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Mathematical motivation

The challenge: How can we (efficiently) represent and find
structure in high-dimensional data sets?

One potential solution: Look for low-dimensional
approximations. For linear signal models, this is the sparse
representation problem: decomposing a signal y ∈ RM as∑N

n=1 anϕn, where {ϕn} forms a finite frame for RM and
(a1, . . . , an) has small support.

Efficiently solving this problem requires computing minimizers
of regularized least-squares problems.
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Neuroscientific motivation

The sparse coding hypothesis (Olshausen 2004):

Information [carried within neural networks] is
represented by a relatively small number of
simulataneously active neurons out of a large
population.

Sparse neural activity is observed in connection with
competitive inhibition activity in sensory processing centers
across many animal species.

Excitatory neurons race to fire before broadly-tuned feedback
inhibitory signals silence excitatory clusters.

Matthew Guay Sparse approximation via LCA
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Neuroscientific motivation

Recent research (Lin 2014) produced strong evidence that in
the olfactory processing system of the fruit fly (Drosophila
melanogaster):

Feedback inhibition is responsible for sparse neural activity in
Kenyon cells.

Sparse Kenyon cell activity is important for proper odor
discrimination.

How does this behavior relate to dynamics and frame theory?

Matthew Guay Sparse approximation via LCA
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Locally competitive algorithms

A Hopfield network (Hopfield 1982) is a (continuous or
discrete) dynamical system for which a Lyapunov function
relates system evolution to the geometry of a corresponding
energy surface.

Locally competitive algorithms (LCA) are continuous
Hopfield(-like) networks for which the optimization problems
of sparse representation are (weak) Lyapunov functions.
Further analysis demonstrates robust global convergence
properties.

LCA is simultaneously a linear-nonlinear neural network model
with competitive inhibition and an efficient optimization
algorithm for sparse representation problems.

Matthew Guay Sparse approximation via LCA
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Problem setup

We wish to approximate a signal y ∈ RM via synthesis in a
unit-norm frame Φ, given measurements ΦT y.

The synthesis operator S for Φ maps a coefficient vector
a ∈ RN to

∑N
n=1 anϕn ∈ RM .

For finite frames, S can be represented as a matrix
[ϕ1 · · ·ϕn] ∈ RM×N . Abuse notation, call this Φ as well.

Variational methods applied to the space of coefficents RN
allow us to solve the synthesis problem, given only analytic
information.

Matthew Guay Sparse approximation via LCA
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Frames and optimization

For well-behaved functions C : RN → R, the vector a can be
chosen as the solution of a constrained optimization problem

a∗ = arg min
a∈RN

C(a) s.t.
1

2
||Φa− y ||22 < ε

For some choice of λ > 0, this is equivalent to the
unconstrained optimization problem

a∗ = arg min
a∈RN

1

2
||Φa− y ||22 + λC(a) (1)

The sparse representation problem: Can C(a) be chosen so
that a∗ has small support?

Matthew Guay Sparse approximation via LCA
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Sparse representation

The sparsity of a vector a ∈ RN is characterized by the `0

“norm” ||a||0 , | supp(a)|.

Solving

a∗ = arg min
a∈RN

1

2
||Φa− y ||22 + λ||a||0

is an NP-hard problem, computationally intractable.

Alternate choices of C(a) in (1) provide tractable alternative
problems with the same solution, for certain classes of signal
y and frame Φ.

Example: Basis pursuit denoising (BPDN)

a∗ = arg min
a∈RN

1

2
||Φa− y ||22 + λ||a||1 (BPDN)

Matthew Guay Sparse approximation via LCA
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A broader class of problems

We will focus on problems of the form

a∗ = arg min
a∈RN

V (a) ,
1

2
||Φa− y ||22 + λ

N∑
n=1

C(an) (2)

Admissible cost functions C are defined by a differential
equation in a later slide. This class of functions includes the
BPDN regularization term ||a||1 and several other
regularization functions of interest (Charles, 2012).

Matthew Guay Sparse approximation via LCA
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Admissible cost functions

All admissible C satisfy:

C(0) = 0 and C(x) ≥ 0 ∀x ∈ R.

C ∈ C1((−∞, 0) ∪ (0,∞)).

