = 〈f, Pg〉 .

Therefore Q and P are self-adjoint. The operators Q − a and P − b are also self-

adjoint and [Q− a, P − b] = [Q,P ]. Thus, (2.13) implies for every f in the domain

of Q, P , QP , and PQ, e.g., f a Schwartz function,

1

2
|〈[Q,P ]f, f〉| ≤ ‖(Q− a)f‖ ‖(P − b)f‖ . (2.14)

For the commutator term we have

[Q,P ]f(x) =
1

2πi
(xf ′(x)− (f ′(x) + xf ′(x))) = − 1

2πi
f(x). (2.15)

Combining (2.14) and (2.15) yields

1

4π
‖f‖2

2 ≤ ‖(Q− a)f‖ ‖(P − b)f‖ .
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It is an elementary fact from Fourier analysis that ( d
dx
f )̂(γ) = 2πiγf̂(γ); applying

this and Plancherel’s theorem to the second term yields

‖(P − b)f‖ =

(∫
(γ − b)2|f̂(γ)|2 dγ

)1/2

,

and Heisenberg’s inequality follows. �

2.5.2 An Uncertainty Principle for the Vector-valued DFT

The uncertainty principle we prove for the vector-valued discrete Fourier trans-

form is an extension of an uncertainty principle proved by Grünbaum for the dis-

crete Fourier transform in [23]. We begin by defining two operators meant to

stand in for the position and momentum operators from Section 2.5.1. Define

P : `2(Z/NZ× Z/dZ)→ `2(Z/NZ× Z/dZ) by the formula

∀m ∈ Z/NZ, P (u)(m) = i(u(m+ 1)− u(m− 1)),

and given a fixed real valued q ∈ `2(Z/NZ×Z/dZ), define Q : `2(Z/NZ×Z/dZ)→

`2(Z/NZ× Z/dZ) by the formula

∀m ∈ Z/NZ, Q(u)(m) = q(m)u(m).

Proposition 2.5.3. The operators P and Q defined above are linear and self-

adjoint.

Proof. Linearity of P and Q and self-adjointness of Q are obvious. To show P is
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self adjoint, let u, v ∈ `2(Z/NZ× Z/dZ). We compute

〈Pu, v〉 =
N−1∑
m=0

〈P (u)(m), v(m)〉

=
N−1∑
m=0

〈i(u(m+ 1)− u(m− 1)), v(m)〉

=
N−1∑
m=0

i 〈u(m+ 1), v(m)〉 − i 〈u(m− 1), v(m)〉

=
N−1∑
m=0

i 〈u(m), v(m− 1)〉 − i 〈u(m), v(m+ 1)〉 (reordering terms)

=
N−1∑
m=0

〈u(m), i(v(m+ 1)− v(m− 1))〉

= 〈u, Pv〉 . �

Define T = QP + PQ and S = 1
i
[Q,P ]. Because our Hilbert space is finite

dimensional, T and S are linear self-adjoint operators defined everywhere. Applying

Lemma 2.5.2 gives an uncertainty principle for the operators Q and P :

∀u ∈ `2(Z/NZ× Z/dZ), 〈Q2〉〈P 2〉 ≥ 1

4

(
〈u, Tu〉2 + 〈u, Su〉2

)
. (2.16)

In this form, (2.16) does not appear to be related to the vector-valued discrete

Fourier transform. We now endeavor to make this connection by finding conve-

nient expressions for each of the terms above and yielding a form of the Heisenberg

inequality for the vector-valued DFT.
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The expected value of Q and P are

〈Q2〉 = 〈Qu,Qu〉

=
N−1∑
m=0

〈Q(u)(m), Q(u)(m)〉

=
N−1∑
m=0

〈q(m)u(m), q(m)u(m)〉

=
N−1∑
m=0

‖q(m)u(m)‖2
`2(Z/dZ)

= ‖qu‖2

and

〈P 2〉 = 〈Pu, Pu〉

= ‖Pu‖2

= ‖i(τ−1u− τ1u)‖2

= ‖F(τ−1u− τ1u)‖2 (F is unitary)

=
∥∥ϕ1û− ϕ−1û

∥∥2
(Proposition 2.2.3)

=
∥∥(ϕ1 − ϕ−1)û

∥∥2
.

ϕ1 and ϕ−1 are the modulation functions ϕj(m) := ϕjm. We record these for future

use.

〈Q2〉 = ‖qu‖2 and 〈P 2〉 =
∥∥(ϕ1 − ϕ−1)û

∥∥2
. (2.17)

We seek expressions for the terms 〈u, Tu〉2 and 〈u, Su〉2. Computing the commutator

and anticommutator of Q and P gives

[Q,P ]u(m) = i(q(m)− q(m+ 1))u(m+ 1)− i(q(m)− q(m− 1))u(m− 1)
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and

(QP + PQ)u(m) = i(q(m) + q(m+ 1))u(m+ 1)− i(q(m) + q(m− 1))u(m− 1).

Recall T = QP + PQ and S = 1
i
[Q,P ]; therefore,

〈u, Tu〉 =

=
N−1∑
m=0

〈u(m), T (u)(m)〉

=
N−1∑
m=0

〈u(m), i(q(m) + q(m+ 1))u(m+ 1)− i(q(m) + q(m− 1))u(m− 1)〉

= i
N−1∑
m=0

〈u(m), (q(m) + q(m− 1))u(m− 1)〉 − 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

= i
N−1∑
m=0

〈(q(m) + q(m− 1))u(m), u(m− 1)〉 − 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

= i
N−1∑
m=0

〈(q(m+ 1) + q(m))u(m+ 1), u(m)〉 − 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

= 2
N−1∑
m=0

= 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉 , (2.18)

and

〈u, Su〉 =

=
N−1∑
m=0

〈u(m), S(u)(m)〉

=
N−1∑
m=0

〈u(m), (q(m)− q(m+ 1))u(m+ 1)− (q(m)− q(m− 1))u(m− 1)〉

=
N−1∑
m=0

〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉 − 〈u(m), (q(m)− q(m− 1))u(m− 1)〉

=
N−1∑
m=0

〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉 − 〈(q(m+ 1)− q(m))u(m+ 1), u(m)〉

= 2
N−1∑
m=0

< 〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉 . (2.19)
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Combining (2.17), (2.18), and (2.19) with inequality (2.16) gives a general uncer-

tainty principle for the vector-valued DFT:

‖qu‖2
∥∥(ϕ1 − ϕ−1)û

∥∥2 ≥

(
N−1∑
m=0

= 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

)2

+

(
N−1∑
m=0

< 〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉

)2

.

The above holds for any real valued q, but to complete the analogy to that of

the classical uncertainty principle we desire the operators Q and P to be unitarily

equivalent via the Fourier transform, in this case, the vector-valued discrete Fourier

transform. Indeed, setting q = i(ϕ1−ϕ−1), we have q(m)(n) = −2 sin(2πms(n)/N)

(q is real-valued) and FP = QF as desired. With this choice of Q we have shown the

following version of the classical uncertainty principle for the vector-valued discrete

Fourier transform.

Theorem 2.5.4 (Uncertainty principle for the vector-valued DFT). Let q = i(ϕ1−

ϕ−1). For every u in `2(Z/NZ× Z/dZ) we have

∥∥(ϕ1 − ϕ−1)u
∥∥2 ∥∥(ϕ1 − ϕ−1)û

∥∥2 ≥

(
N−1∑
m=0

= 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

)2

+

(
N−1∑
m=0

< 〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉

)2

.

�

2.6 The Banach Algebra of the Vector-valued DFT

In this section we define a Banach algebra structure onA = L1(Z/NZ×Z/dZ),

describe the spectrum of this Banach algebra, and show that the Gelfand transform

on A is the vector-valued discrete Fourier transform.
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As described in Section 1.2, for a LCAG G, L1(G) under convolution is a ∗-

algebra, and the spectrum of L1(G) can be identified with Ĝ in such a way that the

Gelfand transform is the Fourier transform. Using the group structure on Z/NZ×

Z/dZ we can define convolution of u, v ∈ L1(Z/NZ× Z/dZ) by the formula

(u ∗ v)(m)(n) =
N−1∑
k=0

d−1∑
l=0

u(k)(l)v(m− k)(n− l). (2.20)

This definition is not ideal for our purposes because it treats u and v as functions

that take Nd values. Our desire is to view u and v as functions that take N values

which are each d dimensional vectors. The convolution (2.20) can be rewritten as

follows:

(u ∗ v)(m)(n) =
N−1∑
k=0

(u(k) ∗ v(m− k))(n),

where the ∗ on the right hand side is regular d-dimensional convolution. Replacing

this d-dimensional convolution with pointwise multiplication, we arrive at a new

definition for convolution on L1(Z/NZ× Z/dZ).

Definition 2.6.1 (Vector-valued convolution). Let u, v ∈ L1(Z/NZ×Z/dZ). Define

the vector-valued convolution of u and v by the formula

(u ∗ v)(m) =
N−1∑
k=0

u(k)v(m− k).

For the remainder of this section ∗ will denote the vector-valued convolution.

L1(Z/NZ × Z/dZ) equipped with the vector-valued convolution is a commutative

Banach algebra that we will call A. The only non-obvious property to be checked
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is that ‖u ∗ v‖1 ≤ ‖u‖1 ‖v‖1 holds. Indeed,

‖u ∗ v‖1 =
N−1∑
m=0

‖u ∗ v(m)‖L1(Z/dZ) (def. of L1 norm)

=
N−1∑
m=0

∥∥∥∥∥
N−1∑
k=0

u(k)v(m− k)

∥∥∥∥∥
L1(Z/dZ)

≤
N−1∑
m=0

N−1∑
k=0

‖u(k)v(m− k)‖L1(Z/dZ)

≤
N−1∑
m=0

N−1∑
k=0

‖u(k)‖L1(Z/dZ) ‖v(m− k)‖L1(Z/dZ)

=
N−1∑
k=0

‖u(k)‖L1(Z/dZ)

N−1∑
m=0

‖v(m− k)‖L1(Z/dZ)

=
N−1∑
k=0

‖u(k)‖L1(Z/dZ) ‖v‖1

= ‖u‖1 ‖v‖1 .

A is a unital ∗-algebra with unit e given by

e(m) =


~1 m = 0

~0 m 6= 0,

where ~1 and ~0 are the vectors of 1’s and 0’s respectively, and with involution u∗(m) =

u(−m). Tying this together with our Fourier transform theory above, we have the

desired theorem relating A to the vector-valued Fourier transform.

Theorem 2.6.2 (Convolution theorem). Let u, v ∈ L1(Z/NZ×Z/dZ). The vector-

valued Fourier transform of the convolution of u and v is the vector product of their

Fourier transforms, i.e.,

F (u ∗ v) = F (u)F (v).

49



Proof.

