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Why study graphs?

Graph theory has developed into a useful tool in applied
mathematics.
Vertices correspond to different sensors, observations, or data
points. Edges represent connections, similarities, or correlations
among those points.



Wikipedia graph



Graphs in pure mathematics too!
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Outline

1 Fourier Transform

2 Modulation

3 Convolution

4 Translation



Motivation

In the classical setting, the Fourier transform on R is given by

f̂ (ξ) =

∫
R

f (t)e−2πiξt dt = 〈f ,e2πiξt〉.

This is precisely the inner product of f with the eigenfunctions of
the Laplace operator.
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Graph Laplacian

Definition
The pointwise formulation for the Laplacian acting on a function
f : V → R is

∆f (x) =
∑
y∼x

f (x)− f (y).

For a finite graph, the Laplacian can be represented as a matrix.
Let D denote the N × N degree matrix, D = diag(dx ).
Let A denote the N × N adjacency matrix,

A(i , j) =

{
1, if xi ∼ xj
0, otherwise.

Then the unweighted graph Laplacian can be written as

L = D − A.



Spectrum of the Laplacian

L is a real symmetric matrix and therefore has nonnegative
eigenvalues {λk}N−1

k=0 with associated orthonormal eigenvectors
{ϕk}N−1

k=0 .
If G is finite and connected, then we have

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1.

Easy to show that ϕ0 ≡ 1/
√

N.



Data Sets - Minnesota Road Network
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Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Minnesota road graph (2642 vertices)



Data Sets - Sierpinski gasket graph approximation
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Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Level-8 graph approximation to Sierpinski gasket (9843 vertices)



Data Sets - Sierpinski gasket graph approximation
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Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Level-8 graph approximation to Sierpinski gasket (9843 vertices)



Graph Fourier Transform

Definition
The graph Fourier transform is defined as

f̂ (λl ) = 〈f , ϕl〉 =
N∑

n=1

f (n)ϕ∗
l (n).

Notice that the graph Fourier transform is only defined on values of
σ(L).
The inverse Fourier transform is then given by

f (n) =
N−1∑
l=0

f̂ (λl )ϕl (n).



Outline
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Graph Modulation

In Euclidean setting, modulation is multiplication of a Laplacian
eigenfunction.

Definition
For any k = 0,1, ...,N − 1 the graph modulation operator Mk , is
defined as

(Mk f )(n) =
√

Nf (n)ϕk (n).

On R,

modulation in the time domain = translation in the frequency
domain

M̂ξf (ω) = f̂ (ω − ξ).



Example - Classical Setting



Example - Movie

G =SG6
f̂ (λl ) = δ2(l) =⇒ f = ϕ2.
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Example - Movie

G =Minnesota
f̂ (λl ) = δ2(l) =⇒ f = ϕ2.
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Graph Convolution - Motivation and Definition

Classically, for signals f ,g ∈ L2(R) we define the convolution as

f ∗ g(t) =

∫
R

f (u)g(t − u) du.

However, there is no clear analogue of translation in the graph
setting. So we exploit the property

( ̂f ∗ g)(ξ) = f̂ (ξ)ĝ(ξ),

and then take inverse Fourier transform.

Definition
For f ,g : V → R, we define the graph convolution of f and g as

f ∗ g(n) =
N−1∑
l=0

f̂ (λl )ĝ(λl )ϕl (n).



Outline
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Graph Translation

For signal f ∈ L2(R), the translation operator, Tu, can be thought
of as a convolution with δu.
On R we can calculate
δ̂u(k) =

∫
R δu(x)e−2πikx dx = e−2πiku(= ϕ∗

k (u)).
Then by taking the convolution on R we have

(Tuf )(t) = (f∗δu)(t) =

∫
R

f̂ (k)δ̂u(k)ϕk (t) dk =

∫
R

f̂ (k)ϕ∗
k (u)ϕk (t) dk

Definition
For any f : V → R the graph translation operator, Ti , is defined to be

(Ti f )(n) =
√

N(f ∗ δi )(n) =
√

N
N−1∑
l=0

f̂ (λl )ϕ
∗
l (i)ϕl (n).



Example - Classical Setting

Translation in the time domain = Modulation in the frequency domain



Example - Movie

G =Minnesota
f = 11
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Example - Movie

G =Minnesota
f̂ (λl ) = e−5λl
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Example - Movie

G =SG6
f̂ (λl ) = e−5λl
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Example - Movie

G =Minnesota
f̂ ≡ 1
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Nice Properties of Graph Translation

Theorem

For any f ,g : V → R and i , j ∈ {1,2, ...,N} then
1 Ti (f ∗ g) = (Ti f ) ∗ g = f ∗ (Tig).
2 TiTj f = TjTi f .



Not-so-nice Properties of Translation operator

The translation operator is not isometric

‖Ti f‖`2 6= ‖f‖`2

In general, the set of translation operators {Ti}N
i=1 do not form a

group like in the classical Euclidean setting.

TiTj 6= Ti+j

In general, Can we even hope for TiTj = Ti•j for some semigroup
operation, • : {1, ...,N} × {1, ...,N} → {1, ...,N}?

Theorem (B. & O.)

Given a graph, G, with eigenvector matrix Φ = [ϕ0| · · · |ϕN−1]. Graph
translation on G is a semigroup, i.e. TiTj = Ti•j for some semigroup
operator • : {1, ...,N} × {1, ...,N} → {1, ...,N}, only if Φ = (1/

√
N)H,

where H is a Hadamard matrix.
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Why should we care?

With these time-frequency operators generalized to
vertex-frequency operators, we are able to convert many nice
results and theories from harmonic analysis to the graph setting.

Wavelets and Wavelet Transform
Windowed/Short-Time Fourier Transform (STFT)
Windowed Fourier Frames
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Thank you!