C is nonincreasing on (−∞, 0) and nondecreasing on (0,∞).

Matthew Guay Sparse approximation via LCA
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LCA setup

Given y ∈ RM and Φ ∈ RM ×N , the LCA system consists of
N “nodes” with internal states u(t) : R→ RN and output
states a(t) : R→ RN .

Internal and output states related component-wise by a
thresholding function Tλ : R→ R such that Tλ(un) = an.
Define Tλ(u) = (Tλ(u1), . . . , Tλ(uN )).

Given Tλ and a time constant τ > 0, the LCA system is

τ u̇ = −u−(ΦTΦ− I)a + ΦT y (LCA)

a = Tλ(u),

Matthew Guay Sparse approximation via LCA
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The function Tλ

Convergence results in (Balavoine 2012) are established for
LCA systems with admissible thresholding functions

Tλ(un) =

{
0, |un| ≤ λ
f(un), |un| > λ

f : R→ R is C1 on D = (−∞,−λ] ∪ [λ,∞) and satisfies

f(−un) = −f(un) ∀un ∈ D, f(λ) = 0
f ′(un) > 0 ∀un ∈ D
f(un) ≤ un ∀un ∈ (λ,∞)

Matthew Guay Sparse approximation via LCA
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LCA dynamics

To understand how the LCA works, examine a single node’s
dynamics:

u̇n = −un −
∑
k 6=n
〈ϕn,ϕk〉 ak + 〈ϕn,y〉

an = Tλ(un)

Internal state un receives input 〈ϕn,y〉, “loses charge” in the
absence of stimulus (−u term), and receives feedback
inhibition (and excitation) from other active, correlated states.

Output state an is rectified by a thresholding function that
does not saturate (radially unbounded).

Matthew Guay Sparse approximation via LCA
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Connections to optimization

Define a function C(an) : R→ R as C(0) = 0, and satisfying

λ
dC

dan
= un − Tλ(un) (3)

for an 6= 0.

For an admissible Tλ, these functions C are admissible in the
sense discussed for cost functions.

For such cost and thresholding functions, the function V (a)
from (2) satisfies dV

dan
= −dun

dt and is a weak Lyapunov
function for (LCA).

Matthew Guay Sparse approximation via LCA
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Thresholding and cost function illustrations
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Connections to optimization

A function J : RN → R is a weak Lyapunov function if

(1) J(x) > 0 ∀x 6= 0;

(2) J is continuous on RN ;

(3) J̇(x(t)) ≤ 0 ∀ t > 0, x ∈ RN .

(4) lim||x ||→∞ J(x) =∞.

V (a) is a weak Lyapunov function for the LCA system:
conditions (1),(2),(4) are obvious and (model argument)

V̇ (a(t)) =
〈
∇aV, F

′u̇
〉

= −
〈
u̇, F ′u̇

〉
≤ 0

for an N ×N diagonal matrix F ′ with F ′kk = f ′(ak).

Matthew Guay Sparse approximation via LCA
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Connections to optimization

LCA trajectories have non-increasing V (a) values in time, but
this does not prove global convergence.

The LCA thresholding function structure violates key
assumptions (nonlinear, non-smooth, unbounded) required for
global convergence results in past literature.

The network interconnection matrix ΦTΦ− I may have a
non-trivial null-space and/or negative eigenvalues, further
complicating analysis.

Matthew Guay Sparse approximation via LCA
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Active and inactive sets

Key observation: the LCA system decomposes into active and
inactive sets at each time t, based on which output nodes are
thresholded.

For each subset Γ ⊆ {1, . . . , N}, define uΓ and aΓ as the
elements of u, a indexed by Γ. Let ΦΓ be the matrix
composed of columns of Φ indexed by Γ. Same for F ′Γ.

At each t ∈ R, u(t) decomposes into an active set uΓ(t) and
inactive set uΓC (t): |uk(t)| > λ ∀ k ∈ Γ. a(t) is decomposed
likewise.

Matthew Guay Sparse approximation via LCA



23/51

Motivation
Background

Locally competitive algorithms
LCA convergence results

Conclusions and future work

LCA as a switched system

At switching times {tk}∞k=1, the membership of the active set
Γ(t) changes. For all k > 0 and all s ∈ [tk−1, tk), Γ(s) is
some fixed set Γk.