F (u ∗ v)(p) =
N−1∑
m=0

(u ∗ v)(m)ϕ−mp

=
N−1∑
m=0

(
N−1∑
k=0

u(k)v(m− k)

)
ϕ−mp

=
N−1∑
k=0

u(k)

(
N−1∑
m=0

v(m− k)ϕ−mp

)

=
N−1∑
k=0

u(k)

(
N−1∑
l=0

v(l)ϕ−(k+l)p

)

=

(
N−1∑
k=0

u(k)ϕ−kp

)(
N−1∑
l=0

v(l)ϕ−lp

)

= F (u)(p)F (v)(p) �

We shall now describe the spectrum of A and the Gelfand transform on A.

Define functions δ(i,j) in L1(Z/NZ× Z/dZ) by

δ(i,j)(m)(n) =


1 (m,n) = (i, j)

0 otherwise.

It is easy to see that δk(1,j) = δ(1,j) ∗ . . . ∗ δ(1,j) (k factors) = δ(k,j) so that {δ(1,j)}d−1
j=0

generate A. We shall find the spectrum of the individual elements of our generating

set {δ(1,j)}d−1
j=0, and with this information describe the spectrum of A.

To find the spectrum of δ(1,j) we first find necessary conditions on λ for (λe−

δ(1,j))
−1 to exist, and when these conditions are met we compute (λe − δ(1,j))

−1

and thereby show the conditions are sufficient as well. To that end, suppose u =

(λe− δ(1,j))
−1 exists, i.e., (λe− δ(1,j)) ∗ u = e. Expanding the definitions on the left
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hand side

(λe− δ(1,j)) ∗ u(m) =
N−1∑
k=0

(λe− δ(1,j))(k)u(m− k)

= λu(m)− δ(1,j)(1)u(m− 1).

Setting the result equal to e(m) and dividing into the cases m = 0 and m 6= 0 yields

two equations

∀n ∈ Z/dZ, λu(0)(n)− δ(1,j)(1)(n)u(N − 1)(n) = 1 (2.21)

and

∀n ∈ Z/dZ,∀m 6= 0 ∈ Z/NZ, λu(m)(n)− δ(1,j)(1)(n)u(m− 1)(n) = 0. (2.22)

Plugging in n = j into (2.21) yields

λu(0)(j)− u(N − 1)(j) = 1, (2.23)

while for n 6= j we have

u(0)(n) =
1

λ
.

Therefore, we must have λ 6= 0. Similarly, plugging in n = j in (2.22) gives

∀m 6= 0, λu(m)(j)− u(m− 1)(j) = 0, (2.24)

while

∀n 6= j,∀m 6= 0, u(m)(n) = 0.

At this point we have specified the values of u except for u(m)(j). Iterate (2.24)

N − 1 times to find

λN−1u(N − 1)(j)− u(0)(j) = 0. (2.25)
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Finally, multiplying (2.25) by λ and adding it to equation (2.23) gives

(λN − 1)u(N − 1)(j) = 1,

and hence λN 6= 1. Using (2.24) we can find the remaining values of u(m)(j):

u(m)(j) =
λN−m−1

λN − 1
.

This completes the computation of u. We have shown that for λe − δ(1,j) to be

invertible λ must satisfy λ 6= 0 and λN 6= 1. Given that λ meets these requirements

we found an explicit inverse; therefore σ(δ(1,j)) = {0, λ : λN = 1}.

By the Riesz representation theorem a linear functional on A is given by

integration against a function in γ ∈ L∞(Z/NZ × Z/dZ) (which we also view as a

function in L∞ or simply a N × d matrix). Recall a basic result in Gelfand theory:

for a commutative unital Banach algebra we have x̂(σ(A)) = σ(x) (Theorem 1.13 of

[19]). Combining this with our above calculations it follows that for a multiplicative

linear functional γ,

γ(1)(n) =

∫
δ(1,n)γ = γ(δ(1,n)) ∈ σ(δ(1,n)).

Since γ is multiplicative,

γ(m)(n) =

∫
δ(m,n)γ =

∫
δm(1,n)γ = γ(δm(1,n)) = γ(δ(1,n))

m = 0 or λm where λN = 1.

Therefore γ(0)(n) = 0 or 1, and since 1 = γ(e) =
∑d−1

k=0 γ(0)(k), we have γ(0)(n) 6= 0

(and thus γ(1)(n) 6= 0) for only one n. It follows that for this n, γ(1)(n) = λ where

λN = 1.
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We have everything we need to describe σ(A). The multiplicative linear func-

tionals on A are N × d matrices of the form

γλ,k(m)(n) =


λ−m for n = k,

0 otherwise

where λN = 1, 0 ≤ k ≤ d− 1.

Set ω = e−2πi/N . If λN = 1, then λ = ωj for some 0 ≤ j ≤ N − 1, and we can write

γλ,k as γj,k. Thus, we can list all the elements of σ(A) as {γj,k}, 0 ≤ j < N − 1,

0 ≤ k < d− 1, and there are Nd of them.

Let s : Z/dZ → Z/NZ be injective and have the property that for every

n ∈ Z/dZ, (s(n), N) = 1, i.e., the vector-valued DFT defined by s is invertible.

Using s we can reorder σ(A) as follows. For 0 ≤ p ≤ N −1 and 0 ≤ q ≤ d−1 define

γ′p,q by

γ′p,q(m)(n) =


ω−pms(q) for n = q,

0 otherwise.

We claim {γ′p,q}p,q is a reordering of {γj,k}j,k. To show this, first note that clearly

{γ′p,q}p,q ⊆ {γj,k}j,k. To demonstrate the reverse inclusion, for each q ∈ Z/dZ find a

multiplicative inverse to s(q) in Z/NZ. This may be done because (s(q), N) = 1 for

every q. Writing this inverse as s(q)−1 it follows that

γ′js(k)−1,k = γj,k,

and therefore {γj,k}j,k ⊆ {γ′p,q}p,q. Hence, we may identify σ(A) with Z/NZ×Z/dZ

via γ′p,q ↔ (p, q). Under this identification, for x ∈ A, we may write the Gelfand
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transform of x, which is in C(σ(A)), as the N × d matrix

x̂(p)(q) := x̂(γ′p,q) = γ′p,q(x) =
N−1∑
m=0

x(m)(q)ωpms(q)

=
N−1∑
m=0

x(m)(q)e−2πipms(q)/N .

From this, we see that under the identification γ′p,q ↔ (p, q) the Gelfand transform

on A is the vector-valued discrete Fourier transform. While this shows the transform

we have discovered is itself nothing “new”, it also shows that a classical transform

can be redefined in the context of frame theory.
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Chapter 3

Frame Multiplication

In this chapter we study bilinear products on a finite dimensional Hilbert space

H (Cd or Rd) over F (C or R) and what we call frame multiplication. Questions

of interest include: for a given binary operation, can we classify the frames, in

terms of their elements or operators, for which the binary operation defines a frame

multiplication? What is the relationship between equivalences of frames and frame

multiplication, and given a bilinear product on H, can we show whether or not it

arises from a frame multiplication?

3.1 Motivation

Let {ϕn}N−1
n=0 be a DFT frame for Cd. In Chapter 2 we leveraged the rela-

tionship between the bilinear product pointwise multiplication and the operation of

addition on the indices of Φ, i.e., ϕmϕn = ϕm+n, to define the discrete vector-valued

ambiguity function. In this context, the DFT frame is acting as a high dimensional

analog to the roots of unity {Wn = e2πin/N}N−1
n=0 , which appear in the definition of

the regular discrete ambiguity function.

It is not pre-ordained that the operation on the indices of the frame, induced

by the bilinear vector multiplication, be addition mod N , as in the case of the DFT

frames. We are interested in finding tight frames that behave similarly and whose
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index sets are abelian groups, non-abelian groups, or more general non-group sets

and operations. This would, for example, allow us to define the discrete vector-

valued ambiguity function for a function defined on an arbitrary group G.

Example 3.1.1 (Cross product frame multiplication). Define ∗ : C3 × C3 → C3

to be the cross product on C3. Let {i, j, k} be the standard basis for C3, e.g.,

i = (1, 0, 0) ∈ C3. We have that i ∗ j = k, j ∗ i = −k, k ∗ i = j, i ∗ k = −j, j ∗ k = i,

k ∗ j = −i, and i ∗ i = j ∗ j = k ∗ k = 0. The union of two tight frames and the

zero vector is a tight frame, so if we let ϕ0 = 0, ϕ1 = i, ϕ2 = j, ϕ3 = k, ϕ4 = −i,

ϕ5 = −j, and ϕ6 = −k, then Φ = {ϕn}6
n=0 is a tight frame for C3 with frame bound

2. Also, Φ is closed under the cross product, and the index operation corresponding

to ∗ is the non-group operation • : Z/7Z× Z/7Z→ Z/7Z, where we compute

1 • 2 = 3, 1 • 3 = 5 1 • 4 = 0, 1 • 5 = 6, 1 • 6 = 2,

2 • 1 = 6, 2 • 3 = 1, 2 • 4 = 3, 2 • 5 = 0, 2 • 6 = 4,

3 • 1 = 2, 3 • 2 = 4, 3 • 4 = 5, 3 • 5 = 1, 3 • 6 = 0,

n • n = 0, n • 0 = 0 • n = 0, etc.

We can now obtain the following formula:

∀u, v ∈ C3, u ∗ v =
1

4

6∑
j=1

6∑
k=1

〈u, ϕj〉〈v, ϕk〉ϕj•k

=
1

4

6∑
n=1

(∑
j•k=n

〈u, ϕj〉 〈v, ϕk〉

)
ϕn. (3.1)

One possible application of the above is that given frame representations for

u, v ∈ C3, (3.1) allows us to compute the frame representation of u ∗ v without

the cumbersome process of going back and forth between the frame representations
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and their standard orthogonal representations. While the utility of this small case

is questionable, it is not hard to imagine more complicated examples where frame

multiplication might have applicability.

3.2 Definition and Properties

Definition 3.2.1 (Frame multiplication). Let Φ = {ϕj}j∈J be a frame for a finite

dimensional Hilbert space H, and let • : J × J → J be a binary operation. We say

• is a frame multiplication for Φ or, by abuse of language, a frame multiplication for

H, if it extends to a bilinear product ∗ on all of H. That is, if there exists a bilinear

product ∗ : H×H → H such that

∀j, k ∈ J, ϕj ∗ ϕk = ϕj•k.

Fix a frame Φ = {ϕj}j∈J . By definition, a binary operation • : J × J → J

is a frame multiplication for Φ when it extends by linearity to the entire space H.

Conversely, if there is a bilinear product ∗ : H×H → H which agrees with • on Φ

(ϕj ∗ ϕk = ϕj•k), then it must be the unique extension given by linearity (since Φ

spans H). Therefore, • defines a frame multiplication for Φ if and only if for every

x =
∑
aiϕi and y =

∑
biϕi ∈ H,

x ∗ y :=
∑
i

∑
j

aibjϕi•j (3.2)

is defined and independent of the frame representations used for x and y.