LCA can be recast as a switched system: between switching
times, rewrite (LCA) as

ȧΓ(t) = F ′Γ(t)u̇Γ(t) (4)

u̇Γ(t) = −uΓ(t) + aΓ(t)− ΦT
ΓΦΓaΓ + ΦT

Γ y (5)

u̇ΓC (t) = −uΓC (t)− ΦT
ΓCΦΓaΓ(t) + ΦT

ΓC y . (6)

Matthew Guay Sparse approximation via LCA
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Background - stability and convergence

Some basic stability results for dynamical systems

ẋ = G(x), x ∈ RN . (7)

Fixed point - x∗ ∈ RN such that G(x∗) = 0.

(Lyapunov) stability - (7) is stable at x∗ if for each ε > 0,
there exists R > 0 such that for all x0 with ||x0−x∗ || < R,
all trajectories x(t) of (7) with x(0) = x0 satisfy
||x(t)− x∗ || < ε, ∀t > 0.

Asymptotic stability - (7) is asymptotically stable at x∗ if
there exists R > 0 such that for all x0 with ||x0−x∗ || < R,
trajectories x(t) of (7) with x(0) = x0 satisfy
limt→∞ x(t) = x∗.

Matthew Guay Sparse approximation via LCA
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Background - stability and convergence

Global convergence - (7) is globally convergent at x∗ if it is
asymptotically stable with R =∞.

Global quasi-convergence - Given x(t) as in (7), let
z(t) = Tλ(x(t)) and let E = {z∗ ∈ RN | ż∗ = 0}. (7) is
globally quasi-convergent if for all initial x0 ∈ RN of (7),
limt→∞ z(t) ∈ E .

Most generally, LCA systems will be globally quasi-convergent,
with global convergence under additional assumptions.

Global quasi-convergence for LCA means a(t) will converge to
a fixed point a∗ (possibly non-unique).

Matthew Guay Sparse approximation via LCA
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Background - subgradients

For the cost functions C of interest, V (a) is not a
differentiable function.

To study convergence, we need subgradients - ∂g(x) = ∇g(x)
when the gradient exists, and otherwise ∂g(x) is the convex
hull of the set of limit points of ∇h(xi) as xi → x.

∂g(x) = co

{
lim
i→∞
∇g(xi) | xi → x,xi 6∈ Ωg

}
,

where Ωg is the set of points of nondifferentiability of g.

Matthew Guay Sparse approximation via LCA
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Background - subgradients

Critical point - x∗ is a critical point for a nonsmooth function
g iff 0 ∈ ∂g(x∗). When g is convex, all such critical points are
minima of g.

Regularity - V (a) and C(an) are regular functions - their
one-sided directional derivatives exist at all points in their
domain. Therefore we have that

∂V (a(t)) = −ΦT y+ΦTΦa(t) + λ∂C(a(t)) (8)

Lemma 1 (Generalized chain rule): For V : RN → R regular
and a(t) : [0,∞)→ RN continuously differentiable,

d

dt
V (a(t)) = ζT ȧ(t) ∀ζ ∈ ∂V (a(t)). (9)

Matthew Guay Sparse approximation via LCA
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LCA convergence overview

Theorem 1: LCA fixed points are critical points of V (a),
trajectories a(t) are globally quasi-convergent.

Theorem 2: LCA active sets stop switching after finitely many
switches as long as u∗n 6= λ for any n.

Theorem 3: Given RIP-like conditions on Φ and bounds on
|f ′|, LCA trajectories are globally exponentially convergent to
a unique equilibrium.

Matthew Guay Sparse approximation via LCA
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Theorem 1

Three main results for the LCA system, assuming admissible
cost functions C(an) and thresholding functions f(un):

(a) Fixed points of (LCA) are critical points of the objective
function V (a).

(b) LCA a(t) trajectories are globally quasi-convergent (to critical
points of V (a)).

(c) If the critical points of V (a) are isolated, there is a unique
critical point and LCA u(t) are globally convergent.

Matthew Guay Sparse approximation via LCA
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Part (a) proof sketch

Want to show: Any fixed point u∗ of (LCA) with active set
Γ∗ is a critical point of V (a).