Remark 3.2.2. Whether or not a particular binary operation is a frame multiplication

depends on not just the elements of the frame but on the indexing of the frame.
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For clarity of definitions and later theorems we make no attempt to define a notion

of frame multiplication for multi-sets of vectors that is independent of the index

set. This does not hinder the theory; a multiset of vectors, Φ, has some number of

bilinear products on H for which it is closed, and all of these may be realized by

fixing a single index, Φ = {ϕj}j∈J .

A distinction to keep in mind is that • is a set operation on the indices of a

frame while ∗ is a bilinear vector product defined on all of H. When • is a frame

multiplication and ∗ is the corresponding bilinear product we have

ϕi ∗ ϕj = ϕi•j.

We shall investigate the interplay between bilinear vector products on H,

frames for H indexed by J , and binary operations on J . For example, if we fix

a binary operation • on J , then what sort of frames indexed by J is • a frame

multiplication for? Conversely, if we fix a frame Φ = {ϕj}j∈J , then what sort of

binary operations on J are frame multiplications for H?

Proposition 3.2.3. Let Φ = {ϕj}j∈J be a frame for a Hilbert space H, and let

• : J × J → J be a binary operation. Then • is a frame multiplication for Φ if and

only if

∀{ai}i∈J ⊂ F, ∀j ∈ J,
∑
i∈J

aiϕi = 0⇒
∑
i∈J

aiϕi•j = 0 and
∑
i∈J

aiϕj•i = 0 (3.3)

Proof. Suppose ∗ is the bilinear product defined by • and {ai}i∈J is a sequence of

scalars. If
∑

i∈J aiϕi = 0, then

∑
i∈J

aiϕi•j =
∑
i∈J

ai (ϕi ∗ ϕj) =

(∑
i∈J

aiϕi

)
∗ ϕj = 0 ∗ ϕj = 0.
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Similarly, by multiplying on the left by ϕj, we can show
∑

i∈J aiϕj•i = 0. For

the converse suppose that statement (3.3) holds and x =
∑
aiϕi =

∑
ciϕi, y =∑

bjϕj =
∑
djϕj ∈ H. By (3.3),

∀j ∈ J,
∑
i

(ai − ci)ϕi•j = 0, and (3.4)

∀i ∈ J,
∑
j

(bj − dj)ϕi•j = 0. (3.5)

Therefore,

∑
i

∑
j

aibjϕi•j =
∑
i

ai
∑
j

bjϕi•j =
∑
i

ai
∑
j

djϕi•j by (3.5)

=
∑
j

dj
∑
i

aiϕi•j =
∑
j

dj
∑
i

ciϕi•j by (3.4)

=
∑
i

∑
j

cidjϕi•j,

and ∗ is well-defined by (3.2). �

Definition 3.2.4 (Similarity). Frames Φ = {ϕj}j∈J and Ψ = {ψj}j∈J for a Hilbert

space H are similar if there exists an invertible linear operator A ∈ B(H) such that

∀j ∈ J, Aϕj = ψj.

Lemma 3.2.5. Suppose Φ = {ϕj}j∈J and Ψ = {ψj}j∈J are frames for H and Φ is

similar to Ψ. Then, a binary operation • : J × J → J is a frame multiplication for

Φ if and only if it is a frame multiplication for Ψ.

Proof. We remark that because A−1ψj = ϕj and A−1 is also an invertible operator,

we need only prove one direction of the lemma. Suppose • is a frame multiplication

for Φ and that
∑

i aiψi = 0. We have

0 =
∑
i

aiψi =
∑
i

aiAϕi = A

(∑
i

aiϕi

)
,
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and since A is invertible it follows that
∑

i aiϕi = 0. By Proposition 3.2.3, since •

is a frame multiplication for Φ,

∀j,
∑
i∈J

aiϕi•j = 0 and
∑
i∈J

aiϕj•i = 0.

Applying A to both of these equations yields:

∀j,
∑
i∈J

aiψi•j = 0 and
∑
i∈J

aiψj•i = 0.

Therefore, by Proposition 3.2.3, • is a frame multiplication for Ψ. �

Definition 3.2.6 (Multiplications of a frame). Let Φ = {ϕj}j∈J be a frame for a

finite dimensional Hilbert spaceH. The multiplications of Φ are defined and denoted

by

mult (Φ) := {• : J × J → J : • is a frame multiplication on Φ}.

mult (Φ) can be all functions (for example when Φ is a basis), empty, or somewhere

between.

Example 3.2.7. Let α, β > 0, α 6= β, and α + β < 1. Define Φα,β = {ϕ1 =

(1, 0)t, ϕ2 = (0, 1)t, ϕ3 = (α, β)t}. Then Φα,β is a frame for C2 and mult (Φα,β) = ∅.

An easy way to prove mult (Φα,β) = ∅ is to show that there are no bilinear operations

on C2 which leave Φα,β invariant. Suppose ∗ were such a bilinear operation. We

have the linear relation ϕ3 = αϕ1 + βϕ2; hence, by bilinearity of ∗,

ϕ1 ∗ ϕ3 = αϕ1 ∗ ϕ1 + βϕ1 ∗ ϕ2. (3.6)

Since ‖ϕi‖2 ≤ 1 for i = 1, 2, 3, it must be that ‖ϕ1 ∗ ϕ3‖2 ≤ α + β < 1, and since

∗ leaves Φα,β invariant, ϕ1 ∗ ϕ3 = ϕ3. Furthermore, substituting ϕ3 for ϕ1 ∗ ϕ3 in
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equation (3.6) yields ϕ1 ∗ ϕ1 = ϕ1 and ϕ1 ∗ ϕ2 = ϕ2. Performing the same analysis

on ϕ3 ∗ ϕ2 (in place of ϕ1 ∗ ϕ3 above) shows ϕ2 ∗ ϕ2 = ϕ2 and ϕ1 ∗ ϕ2 = ϕ1, a

contradiction.

-

6

��
�
��

�
��*

ϕ1

ϕ2

ϕ3

Figure 3.1: The frame Φα,β from Example 3.2.7 for α = 1/2 and

β = 1/4. This frame has no frame multiplications.

Of particular interest, Lemma 3.2.5 tells us the canonical dual frame {S−1ϕj}j∈J

and the canonical tight frame {S−1/2ϕj}j∈J share the same multiplications as the

original frame Φ. Because of this, we will focus our attention on tight frames. An

invertible map U ∈ B(H) mapping a λ-tight frame Φ = {ϕj} to a λ′-tight frame

Ψ = {ψj}, as in Lemma 3.2.5, is a positive multiple of a unitary operator. Indeed,

λ ‖U∗x‖2 =
∑
j

|〈U∗x, ϕj〉|2 =
∑
j

|〈x, Uϕj〉|2 =
∑
j

|〈x, ψj〉|2 = λ′ ‖x‖2 .

This leads us to a notion of equivalence for tight frames that sounds stronger than

similarity but is actually just the restriction of similarity to the class of tight frames.
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Definition 3.2.8 (Equivalence of tight frames). Tight frames Φ = {ϕj}j∈J and

Ψ = {ψj}j∈J for H are unitarily equivalent if there is a unitary map U and a

positive constant c such that

∀j ∈ J, ϕj = cUψj.

Whenever we speak of equivalence classes for tight frames we will mean under

unitary equivalence. For finite frames unitary equivalence can be stated in terms of

Gramians.

Proposition 3.2.9 (Lemma 2.7 of [40]). Suppose Φ = (ϕ1, . . . , ϕn) and Ψ =

(ψ1, . . . , ψn) are sequences of vectors, and suppose span(Φ) = H. There exists a

unitary U such that for every i = 1, . . . , n, Uϕi = ψi, if and only if

∀i, j, 〈ϕi, ϕj〉 = 〈ψi, ψj〉 ,

i.e., the Gram matrices of Φ and Ψ are equal.

From the above proposition we have that tight frames Φ and Ψ are unitarily

equivalent if and only if one of their Gramians is a scaled version of the other. In

the case where both Φ and Ψ are equivalent Parseval tight frames their Gramians

are equal.

We have chosen to follow in the footsteps of D. Han and D. Larson [25] with our

definitions of similarity and unitary equivalence, which are somewhat restrictive. In

particular, the ordering of the frame and not just the unordered set of frame elements

is important. This choice was made in concert with the way in which we have defined

frame multiplication, i.e., with a fixed index for our frame. Also, we have made no
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attempt to define equivalence for frames indexed by different sets. This can be done

and results then proven about the correspondence of frame multiplications between

similar or equivalent frames (under the new definition), but allowing frames with

two different index sets (of the same cardinality!) to be considered similar only

obfuscates our theorems.

Theorem 3.2.10 (Multiplications of equivalent frames). Let Φ = {ϕj}j∈J and

Ψ = {ψj}j∈J be finite tight frames for H. If Φ is unitarily equivalent to Ψ, then

mult (Φ) = mult (Ψ).

Proof. Since Φ and Ψ are unitarily equivalent they are similar. Therefore, by Lemma

3.2.5, • : J × J → J defines a frame multiplication on Φ if and only if it defines a

frame multiplication on Ψ. That is, mult (Φ) = mult (Ψ). �

The converse of the above theorem does not hold. The multiplications of a

tight frame provide a coarser equivalence relation than unitary equivalence. In fact,

we may have uncountably many equivalence classes of tight frames which share the

same multiplications.

Example 3.2.11. Let {αi}i=1,2 and {βi}i=1,2 be real numbers such that α1 > β1 >

α2 > β2 > 0, α1 + β1 < 1, and α2 + β2 < 1. Define Φα1,β1 and Φα2,β2 as in Example

3.2.7. Then mult (Φα1,β1) = mult (Φα2,β2) = ∅. It can be easily shown, by checking

the six cases of where to map (1, 0)t and (0, 1)t, that there is no invertible operator A

such that AΦα1,β1 = Φα2,β2 as sets. Therefore, there is no c > 0 and U ∈ U(R2) such

that cU maps between the canonical tight frames S
−1/2
1 Φα1,β1 and S

−1/2
2 Φα2,β2 (for

any reordering of the elements) and S
−1/2
1 Φα1,β1 and S

−1/2
2 Φα2,β2 are not unitarily
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equivalent. Hence, there are uncountably many equivalence classes of tight frames

which share the same empty set of frame multiplications.

In contrast to the above example, we will see in Chapter 4 that if a tight

frame has a particular frame multiplication, a group operation, then it belongs to

one of only finitely many equivalence classes of tight frames which share that same

group operation as a frame multiplication. At the moment, we have a characteriza-

tion of bases in terms of their multiplications (once we exclude the degenerate one

dimensional case where you can have a frame of a single repeated vector).

Proposition 3.2.12. Let Φ = {ϕj}j∈J be a finite frame for a Hilbert space H and

suppose dim(H) > 1. If mult (Φ) = {all functions • : J×J → J}, then Φ is a basis.

If in addition Φ is a tight (Parseval) frame, then Φ is an orthogonal (orthonormal)

basis.

Proof. Suppose that
∑

i aiϕi = 0, j0 ∈ J , and ϕj1 , ϕj2 ∈ Φ are linearly independent.

Let • : J × J → J be the function sending all products to j2 except

∀j ∈ J, j0 • j := j1.

By assumption, • ∈ mult (Φ); therefore, by Proposition 3.2.3,

∀j ∈ J, 0 =
∑
i

aiϕi•j = aj0ϕj1 +
∑
i 6=j0

aiϕj2 .

Since ϕj1 and ϕj2 are linearly independent, aj0 = 0, and since j0 was arbitrary, Φ is

a linearly independent set. The last statement of the proposition follows from the

elementary fact that a basis which satisfies Parseval’s identity (or a scaled version)

is an orthogonal set. �
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3.3 Permutation Operations and Quasigroups

Proposition 3.2.9 characterizes unitary equivalence in terms of Gramians; there-

fore, we should be able to determine all properties of an equivalence class of tight

frames from their shared Gramian. Theorem 3.2.10 says that unitarily equivalent

frames share the same multiplications, but we have also shown that two frames with

the same set of multiplications are not necessarily unitarily equivalent. What we can

take away from this is that we should be able to determine the multiplications of a

frame from its Gramian, but knowing a frame has a particular frame multiplication

does not in general tell us anything about its Gramian. In this section we make

progress on describing the multiplications of a frame in terms of its Gramian.

Given a tight frame Φ = {ϕj}j∈J , if we restrict our attention to binary opera-

tions such that multiplication on the left and right by any fixed element is onto, then

we are able to characterize these operations which define a frame multiplication by

the Gramian of Φ. This is the contents of Theorem 3.3.2. Because the frames we

are interested in are finite, a function J → J which is onto must be a permutation.

A set J equipped with a binary operation • such that the functions

k 7→ j • k, k 7→ k • j (3.7)

are permutations for every j ∈ J is called a quasigroup. The property (3.7) above is

referred to as the Latin square property because it ensures the multiplication table

of (J, •) is a Latin square.

Lemma 3.3.1. Let Φ = {ϕj}j∈J be a tight frame for a finite dimensional Hilbert

space H, and let • : J × J → J be a frame multiplication for Φ with extension ∗ to
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all of H. If the functions

k 7→ j • k, k 7→ k • j

are permutations for every j ∈ J , i.e., (J, •) is a quasigroup, then the functions

Lj : H → H defined by,

Lj(x) = ϕj ∗ x

and Rj : H → H defined by

Rj(x) = x ∗ ϕj

are unitary linear operators for every j ∈ J .

Proof. Linearity of Lj follows from bilinearity of ∗. To show Lj is unitary, let A be

the frame bound for Φ. Then

A
∥∥L∗j(x)

∥∥2
=
∑
k∈J

∣∣〈L∗j(x), ϕk
〉∣∣2

=
∑
k∈J

|〈x, Lj(ϕk)〉|2

=
∑
k∈J

|〈x, ϕj ∗ ϕk〉|2 (def. of Lj)

=
∑
k∈J

|〈x, ϕj•k〉|2 (def. of ∗)

=
∑
k∈J

|〈x, ϕk〉|2 (reordering terms)

= A ‖x‖2 .

Therefore, L∗j is an isometry, and since H is finite dimensional, it follows that Lj is

unitary. Similarly, we can show Rj is unitary. �
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Theorem 3.3.2 (Quasigroup frame multiplications). Let Φ = {ϕj}j∈J be a tight

frame for a finite dimensional Hilbert space H, and let • : J × J → J be a binary

operation such that (J, •) is a quasigroup. Then • is a frame multiplication for Φ if

and only if

∀i, j, k ∈ J, 〈ϕi, ϕj〉 = 〈ϕi•k, ϕj•k〉 = 〈ϕk•i, ϕk•j〉 . (3.8)

Proof. Suppose first that (3.8) holds. If
∑

i aiϕi = 0, then for any j, k ∈ J we have

0 =

〈∑
i

aiϕi, ϕj

〉
=
∑
i

ai 〈ϕi, ϕj〉

=
∑
i

ai 〈ϕi•k, ϕj•k〉 =

〈∑
i

aiϕi•k, ϕj•k

〉
.

Allowing j to vary over all of J shows that
∑

i aiϕi•k = 0. Similarly we can use

the fact that 〈ϕi, ϕj〉 = 〈ϕk•i, ϕk•j〉 to show
∑

i aiϕk•i = 0. Hence, by Proposition

3.2.3, • is a frame multiplication for Φ. For the converse, assume • is a frame

multiplication for Φ. By Lemma 3.3.1, the operators {Lj}j∈J and {Rj}j∈J defined

as left and right multiplication by ϕj are unitary. Hence,

∀i, j, k ∈ J, 〈ϕi, ϕj〉 = 〈Rk(ϕi), Rk(ϕj)〉 = 〈ϕi•k, ϕj•k〉 ,

and

∀i, j, k ∈ J, 〈ϕi, ϕj〉 = 〈Lk(ϕi), Lk(ϕj)〉 = 〈ϕk•i, ϕk•j〉 . �
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Chapter 4

Group Frame Multiplication

In this chapter we investigate the special case of frame multiplications defined

by binary operations • : J × J → J which are group operations, i.e., when J = G,

a group, and • is the group operation. As is customary in harmonic analysis on

groups we omit the • and write the group operation by juxtaposition or addition. If

Φ = {ϕg}g∈G is a frame for H and the group operation of G is a frame multiplication

for Φ, then we say that G defines a frame multiplication for Φ (remember we are

omitting •!). Throughout the chapter H is a finite dimensional Hilbert space over

R or C unless stated otherwise.

4.1 G-frames

Definition 4.1.1 (G-frame 1). Let G be a finite group. A finite frame Φ for H is

a G-frame if there exists π : G → U(H), a unitary representation of G, and ϕ ∈ H

such that

Φ = {π(g)ϕ}g∈G,

where the equality is in terms of multisets.

Not to be confused with the abbreviated form of generalized frames, G-frames

are one of several related classes of frames and codes that have been the object of

recent study. Bölcskei and Eldar [18] define geometrically uniform frames as the orbit
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of a generating vector under an abelian group of unitary matrices. A signal space

code is called geometrically uniform by Forney [21] or a group code by Slepian [37]

if its symmetry group (a group of isometries) acts transitively. Harmonic frames

are projections of the rows or columns of the character table (Fourier matrix) of

an abelian group (cf. [8], [10], [30]). In [40] it was shown that harmonic frames

and geometrically uniform tight frames are equivalent and can be characterized by

their Gramian. We take our first definition for a G-frame from Han [24] where the

associated representation π is called a frame representation. Frame representations

were introduced by Han and Larson in [25].

If Φ is a G-frame, then Φ is generated by the orbit of any one of its elements

under the action of G, and if Φ contains N unique vectors, then each element of

Φ is repeated |G|/N times. We fix an identity element of the frame ϕe and write

Φ = {ϕg}g∈G where ϕg := π(g)ϕe. From this we see that G-frames are frames for

which there exists an indexing by the group G such that

π(g)ϕh = π(g)π(h)ϕe = π(gh)ϕe = ϕgh.

This leads to a second (essentially equivalent) definition of a G-frame for a frame

already indexed by G. This is the definition used by Vale and Waldron in [41].

Definition 4.1.2 (G-frame 2). Let G be a finite group. A finite frame Φ = {ϕg}g∈G

for a Hilbert space H is a G-frame if there exists π : G → U(H), a unitary represen-

tation of G, such that

∀g, h ∈ G, π(g)ϕh = ϕgh.

The difference in the second definition is that we begin with a frame as a
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sequence indexed by G and ask whether a particular type of representation exists.

In the former definition we began with only a multiset of vectors and asked whether

an indexing exists such that the latter definition holds. For example, let G = Z/4Z =

({0̄, 1̄, 2̄, 3̄},+) and consider the frame Φ = {ϕ0̄ = 1, ϕ1̄ = −1, ϕ2̄ = i, ϕ3̄ = −i} for

C. Φ would pass as a G-frame under the first definition because there are two

one-dimensional representations of G that generate Φ (this is clear from the Fourier

matrix of Z/4Z). However, it would not qualify as a G-frame under definition two

because the representation π would have to satisfy π(1̄)ϕ0̄ = ϕ1̄, i.e., π(1̄)1 = −1.

There is one one-dimensional representation of Z/4Z which satisfies this, but it does

not generate Φ. Indeed, it is defined by π(0̄) = 1, π(1̄) = −1, π(2̄) = 1, π(3̄) = −1.

In keeping with our view that a frame is a sequence with a fixed index, we will use

the second definition from here on.

Vale and Waldron noted in [41] that if Φ = {ϕg}g∈G is a G-frame, then its

Gramian has a special form

(Gg,h) = 〈ϕh, ϕg〉 = 〈π(h)ϕe, π(g)ϕe〉 =
〈
ϕe, π(h−1g)ϕe

〉
, (4.1)

i.e., the g-h-entry is a function of h−1g. This is what is called a G-matrix.

Definition 4.1.3 (G-matrix). Let G be a finite group. A matrix A = (ag,h)g,h∈G is

called a G-matrix if there exists a function ν : G → C such that

∀g, h ∈ G, ag,h = ν(h−1g).

Vale and Waldron were then able to prove a version of the following theorem

using an argument that hints at a connection to frame multiplication. We include

a version of their proof and highlight the connections to our theory.
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Theorem 4.1.4 (Vale and Waldron, [41]). Let G be a finite group. A frame Φ =

{ϕg}g∈G for a Hilbert space H is a G-frame if and only if its Gramian is a G-matrix.

Proof. If Φ is a G-frame, then (4.1) implies its Gramian is the G-matrix defined by

ν(g) = 〈ϕe, π(g)ϕe〉.

For the converse, suppose the Gramian of Φ is a G-matrix. Let S be the frame

operator, and let ϕ̃g := S−1ϕg be the canonical dual frame elements. Each x ∈ H

has the frame decomposition

x =
∑
h∈G

〈x, ϕ̃h〉ϕh. (4.2)

For each g ∈ G, define a linear operator Ug : H → H by

∀x ∈ H, Ug(x) :=
∑
h∈G

〈x, ϕ̃h〉ϕgh.

Since the Gramian of Φ is a G-matrix, we have

∀g, h, k ∈ G, 〈ϕgh, ϕgk〉 = ν((gh)−1gk) = ν(h−1k) = 〈ϕh, ϕk〉 . (4.3)

A calculation shows that Ug is unitary; it follows from (4.2) and (4.3) that

〈Ug(x), Ug(y)〉 =

〈∑
h∈G

〈x, ϕ̃h〉ϕgh,
∑
k∈G

〈y, ϕ̃k〉ϕgk

〉

=
∑
h∈G

∑
k∈G

〈x, ϕ̃h〉〈y, ϕ̃k〉 〈ϕgh, ϕgk〉

=
∑
h∈G

∑
k∈G

〈x, ϕ̃h〉〈y, ϕ̃k〉 〈ϕh, ϕk〉

=

〈∑
h∈G

〈x, ϕ̃h〉ϕh,
∑
k∈G

〈y, ϕ̃k〉ϕk

〉

= 〈x, y〉 .
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Also, for every h, k ∈ G

〈Ug(ϕh)− ϕgh, ϕgk〉 = 〈Ug(ϕh), ϕgk〉 − 〈ϕgh, ϕgk〉

=

〈∑
m∈G

〈ϕh, ϕ̃m〉ϕgm, ϕgk

〉
− 〈ϕgh, ϕgk〉

=
∑
m∈G

〈ϕh, ϕ̃m〉 〈ϕgm, ϕgk〉 − 〈ϕgh, ϕgk〉

=
∑
m∈G

〈ϕh, ϕ̃m〉 〈ϕm, ϕk〉 − 〈ϕh, ϕk〉

=

〈∑
m∈G

〈ϕh, ϕ̃m〉ϕm, ϕk

〉
− 〈ϕh, ϕk〉

= 〈ϕh, ϕk〉 − 〈ϕh, ϕk〉

= 0.