Critical points a∗ of V (a) satisfy

0 ∈ −ΦT y+ΦTΦa∗ + λ∂C(a∗) (10)

u̇ = 0 at u∗ can be written separately for active and inactive
sets as

− u∗Γ∗ +f(u∗Γ∗)− ΦT
ΓΦΓa

∗
Γ∗ + ΦT

Γ∗ y = 0 (11)

− u∗ΓC
∗
−ΦT

ΓC
∗

ΦΓ∗a
∗
Γ∗ + ΦT

ΓC
∗
y = 0 (12)

Matthew Guay Sparse approximation via LCA
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Part (a) proof sketch

For u∗Γ∗
, the subgradient in (10) is ∇C(a∗Γ∗

) = u∗Γ∗
− f(u∗Γ∗

)
and (10) is equivalent to (11).

For u∗
ΓC
∗

, first compute lima↓0∇C(a) = 1 and

lima↑0∇C(a) = −1, so

∂C(0) = [−1, 1].

Given this, (10) becomes

ΦT
ΓC
∗
y−ΦT

ΓC
∗

ΦΓ∗a
∗
Γ∗ ∈ [−λ, λ],

a condition satisfied by (12).

Matthew Guay Sparse approximation via LCA
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Part (b) proof sketch

Want to show: LCA trajectories are globally quasi-convergent
(i.e. limt→∞ ȧ(t) = 0).

The previous line of reasoning also lets us conclude that

−u̇ = u−a + ΦTΦa− ΦT y ∈ ∂V (a).

By the generalized chain rule (9) and (4),

dV

dt
= −u̇(t)T ȧ(t) = −

∑
n∈Γ

f ′(un(t))|u̇n(t)|2. (13)

(13) is nonpositive for all t ≥ 0 and negative for all t ≥ 0 such
that ||u̇Γ||2 6= 0.

Matthew Guay Sparse approximation via LCA
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Part (b) proof sketch

Since V (a) is continuous, nonincreasing, and bounded below
by 0, V (a)→ V ∗, so

lim
t→∞

V̇ (a) = 0 (14)

Since f ′ > 0, by (14) and (13), we conclude

lim
t→∞
||u̇(t)||2 = 0,

so by (4)
lim
t→∞
||ȧ(t)||2 = 0,

proving global quasi-convergence of a(t).

Matthew Guay Sparse approximation via LCA
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Part (c) proof sketch

Want to show: if critical points of V (a) are isolated, LCA
u(t) converges to a global fixed point.

Global quasi-convergence of a(t) and isolated V (a) critical
points together imply convergence of (LCA) to an isolated
critical point a∗ of V (a).

Define ã(t) = a(t)− a∗ and u∗ = −ΦTΦa∗ + ΦT y+a∗, then
rewrite u̇(t) as

u̇(t) = −u(t) + u∗−(ΦTΦ− I)ã(t) (15)

Matthew Guay Sparse approximation via LCA
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Part (c) proof sketch

The linear inhomogeneous ODE (15) can be solved by
variation of parameters to yield

u(t) = u∗+e−t(u(0)−u∗)+e−t
∫ t

0
es(ΦTΦ−I)ã(s) ds (16)

To show u(t)→ u∗, compare the expression in (16) with the
linear trajectory `(t) = u∗+e−t(u(0)− u∗).

Define h(t) , u(t)− `(t) = e−t
∫ t

0 e
s(ΦTΦ− I)ã(s) ds.

Global convergence of u(t) is proven by showing

lim
t→∞
||h(t)||2 ≤ lim

t→∞
e−t||ΦTΦ− I||2

∫ t

0
es||ã(s)||2 ds = 0.

Matthew Guay Sparse approximation via LCA
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Theorem 2

Statement: If (LCA) converges to a fixed point u∗ such that
|u∗n| 6= λ for all n, the system converges after a finite number
of switches.

Proof sketch:

Convergence of u(t) to u∗ and equivalence of Lp norms on
RN mean that for some t% <∞,

||u(t)− u∗ ||∞ < % , minn ||u∗n| − λ| for all t > t%.