By allowing k to vary over all of G it follows that Ug(ϕh) = ϕgh. This implies

π : g 7→ Ug is a unitary representation, since

∀g1, g2, h ∈ G, Ug1g2ϕh = ϕg1g2h = Ug1ϕg2h = Ug1Ug2ϕh

and {ϕh}h∈G spans H. Hence, π is a unitary representation of G such that π(g)ϕh =

ϕgh, i.e., Φ is a G-frame for H. �

The operators {Ug}g∈G are essentially frame multiplication on the left by ϕg,

but there may not exist a bilinear product on all of H which agrees with or properly

joins the operators {Ug}g∈G. We show in Lemma 4.2.1 that when these operators

do arise from a frame multiplication defined by G, then they are unitary as above

when the Gramian is a G-matrix. Equation 4.3 is reminiscent of Theorem 3.3.2,

and together they are enough to show, for an abelian group G, if the Gramian of
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Φ = {ϕg}g∈G is a G-matrix (or by the above theorem if Φ is a G-frame), then G

defines a frame multiplication for Φ. We can say more than this. We can tell the

equivalence class of frames Φ belongs to (we show it is equivalent to a harmonic

frame) and what type of multiplication is defined by G. We do this in Section 4.2.

Example 4.1.5. For G a cyclic group, a G-matrix is a circulant matrix. If we

consider G = Z/4Z = {0̄, 1̄, 2̄, 3̄} with the natural ordering, then all G-matrices

(corresponding to this choice of G) are of the form

ν(0̄) ν(3̄) ν(2̄) ν(1̄)

ν(1̄) ν(0̄) ν(3̄) ν(2̄)

ν(2̄) ν(1̄) ν(0̄) ν(3̄)

ν(3̄) ν(2̄) ν(1̄) ν(0̄)


for some ν : {0̄, 1̄, 2̄, 3̄} → C, which is a regular 4× 4 circulant matrix.

Example 4.1.6. For a non-circulant example of a G-matrix, let G = D3, the dihe-

dral group of order 6. If we use the presentation

D3 =< r, s : r3 = e, s2 = e, rs = sr2 >
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and order the elements e, r, r2, s, sr, sr2, then every G-matrix has the form



e r r2 s sr sr2

e ν(e) ν(r2) ν(r) ν(s) ν(sr) ν(sr2)

r ν(r) ν(e) ν(r2) ν(sr) ν(sr2) ν(s)

r2 ν(r2) ν(r) ν(e) ν(sr2) ν(s) ν(sr)

s ν(s) ν(sr) ν(sr2) ν(e) ν(r2) ν(r)

sr ν(sr) ν(sr2) ν(s) ν(r) ν(e) ν(r2)

sr2 ν(sr2) ν(s) ν(sr) ν(r2) ν(r) ν(e)


for some ν : D3 → C.

It is a well known result that the rows and columns of the character table of an

abelian group are orthogonal. This fact combined with one direction of Naimark’s

theorem (Theorem 1.4.6), that the orthogonal projection of an orthogonal basis is

a tight frame, gives a class of frames called harmonic frames.

Definition 4.1.7 (Harmonic frames). A equal-norm frame Φ of N vectors for H

is a harmonic frame if it comes from the character table of an abelian group, i.e.,

is given by the columns of a submatrix obtained by taking d rows of the character

table of an abelian group of order N .

By their definition it is clear that there are only finitely many inequivalent

harmonic frames for a particular abelian group. It is known, see the following

theorem, that if a tight frame is generated by an abelian group of symmetries, then

it is equivalent to a harmonic frame. Hence, there are only finitely many equivalence

classes of tight frames generated by a fixed abelian group.
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Theorem 4.1.8 (Theorem 5.4 of [40]). A tight frame Φ of n vectors for H is

unitarily equivalent to a harmonic frame if and only if it is generated by an abelian

group G ⊂ U(H), i.e., Φ = Gϕ , ∀ϕ ∈ Φ.

4.2 Abelian Frame Multiplications

We begin with a naive exploration of the cyclic group case and show how it

quickly leads to something very familiar to harmonic analysts. Let Φ = {ϕk}N−1
k=0 ⊆

Cd be a linearly dependent (N > d) frame. Suppose ∗ : Cd × Cd → Cd is a bilinear

product such that ϕm ∗ϕn = ϕm+n, i.e., Z/NZ defines a frame multiplication for Φ.

By linear dependence, there exists coefficients {ak}N−1
k=0 ⊂ C not all zero such that

N−1∑
k=0

akϕk = 0.

Multiplying on the left by ϕm and utilizing the aforementioned properties of ∗ yields

0 = ϕm ∗

(
N−1∑
k=0

akϕk

)
=

N−1∑
k=0

ak (ϕm ∗ ϕk) =
N−1∑
k=0

akϕm+k ∀m ∈ Z/NZ. (4.4)

It is convenient to rewrite (4.4) with the index on the coefficients varying with m.

N−1∑
k=0

ak−mϕk = 0 ∀m ∈ Z/NZ (4.5)

This makes it easy to write down the matrix formulation of (4.5). Let a = (ak)
N−1
k=0 ,

let A be the N × N circulant matrix generated by the vector a, and let Φ be the
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N × d matrix with vectors ϕk as its rows. In symbols,

A =



a0 a1 a2 . . . aN−1

aN−1 a0 a1 . . . aN−2

...
...

...
. . .

...

a1 a2 a3 . . . a0


and Φ =



ϕ0

ϕ1

...

ϕN−1


.

Equation (4.5) in matrix form is

AΦ = 0.

We can easily see from this formulation that the columns of Φ are in the nullspace of

a circulant matrix A. A consequence of this and the fact that the DFT diagonalizes

circulant matrices is that the columns of Φ are linear combinations of some subset of

at least d (the rank of Φ is d) columns of the DFT matrix, and if ωj = e2πij/N , then

a0 +aN−1ωj +aN−2ω
2
j + . . .+a1ω

N−1
j = λj (the eigenvalues of A) are zero for at least

d choices of j ∈ {0, 1, . . . , N − 1}. Assuming the existence of a frame multiplication

for a spanning set (a frame) and a cyclic group has lead to a condition involving

the discrete Fourier transform; this is a promising development. In what follows we

improve upon the discussion here by proving a result for general finite abelian group

operations and tight frames.

As a matter of good bookkeeping, we present next an extension of Lemma 3.3.1

to infinite dimensional Hilbert spaces when G is a group and not just a quasigroup.

The key additional quality of a group is the existence of left and right inverses for

each element g ∈ G. This occurs more generally for a loop, a quasigroup with

identity, and in that case the following lemma holds as well.
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Lemma 4.2.1. Let G be a countable group, and let Φ = {ϕg}g∈G be a tight frame

for a separable Hilbert space H over F which may be infinite dimensional. If G

defines a frame multiplication for Φ with continuous extension ∗ to all of H, then

the functions Lg : H → H defined by,

Lg(x) = ϕg ∗ x,

and Rg : H → H defined by

Rg(x) = x ∗ ϕg

are unitary linear operators for every g ∈ G.

Proof. Let x ∈ H, g ∈ G, and A be the frame constant for Φ. Linearity and

continuity of Lg follows easily from bilinearity and continuity of ∗. To show Lg is

unitary, we compute

A
∥∥L∗g(x)

∥∥2
=
∑
h∈G

∣∣〈L∗g(x), ϕh
〉∣∣2

=
∑
h∈G

|〈x, Lg(ϕh)〉|2

=
∑
h∈G

|〈x, ϕg ∗ ϕh〉|2 (def. of Lg)

=
∑
h∈G

|〈x, ϕgh〉|2

=
∑
h∈G

|〈x, ϕh〉|2 (reordering terms)

= A ‖x‖2 .

Therefore L∗g is an isometry. If H is finite dimensional, this is equivalent to L∗g

and Lg being unitary. For the infinite dimensional case we also need that Lg is an
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isometry (this is one of many equivalent characterizations of unitary operators). To

show Lg is an isometry we first show it is invertible and L−1
g = Lg−1 .

Define D = {
∑

h ahϕh : |{ah : ah 6= 0}| < ∞}, i.e., D is all finite linear

combinations of frame elements from Φ. It follows from the frame reconstruction

formula that D is dense in H. Now, for any g ∈ G, Lg maps D onto D, and for

every x =
∑

h ahϕh in D,

Lg−1Lg(x) = Lg−1Lg

(∑
h

ahϕh

)

= Lg−1

(∑
h

ahϕgh

)

=
∑
h

ahϕh = x.

In short, Lg−1Lg is linear, bounded, and the identity on a dense subspace of H,

therefore it is the identity on all of H.

Now we show Lg is an isometry. From general operator theory we have equal-

ities ∥∥L−1
g

∥∥
op

= ‖Lg−1‖
op

=
∥∥L∗g−1

∥∥
op

= 1,

and

‖Lg‖op =
∥∥L∗g∥∥op = 1.

Employing these and the definition of operator norm yields

‖Lg(x)‖ ≤ ‖x‖ and ‖x‖ =
∥∥L−1

g Lg(x)
∥∥ ≤ ∥∥L−1

g

∥∥
op
‖Lg(x)‖ = ‖Lg(x)‖ .

Therefore, ‖Lg(x)‖ = ‖x‖. The same proof shows Rg is unitary. �
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Theorem 4.2.2 (Abelian frame multiplications 1). Let G be a finite abelian group,

and let Φ = {ϕg}g∈G be a tight frame for H. Then G defines a frame multiplication

for Φ if and only if Φ is a G-frame.

Proof. Suppose G defines a frame multiplication for Φ and the bilinear product given

on H is ∗. For each g ∈ G define an operator Ug : H → H by the formula

Ug(x) = ϕg ∗ x.

By Lemma 4.2.1, {Ug}g∈G is a family of unitary operators on H. Define a map

π : g 7→ Ug. That π is a unitary representation of G follows from the calculation

UgUhϕk = Ug(ϕh ∗ ϕk) = Ug(ϕhk) = ϕg ∗ ϕhk = ϕghk = Ughϕk,

and that {ϕk}k∈G spans H. Finally, we have π(g)ϕh = ϕgh showing Φ is a G-frame.