All such u(t) have the same active set as u∗ and cannot
switch active sets without leaving the set ||u(t)− u∗ ||∞ < %.

Matthew Guay Sparse approximation via LCA
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Theorem 3 - background

The dynamical system in (7) is exponentially convergent with
convergence speed c > 0 if for any initial point x(0), there
exists a constant κ0 > 0 such that

||x(t)− x∗ || ≤ κ0e
−ct, ∀t ≥ 0.

Important quantity - α, bounding the magnitude of f ′ over
the course of a trajectory.

∀t ≥ 0,∀n = 1, . . . , N |f ′(un(t))| ≤ α. (17)

Matthew Guay Sparse approximation via LCA
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Theorem 3 - background

Important quantity - δ satisfying RIP-like condition on a
subset of RN :

(1− δ)||x ||22 ≤ ||Φx ||22 ≤ (1 + δ)||x ||22

for x ∈ RN with active set Γ̃.

Given an LCA trajectory u(t) converging to u∗ with active set
Γ∗, Γ̃ is the union of Γ∗ and every set Γ which is an active set
of u(t) for some t ≥ 0.

Recall the time constant τ from (LCA). WLOG τ = 1 for the
proofs of Theorems 1 and 2, but it’s important here to
quantify convergence rates.

Matthew Guay Sparse approximation via LCA
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Theorem 3 - result

Statement: Given an admissible thresholding function Tλ, if
the previously-defined constants α and δ satisfy

δ < min

(
1,

1

(2α− 1)2

)
,

the LCA system is globally exponentially convergent to a
unique equilibrium, with convergence speed (1− δ)/τ .

Matthew Guay Sparse approximation via LCA
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Theorem 3 - proof sketch

Given an LCA trajectory u(t) converging any fixed point u∗,
define ã(t) = a(t)− a∗, ũ(t) = u(t)− u∗.

The behavior of 1
2 ||ũ(t)||22 is controlled by the behavior of

E(t) =
1

2
||ũ(t)||22 +

N∑
n=1

∫ ũn(t)

0
gn(s) ds,

where gn(s) = Tλ(s+ u∗n)− Tλ(u∗n).

Compare: ãn(t) = Tλ(ũn(t) + u∗n)− Tλ(u∗n).

Matthew Guay Sparse approximation via LCA
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Theorem 3 - proof sketch

Using the result of a technical lemma, it is demonstrated that

τĖ(t) ≤ −(1− δ)E(t).

Since 1
2 ||ũ(t)||22 ≤ E(t), use Gronwall’s inequality to conclude

that
1

2
||u(t)− u∗ ||22 ≤ E(t) ≤ e−(1−δ)t/τE(0).

Matthew Guay Sparse approximation via LCA
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Conclusions

We have reviewed the problem of computing sparse
representations, and the LCA system as a tool for this
problem.

The LCA system demonstrates robust convergence properties
which suggest it may be feasibly implementable for efficiently
solving large-scale problems.

The theory underpinning this system connects the
optimization problems of computational harmonic analysis
with new dynamical systems theory for Lyapunov-like
functions.

Network implementations of LCA systems suggest intriguing
connections with neuroscience.
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Connections to neuroscience

Linear-nonlinear models of neural firing rates take the form
F (k · y) for a receptive field k and a nonlinear rectification
function F (thresholding and saturating).

Competitive inhibition: Spiking neurons in excitatory
populations trigger inhibitory neurons which silence large
portions of the excitatory population.

Found to occur in the mushroom body in insects,
hypothesized to be involved in gamma frequency activity in
mammalian visual processing.

LCA can be implemented in a network with similar but not
identical structure.

Matthew Guay Sparse approximation via LCA
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Terrible visualization

Figure: Top layer - inhibitory neurons providing feedback inhibition.
Middle layer - multivalent neurons representing {ϕn}. Bottom layer -
Input domain.
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Future work

Spiking models - what can be said about the activity of spiking
neurons, whose average firing rates obey LCA-like equations?

Positivity restrictions - can a similar system with univalent
neuron firing rates be devised?

Saturation - what sort of representations are formed when Tλ
saturates as well as thresholds?

Dictionary learning - Able to be integrated into the prior
network visualization by varying bottom-middle connection
strengths.
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Thanks!
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