Conversely, suppose Φ = {ϕg}g∈G is a G-frame. Then there exists a unitary

representation π of G such that π(g)ϕh = ϕgh. It follows from the fact π(g) is

unitary and G is abelian that

∀g, h1, h2 ∈ G, 〈ϕh1 , ϕh2〉 = 〈π(g)ϕh1 , π(g)ϕh2〉 = 〈ϕgh1 , ϕgh2〉 = 〈ϕh1g, ϕh2g〉 .

Hence, Theorem 3.3.2 implies G defines a frame multiplication for Φ. �

When H = Cd and G is a finite abelian group, we can describe the form of

frame multiplications defined by G and the equivalence class of the associated frames.

Given the connection between G-frames, frames generated by groups of operators,

and frame multiplications defined by abelian groups, the following theorem is an

extension of Theorem 4.1.8.
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Theorem 4.2.3 (Abelian frame multiplications 2). Let G be a finite abelian group,

and let Φ = {ϕg}g∈G be a tight frame for Cd. If G defines a frame multiplication for

Φ, then Φ is unitarily equivalent to a harmonic frame and there exists U ∈ U(Cd)

and c > 0 such that

cU (ϕg ∗ ϕh) = cU (ϕg) cU (ϕh) , (4.6)

where the product on the right is vector pointwise multiplication and ∗ is the frame

multiplication given by G, i.e., ϕg ∗ ϕh := ϕgh.

Remark 4.2.4. Strictly speaking, we may cancel a c from both sides of Equation 4.6.

We leave them in place because, as we shall see in the proof, cU maps the tight

frame Φ to a harmonic frame. Therefore, it is made clearer what (4.6) means when

all the c’s are in place, i.e., performing the frame multiplication defined by G and

then mapping to the harmonic frame is the same as first mapping to the harmonic

frame and then multiplying pointwise.

Proof. For each g ∈ G define an operator Ug : Cd → Cd by the formula

Ug(x) = ϕg ∗ x.

By Theorem 4.2.2, {Ug}g∈G is an abelian group of unitary operators which generates

Φ = {Ug(ϕe) : g ∈ G}.

Furthermore, since the Ug are unitary, we have

∀g ∈ G, ‖ϕe‖2 = ‖Ug(ϕe)‖2 = ‖ϕg‖2 ,

which shows Φ is equal-norm. For the next step we use a technique found in the

proof of Theorem 5.4 of [40]. A commuting family of diagonalizable operators, such
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as {Ug}g∈G, is simultaneously diagonalizable, i.e., there is a unitary operator V for

which

∀g ∈ G, Dg = V UgV
∗

is a diagonal matrix; see [31, Th. 6.5.8]. This is a consequence of Schur’s lemma and

Maschke’s theorem. Since {Ug}g∈G is an abelian group of operators, all the invariant

subspaces are one dimensional, and orthogonally decomposing Cd into the invariant

subspaces of {Ug}g∈G simultaneously diagonalizes the operators Ug. The operators

Dg are unitary, and consequently, they have diagonal entries of modulus 1. Define

a new frame, generated by the diagonal operators Dg, Ψ by

ψ = V (ϕe), Ψ = {Dg(ψ) : g ∈ G}.

Clearly, then

Φ = {Ug(ϕe) : g ∈ G} = V ∗Ψ.

Let (Dgψ)j be the j-th component of the vector Dgψ. Form the d×|G| matrix with

columns the elements of Ψ, i.e.,

(Dgψ)0 . . . (Dhψ)0

(Dgψ)1 . . . (Dhψ)1

...
. . .

...

(Dgψ)d−1 . . . (Dhψ)d−1


. (4.7)

Since Ψ is the image of Φ under V , it is a equal-norm tight frame, and the matrix

(4.7) has orthogonal rows of equal length. We compute the norm of row j to be(∑
g

|(Dg)j(ψ)j|2
)1/2

=
√
|G||(ψ)j|.
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Therefore, the components of ψ have equal modulus, and if we letW ∗ be the diagonal

matrix with the entries of ψ on its diagonal, then there exists c > 0 such that cW ∗

is a unitary matrix. Now, we have

Φ =
1

c
U∗{Dg1 : g ∈ G}, where 1 = (1, 1, . . . , 1)t and U∗ = cV ∗W ∗ is unitary.

It is important to note that we have more than just the equality of sets of vectors

stated above; the g’s on both sides coincide under the transformation, i.e.,

1

c
U∗(Dg1) = V ∗W ∗Dg(1) = V ∗Dg(ψ)

= UgV
∗(ψ) = Ug(ϕe) = ϕg.

We have found our unitary operator U and positive constant c such that

cUϕg = Dg1. It remains to show that {Dg1 : g ∈ G} is harmonic and that the

product ∗ behaves as claimed. Proving {Dg1 : g ∈ G} is harmonic amounts to

showing for j = 0, 1, . . . , d− 1,

γj : G → C

defined by

γj(g) = (Dg1)j = (Dg)jj

is a character of the group G. This follows easily since

∀j, γj(gh) = (Dgh)jj = (Dg)jj(Dh)jj = γj(g)γj(h).
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Finally, we compute

cU(ϕg ∗ ϕh) = cU(ϕgh)

= Dgh1

= (Dg1)(Dh1)

= cU(ϕg)cU(ϕh). �

In the discussion motivating this section we supposed there was a bilinear

product on Cd and a frame Φ such that ϕm ∗ϕn = ϕm+n, i.e., our underlying group

was Z/NZ. By strengthening our assumptions on Φ to be a tight frame, we may

apply Theorem 4.2.2 to show Φ is a G-frame for the abelian group Z/NZ, and

furthermore, by Theorem 4.2.3, Φ is unitarily equivalent to a DFT frame (harmonic

frame with G = Z/NZ). In summary, we have the following corollary.

Corollary 4.2.5. Let Φ = {ϕn}n∈Z/NZ ⊆ Cd be a tight frame. If Z/NZ defines a

frame multiplication for Φ, then Φ is unitarily equivalent to a DFT frame.

Example 4.2.6. Consider the group Z/4Z, and let

Φ =

ϕ0 =

 1 + i

1− i

 , ϕ1 =

 0

2

 , ϕ2 =

 1− i

1 + i

 , ϕ3 =

 2

0


 .

Φ = {ϕg}g∈Z/4Z is a tight frame for C2, and the Gramian of Φ is

G =



4 2 + 2i 0 2− 2i

2− 2i 4 2 + 2i 0

0 2− 2i 4 2 + 2i

2 + 2i 0 2− 2i 4


.
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It is easy to see that G is a G-matrix for Z/4Z, and therefore, by Theorems 4.1.4

and 4.2.2, Z/4Z defines a frame multiplication for Φ. Hence, by Theorem 4.2.3,

there exists a unitary matrix U and positive constant c such that cUΦ is a harmonic

frame. Indeed, if we let

c =
1√
2
, U =

1√
2

 1 1

−i i

 ,

then

Ψ := cUΦ =

ψ0 =

 1

1

 , ψ1 =

 1

i

 , ψ2 =

 1

−1

 , ψ3 =

 1

−i




is a harmonic frame, and

∀g, h ∈ Z/4Z, cU(ϕgh) = cU(ϕg)cU(ϕh).

4.3 General Group Frame Multiplications

For a general finite group G (not necessarily abelian) we do not have Theorem

4.2.2 in full or the description of possible frame multiplications given by Theorem

4.2.3. What makes the situation different is that for G non-abelian and Φ = {ϕg}g∈G

a G-frame, while we still have

∀h1, h2, g ∈ G, 〈ϕh1 , ϕh2〉 = 〈ϕgh1 , ϕgh2〉 , (4.8)

it does not follow that

∀h1, h2, g ∈ G, 〈ϕh1 , ϕh2〉 = 〈ϕh1g, ϕh2g〉 . (4.9)

By Theorem 3.3.2, (4.9) is necessary if G is to define a frame multiplication for Φ.

Even the smallest non-abelian group can exhibit a failure of (4.9).
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Example 4.3.1. Let G be the dihedral group of order 6,

G = D3 =< r, s : r3 = 1, s2 = 1, rs = sr2 > .

Define a representation π : D3 → U(R2) on the generators of D3 by

π(r) :=

 −1
2
−
√

3
2

√
3

2
−1

2

 , π(s) :=

 −1 0

0 1

 .

If we take ϕ = (1, 0)t, then Φ = {ϕg := π(g)ϕ : g ∈ D3} is a G-frame for R2.

The frame elements are ϕe = (1, 0)t, ϕr = (−1
2
,
√

3
2

)t, ϕr2 = (−1
2
,−
√

3
2

)t, ϕs =

-�
�
�
�
��

A
A
A
A
AK

�
�
�
�
�
��

A
A
A
A
AU

e

r

r2

s

sr

sr2

Figure 4.1: The elements of Φ, {ϕg}g∈D3 .

(−1, 0)t, ϕsr = (1
2
,
√

3
2

)t, and ϕsr2 = (1
2
,−
√

3
2

)t.

As expected, since Φ is a G-frame and (4.8) holds, we have

〈ϕe, ϕs〉 = −1 = 〈ϕr, ϕrs〉 ,

but multiplying on the right by r yields

〈ϕe, ϕs〉 = −1 6= 1

2
= 〈ϕr, ϕsr〉 .

Therefore, D3 cannot define a frame multiplication for Φ. We can show this another

way by exploiting the linear relationships that exist between the frame elements à
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-�
�
�
�
���

A
A
A
A
AAK

�
�
�
�
�
���

A
A
A
A
AAU

e

r

r2

s

sr

sr2

(a) ϕe + ϕs = 0.

-�
�
�
�
���

A
A
A
A
AAK

�
�
�
�
�
���

A
A
A
A
AAU

e

r

r2

s

sr

sr2

(b) ϕr + ϕsr 6= 0.

Figure 4.2: Proposition 3.2.3 in action.

la Proposition 3.2.3. Suppose that ∗ is the extension of a frame multiplication for

Φ given by D3. Then

ϕe + ϕs = 0;

therefore,

0 = (ϕe + ϕs) ∗ ϕr

= ϕe ∗ ϕr + ϕs ∗ ϕr

= ϕr + ϕsr

6= 0.

This is a contradiction, so no such ∗ can exist.
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4.3.1 The Regular Representations

Definition 4.3.2 (Regular representation). Let G be a finite group. The represen-

tation (`2(G), λ) defined by

∀g, h ∈ G, (λ(g)f) (h) = f(g−1h)

is called the left regular representation of G. The representation (`2(G), ρ) defined

by

∀g, h ∈ G, (ρ(g)f) (h) = f(hg)

is called the right regular representation of G.

If {eg}g∈G is the standard orthonormal basis for `2(G), i.e.,

eg(h) =


1 h = g

0 h 6= g,

then

λ(g)eh = egh and ρ(g)eh = ehg−1 .

The characters χλ and χρ are

χλ(g) =


|G| g = e

0 g 6= e

and χρ(g) =


|G| g = e

0 g 6= e,

(4.10)

which follows from Tr(I) = |G| and that for every g 6= e, λ(g) and ρ(g) permute

{eg}g∈G and do not fix any eg, i.e., their matrix forms with respect to the stan-

dard orthonormal basis have all zeroes on the diagonal. Since λ and ρ have the

same character, we know they are unitarily equivalent and share the same isotypic

decomposition; see Theorem 1.3.13.

87



Proposition 4.3.3. The decomposition of the regular representations of G into iso-

typic components is

λ = ρ =
N⊕
i=1

diπi, (4.11)

where N is the number of conjugacy classes of G, π1, π2, . . . , πN are the irreducible

representations of G, and di = dim πi. The equalities in (4.11) denote membership

in the same equivalence class.

Proof. From Theorem 1.3.13, we have

λ =
N⊕
i=1

(χλ|χπi)πi,

and by (4.10), (χλ|χπi) = χπi(e) = dim πi. �

4.3.2 Characterization of Group Frame Multiplications

Proposition 4.3.4. Let G be a finite group with left regular representation λ and

right regular representation ρ. Then A′λ = Aρ and A′ρ = Aλ.

Proof. Let {eg}g∈G be the standard orthonormal basis for `2(G). We have

∀g, h, k ∈ G, ρ(g)λ(h)ek = ρ(g)ehk = ehkg−1 = λ(h)ekg−1 = λ(h)ρ(g)ek.

Showing λ(h) and ρ(g) commute; hence, Aρ ⊆ A′λ (and Aλ ⊆ A′ρ). For the other

inclusion, suppose T ∈ A′λ. We must show that T can be written as a linear

combination of operators in ρ(G). Consider the operator T̃ ∈ Aρ defined by

T̃ =
∑
g∈G

〈Te1, eg−1〉 ρ(g).
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We claim that T = T̃ . Indeed,

∀h, k ∈ G,
〈(
T̃ − T

)
eh, ek

〉
=

〈(∑
g∈G

〈Te1, eg−1〉 ρ(g)− T

)
eh, ek

〉

=

〈∑
g∈G

〈Te1, eg−1〉 ehg−1 − Teh, ek

〉

=

〈∑
g∈G

〈Te1, eg−1〉 ehg−1 , ek

〉
− 〈Teh, ek〉

=
∑
g∈G

〈Te1, eg−1〉 〈ehg−1 , ek〉 − 〈Teh, ek〉

=
〈
Te1, e(k−1h)−1

〉
− 〈Teh, ek〉

=
〈
Te1, λ(h−1)ek

〉
− 〈Teh, ek〉

= 〈λ(h)Te1, ek〉 − 〈Teh, ek〉

= 〈Teh, ek〉 − 〈Teh, ek〉 (since T ∈ A′λ)

= 0,

and since {eg}g∈G is a basis this implies T̃−T = 0. Therefore, A′λ ⊆ Aρ. Similarly to

above, we can show directly that A′ρ ⊂ Aλ, or we can appeal to the von Neumann

double commutant theorem. That is, since Aλ is closed in the strong operator

topology (in fact, it is finite dimensional), Theorem 1.2.5 impliesA′′λ = Aλ; therefore,

A′ρ = A′′λ = Aλ. �

Theorem 4.3.5 (Group frame multiplications 1). Let G be a finite group, and let

Φ = {ϕg}g∈G be a Parseval tight frame for H. G defines a frame multiplication for

Φ if and only if the Gramian of Φ is in A′λ ∩ A′ρ.

Proof. Let L be the analysis operator, and let G = LL∗ be the Gramian operator for

the Parseval tight frame Φ. Note that since Φ is Parseval, we have L∗L = S = I. By
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Naimark’s theorem (Theorem 1.4.6) and the subsequent remark, G is the orthogonal

projection onto L(H) ⊆ `2(G), and if {eg}g∈G is the standard orthonormal basis for

`2(G), then for every g ∈ G, L(ϕg) = G(eg). Suppose G ∈ A′λ ∩ A′ρ. Then

∀g, h, k ∈ G, 〈ϕg, ϕh〉 = 〈Lϕg, Lϕh〉 (L∗L = I)

= 〈Geg, Geh〉

= 〈λ(k)Geg, λ(k)Geh〉 (since λ(k) is unitary) (4.12)

= 〈Gλ(k)eg, Gλ(k)eh〉 (since G ∈ A′λ)

= 〈Gekg, Gekh〉

= 〈ϕkg, ϕkh〉 .

By applying ρ(k−1) in place of λ(k) in (4.12) and using that G ∈ A′ρ, we can show

〈ϕg, ϕh〉 = 〈ϕgk, ϕhk〉. Hence, Theorem 3.3.2 implies G defines a frame multiplication

for Φ.

For the converse, assume G defines a frame multiplication for Φ. By Theorem

3.3.2, it follows that

∀g, h, k ∈ G, 〈ϕg, ϕh〉 = 〈ϕgk, ϕhk〉 = 〈ϕkg, ϕkh〉 . (4.13)
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Consequently,

∀g, h, k ∈ G, 〈λ(g)Geh, ek〉 =
〈
Geh, λ(g−1)ek

〉
= 〈Geh, eg−1k〉

= 〈Geh, Geg−1k〉 (G is an orthogonal projection)

= 〈Lϕh, Lϕg−1k〉

= 〈ϕh, ϕg−1k〉 (L∗L = I)

= 〈ϕgh, ϕk〉 (by (4.13))

= 〈Lϕgh, Lϕk〉

= 〈Gegh, Gek〉

= 〈Gegh, ek〉

= 〈Gλ(g)eh, ek〉 .

Since {eg}g∈G is a basis, we have for every g ∈ G, λ(g)G = Gλ(g). Similarly, only

utilizing the other half of (4.13), we can show for every g ∈ G, ρ(g)G = Gρ(g);

therefore, G ∈ A′λ ∩ A′ρ as desired. �

Proposition 4.3.6. Let (H, π) be an irreducible representation of G and f : G → C

a function. Consider the operator πf on H defined by

πf =
∑
g∈G

f(g)π(g),

and recall a function f : G → C is a class function if it is constant on each conjugacy

class of G. If f is a class function, then

πf =
|G|(f |χπ)

dimπ
I.
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Proof. Suppose f is a class function. Then

∀h ∈ G, π(h)πf = π(h)
∑
g

f(g)π(g)

=
∑
g

f(g)π(hg)

=
∑
g

f(h−1g)π(g)

=
∑
g

f(gh−1)π(g)

=
∑
g

f(g)π(gh)

= πfπ(h). (4.14)

By (4.14) and Schur’s lemma (Lemma 1.3.9), there is a ξ ∈ C such that πf = ξI.

Also,

Tr πf =
∑
g∈G

f(g) Trπ(g) =
∑
g∈G

f(g)χπ(g) = |G|(f |χπ),

and the result follows. �

Lemma 4.3.7. Let G be a finite group, let (`2(G), λ) be the left regular representation

of G, and let π1, π2, . . . , πN be the unique irreducible representations of G. For each

i, 1 ≤ i ≤ N , define Pi to be the orthogonal projection onto Hi, the support of the

i-th isotypic component of λ. If P : `2(G)→ `2(G) is an orthogonal projection, then

P ∈ A′λ ∩ A′ρ if and only if there exist I ⊂ {1, 2, . . . , N} such that

P =
∑
i∈I

Pi. (4.15)

Proof. If I ⊆ {1, 2, . . . , N} and P =
∑

i∈I Pi, then P is an orthogonal projection

onto an invariant subspace of λ and ρ. This easily implies P ∈ A′λ∩A′ρ. Conversely,
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suppose P is an orthogonal projection on `2(G), and suppose P ∈ A′λ ∩ A′ρ. Since

P ∈ A′ρ Proposition 4.3.4 implies there exist coefficients {ag}g∈G such that

P =
∑
g∈G

agλ(g).

Furthermore,

∀h ∈ G, 〈Pe1, eh〉 =

〈∑
g

agλ(g)e1, eh

〉

=
∑
g

ag 〈eg, eh〉

= ah.

Because P ∈ A′λ ∩ A′ρ, it follows

∀g ∈ G, 〈Pe1, eh〉 = 〈Pe1, eghg−1〉 ,

i.e., the function h 7→ 〈Pe1, eh〉 is a class function on G.

Decompose `2(G) into a direct sum of the supports of the isotypic components

of λ, i.e.,

`2(G) =
N⊕
i=1

Hi =
N⊕
i=1

di⊕
j=1

Ki,j.

Let i ∈ {1, 2, . . . , N}, xi ∈ Hi, and let xi =
∑di

j=1 xi,j, where xi,j ∈ Ki,j. Then

Pxi =
∑
g∈G

〈Pe1, eg〉λ(g)

(
di∑
j=1

xi,j

)

=

di∑
j=1

(∑
g∈G

〈Pe1, eg〉λ(g)xi,j

)

=

di∑
j=1

(∑
g∈G

〈Pe1, eg〉 πi(g)xi,j

)
. (4.16)
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Since πi is irreducible and g 7→ 〈Pe1, eg〉 is a class function, applying Proposition

4.3.6 yields ∑
g∈G

〈Pe1, eg〉 πi(g) =
|G|(〈Pe1, eg〉 |χπi)

di
IKi,j

.

Continuing where we left off in (4.16)

Pxi =

di∑
j=1

(∑
g∈G

〈Pe1, eg〉 πi(g)xi,j

)
=
|G|(〈Pe1, eg〉 |χπi)

di
xi.

Therefore, xi is an eigenvector of P . Since P is a projection, it can only have

eigenvalues 0 and 1, and consequently, we may define I ⊆ {1, 2, . . . , N} by i ∈ I if

and only if Pxi = xi. Clearly, then

P =
∑
i∈I

Pi. �

We have an explicit formula for the projections P ∈ A′λ ∩A′ρ, i.e., those of the

form (4.15) from Lemma 4.3.7. Since {χπi}Ni=1 is an orthonormal basis for the space

of class functions on G (Theorem 1.3.12) and g 7→ 〈Pe1, eg〉 is a class function,

〈Pe1, eg〉 =
N∑
i=1

(〈Pe1, eg〉 |χπi)χπi(g).

Therefore, we can write P as

P =
∑
g∈G

〈Pe1, eg〉λ(g) =
∑
g∈G

N∑
i=1

(〈Pe1, eg〉 |χπi)χπi(g)λ(g)

=
N∑
i=1

(∑
g∈G

(〈Pe1, eg〉 |χπi)χπi(g)λ(g)

)

=
∑
i∈I

di
|G|

(∑
g∈G

χπi(g)λ(g)

)
.

The last equality follows by defining I as in Lemma 4.3.7. The operators

di
|G|
∑
g∈G

χπi(g)λ(g)
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are precisely the projections Pi onto the support of the istopyic components of λ, cf.

Theorem 4.1 of [32]. Combining this observation with Theorem 4.3.5 and Lemma

4.3.7, we have a general formula for the Gramian operator of a Parseval frame for

which G defines a frame multiplication. In particular, this formula proves for a finite

group G and Hilbert space H, G defines a frame multiplication for only finitely many

equivalence classes of tight frames for H.

Theorem 4.3.8 (Group frame multiplications 2). Let G be a finite group, let

(`2(G), λ) be the left regular representation of G, and let π1, π2, . . . , πN be the unique

irreducible representations of G. If Φ = {ϕg}g∈G is a Parseval tight frame for H, then

G defines a frame multiplication for Φ if and only if there exist I ⊂ {1, 2, . . . , N}

such that

G =
∑
i∈I

di
|G|

(∑
g∈G

χπi(g)λ(g)

)
(4.17)

is the Gramian operator of Φ.

Proof. Let G be the Gramian of the Parseval frame Φ. By Theorem 4.3.5, G defines

a frame multiplication for Φ if and only if G ∈ A′λ ∩ A′ρ, and by Lemma 4.3.7 and

the subsequent remarks, G ∈ A′λ ∩ A′ρ if and only if there exist I ⊂ {1, 2, . . . , N}

such that (4.17) holds. �

Corollary 4.3.9. Let G be a finite group, and let π1, π2, . . . , πN be the unique irre-

ducible representations of G. Denote the dimension of πi by di. There exists a tight

frame Φ = {ϕg}g∈G for H such that G defines a frame multiplication for Φ if and
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only if there exists I ⊆ {1, 2, . . . , N} such that

dimH =
∑
i∈I

d2
i . (4.18)

Proof. By Proposition 4.3.3, the dimension of the support of the i-th isotypic com-

ponent of λ is d2
i . Suppose G defines a frame multiplication for Φ. By the above

Theorem, the Gramian of Φ is a sum of projections onto the supports of the iso-

typic components of λ. Hence, the rank of the Gramian of Φ is of the form (4.18).

Conversely, by Naimark’s Theorem (Theorem 1.4.6), the projection of the standard

orthonormal basis for `2(G) onto any sum of the supports of the isotypic components

of λ is a Parseval frame Φ = {ϕg}g∈G for its span, and by the above Theorem, G

defines a frame multiplication on Φ. �

Example 4.3.10. Let G = D3, the dihedral group of order 6. If we order the

standard basis elements for `2(D3) e1, er, er2 , es, esr, esr2 , then the generators of

the left regular representation have matrix forms

λ(r) =



0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0



λ(s) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



.

Since D3 has three conjugacy classes, {1}, {r, r2}, and {s, sr, sr2}, and 6 = 12 +

12 + 22 is the only decomposition of 6 into three squares, we can deduce it has

two irreducible representations of dimension 1 and one irreducible representation of
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dimension 2. Corollary 4.3.9 tells us D3 defines frame multiplications in dimensions

12 = 1, 12 + 12 = 2, 22 = 4, 12 + 22 = 5 and 12 + 12 + 22 = 6. In order to find the

frames associated with these frame multiplications we must decompose `2(D3) into

the support of the isotypic components of λ. With a little work we find orthonormal

bases for the invariant subspaces of λ: K1,1, K2,1, K3,1, and K3,2.

K1,1︷︸︸︷ K2,1︷︸︸︷ K3,1︷ ︸︸ ︷ K3,2︷ ︸︸ ︷

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

− 1√
6

− 1√
6

− 1√
6

−
√

3
3

√
3

6

√
3

6

−
√

3
3

√
3

6

√
3

6

0

1
2

−1
2

0

−1
2

1
2

√
3

3

−
√

3
6

−
√

3
6

−
√

3
3

√
3

6

√
3

6

0

−1
2

1
2

0

−1
2

1
2



.

The support of the isotypic components of λ are

H1 = K1,1, H2 = K2,1, and H3 = K3,1 ⊕K3,2.

Projecting the standard orthonormal basis onto direct sums of the Hi, we obtain

the Parseval frames for which D3 defines a frame multiplication. Listing the number

of such projections, we see there are two frames for C1, one for C2, one for C4, two

for C5, and one for C6. We can visualize the 1 and 2 dimensional frames in R and

R2; see Figure 4.3.
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(

1√
6

)
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6

)
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− 1√

6

)
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�
�
�
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e, r, r2
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(c) Projection onto H1 ⊕ H2: three

copies of
(

1√
6
, 1√

6

)
and three copies of(

1√
6
,− 1√

6

)

Figure 4.3: The 1 and 2 dimensional frames for which D3 defines a

frame multiplication.
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4.3.3 Equivalence with Central G-frames

Unlike the case for abelian groups, where Theorem 4.1.8 implies there can only

be finitely many inequivalent G-frames, there may be uncountably many inequiva-

lent G-frames for G non-abelian.

Example 4.3.11. Let G be the dihedral group of order 6 from Example 4.3.1. For

0 ≤ θ ≤ π/2 define the representation πθ : D3 → U(R2) on the generators of D3 by

πθ(r) :=

 −1
2
−
√

3
2

√
3

2
−1

2

 , πθ(s) :=

 cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 .

πθ(r) is rotation in the plane by 2π/3 radians and πθ(s) is reflection across the line

that makes an angle θ with the x-axis in the first quadrant. The representation π

from Example 4.3.1 is the same as ππ/2. If we take ϕ = (1, 0)t, then Φθ = {ϕθg :=

πθ(g)ϕ : g ∈ D3} is a G-frame for R2. That Φθ is generated by πθ is obvious from

its definition; that it is a tight frame can be most easily seen from the fact that

it is a union of two tight frames each unitarily equivalent (via a rotation) to the

Mercedes Benz frame. If 0 ≤ θ1 < θ2 ≤ π/6, then the tight frames Φθ1 and Φθ2 are

inequivalent. This follows from the fact that unitary operators preserve angles.

Example 4.3.11 describes an uncountable family of inequivalent G-frames for

D3. A desire to find classes of G-frames for G non-abelian with only finitely many

equivalence classes, as in the case for harmonic frames, led Vale and Waldron to

define central G-frames in [41]. From Theorem 4.1.4 we know that the Gramian of a

G-frame is a G-matrix; central G-frames are the subset of G-frames such that their

Gramians are G-matrices defined by a class function.
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Figure 4.4: The elements of Φθ from Example 4.3.11 for two choices

of θ.
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Definition 4.3.12 (Central G-frames). A G-frame Φ = {ϕg}g∈G is central if the

function ν : G → C, g 7→ 〈ϕe, ϕg〉 is a class function, i.e., if ν is constant on each

conjugacy class of G.

In an abelian group every conjugacy class has just a single element and every

G-frame is a central G-frame. When G is non-abelian the conjugacy classes can

be large, and the central G-frames will occupy a proper subset of all G-frames.

Vale and Waldron showed in [41] that for a finite group G there are only finitely

many equivalence classes of central G-frames, i.e., the behavior exhibited in Example

4.3.11 does not occur. They also gave an explicit formula for the function ν defining

the G-matrices that arise as the Gramians of central G-frames. In this section we

prove that for any finite group G the central G-frames are precisely the frames for

which G defines a frame multiplication. Hence, our work in Section 4.3.2, where

we showed there are only finitely many inequivalent frames sharing the same group

frame multiplication, corroborates the work done by Vale and Waldron.

Example 4.3.13. Let G = D3, the dihedral group of order 6. We described all

G-matrices for D3 in Example 4.1.6. Using the same presentation,

D3 =< r, s : r3 = e, s2 = e, rs = sr2 >,

we have the conjugacy classes are {e}, {r, r2}, and {s, sr, sr2}. If Φ = {ϕg}g∈D3 is

101



a central G-frame, then its Gramian has the form



e r r2 s sr sr2

e ν(e) ν(r) ν(r) ν(s) ν(s) ν(s)

r ν(r) ν(e) ν(r) ν(s) ν(s) ν(s)

r2 ν(r) ν(r) ν(e) ν(s) ν(s) ν(s)

s ν(s) ν(s) ν(s) ν(e) ν(r) ν(r)

sr ν(s) ν(s) ν(s) ν(r) ν(e) ν(r)

sr2 ν(s) ν(s) ν(s) ν(r) ν(r) ν(e)



(4.19)

for some ν defined on the conjugacy classes of D3, or, as we have written it here,

representatives of the conjugacy classes: e, r, and s.

In the above example we found the form of the Gramian for a central G-frame

for the group D3. Our first follow up question might be whether a frame with such a

Gramian even exists. Trivially, an orthonormal basis for C6 has such a Gramian, but

what about in lower dimensions? It turns out it is not hard to tell which G-matrices

arise from central G-frames. Any self-adjoint positive-semidefinite matrix P of the

form (4.19) whose only eigenvalues are 0 and c > 0 is the Gramian of a central G-

frame for D3. This follows from the fact that any self-adjoint positive-semidefinite

matrix is the Gramian of some set of vectors, call them Φ, and the condition on

the eigenvalues of P guarantees it is a scaled orthogonal projection. These are both

shown by diagonalizing the self-adjoint matrix P . Then Naimark’s theorem implies

Φ is a tight frame, and Theorem 4.1.4 tells us it is a G-frame. Finally, since we

began with a matrix of the form (4.19), Φ is a central G-frame.
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Summarizing the above, if we would like to know for what dimensions cen-

tral G-frames exist for D3 and how many there are (up to equivalence), we need

only count positive-semidefinite G-matrices of the form (4.19) with a single positive

eigenvalue (and zero). This is relevant to our frame multiplication problem because

of the following theorem, a result of which is that the matrices described in this

paragraph are precisely the projections from Section 4.3.2.

Theorem 4.3.14 (Equivalence with central G-frames). If G is a finite group and

Φ = {ϕg}g∈G is a tight frame for H, then G defines a frame multiplication for Φ if

and only if Φ is a central G-frame.

Proof. Suppose G is a finite group and Φ is a tight frame for H. By Theorem 3.3.2,

G defines a frame multiplication for Φ if and only if

∀g, h, k ∈ G, 〈ϕg, ϕh〉 = 〈ϕkg, ϕkh〉 = 〈ϕgk, ϕhk〉 . (4.20)

Equation (4.20) holds if and only if

∀g, h ∈ G, 〈ϕh, ϕg〉 = 〈ϕe, ϕh−1g〉 (4.21)

and

∀g, h ∈ G, 〈ϕe, ϕh−1gh〉 = 〈ϕe, ϕg〉 . (4.22)

Equation (4.21) says the Gramian of Φ is a G-matrix defined by the function g 7→

〈ϕe, ϕg〉, and by Theorem 4.1.4 this implies Φ is a G-frame. Finally, (4.22) says Φ

is central. �
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[23] F. A. Grünbaum. The Heisenberg inequality for the discrete Fourier transform.
Applied and Computational Harmonic Analysis, 15(2):163–167, 2003.

[24] D. Han. Classification of finite group-frames and super-frames. Canadian Math-
ematical Bulletin, 50:85–96, 2007.

[25] D. Han and D. R. Larson. Frames, bases, and group representations. Memoirs
of American Mathematical Society, 697, 2000.

[26] C. Heil. A Basis Theory Primer: Expanded Edition. Applied and Numerical
Harmonic Analysis. Birkhäuser Boston, 2010.
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