Analysis meets Graphs

Matthew Begué

Norbert Wiener Center Department of Mathematics University of Maryland, College Park

Why study graphs?

- Graph theory has developed into a useful tool in applied mathematics.
- Vertices correspond to different sensors, observations, or data points. Edges represent connections, similarities, or correlations among those points.

Wikipedia graph

Graphs in pure mathematics too!

Real Analysis

- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

Real Analysis

Complex Analysis

- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motior
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motior
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motior
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

- Real Analysis
- Complex Analysis
- Partial Differential Equations
- Ordinary Differential Equations
- HARMONIC ANALYSIS
- Probability
- Differential Geometry
- Functional Analysis
- Compressive Sensing
- Stochastic Processes
- Measure Theory
- Brownian Motion
- Operator Theory
- Spectral Theory
- Mathematical Modeling
- Numerical Analysis

Analysis toolbox

Translation

- Convolution
- Modulation
- Fourier Transform

Translation

- Convolution
- Modulation
- Fourier Transform

- Translation
- Convolution
- Modulation
- Fourier Transform

- Translation
- Convolution
- Modulation
- Fourier Transform

Outline

Fourier Transform

2 Modulation

3 Convolution

• In the classical setting, the Fourier transform on \mathbb{R} is given by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i \xi t} dt = \langle f, e^{2\pi i \xi t} \rangle.$$

• This is precisely the inner product of *f* with the eigenfunctions of the Laplace operator.

• In the classical setting, the Fourier transform on \mathbb{R} is given by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i \xi t} dt = \langle f, e^{2\pi i \xi t} \rangle.$$

• This is precisely the inner product of *f* with the eigenfunctions of the Laplace operator.

Definition

The pointwise formulation for the Laplacian acting on a function $f: V \to \mathbb{R}$ is

$$\Delta f(x) = \sum_{y \sim x} f(x) - f(y).$$

 For a finite graph, the Laplacian can be represented as a matrix. Let *D* denote the *N* × *N* degree matrix, *D* = diag(*d_x*). Let *A* denote the *N* × *N* adjacency matrix,

$$A(i,j) = \begin{cases} 1, & \text{if } x_i \sim x_j \\ 0, & \text{otherwise.} \end{cases}$$

Then the unweighted graph Laplacian can be written as

$$L = D - A$$
.

- *L* is a real symmetric matrix and therefore has nonnegative eigenvalues $\{\lambda_k\}_{k=0}^{N-1}$ with associated orthonormal eigenvectors $\{\varphi_k\}_{k=0}^{N-1}$.
- If G is finite and connected, then we have

$$\mathbf{0} = \lambda_{\mathbf{0}} < \lambda_{\mathbf{1}} \leq \lambda_{\mathbf{2}} \leq \cdots \leq \lambda_{N-1}.$$

• Easy to show that
$$\varphi_0 \equiv 1/\sqrt{N}$$
.

Data Sets - Minnesota Road Network

Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues. Minnesota road graph (2642 vertices)

Data Sets - Sierpinski gasket graph approximation

Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues. Level-8 graph approximation to Sierpinski gasket (9843 vertices)

Data Sets - Sierpinski gasket graph approximation

0.015 0.015 0.015 0.01 0.01 0.005 0.005 0.005 -0.005 -0.01 -0.01 -0.015 -0.015 (d) λ_6 (e) λ₇ (f) λ_8

Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues. Level-8 graph approximation to Sierpinski gasket (9843 vertices)

Definition

The graph Fourier transform is defined as

$$\hat{f}(\lambda_l) = \langle f, \varphi_l \rangle = \sum_{n=1}^N f(n) \varphi_l^*(n).$$

Notice that the graph Fourier transform is only defined on values of $\sigma(L)$.

The inverse Fourier transform is then given by

$$f(n) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l) \varphi_l(n).$$

2 Modulation

3 Convolution

Graph Modulation

• In Euclidean setting, modulation is multiplication of a Laplacian eigenfunction.

Definition

For any k = 0, 1, ..., N - 1 the graph modulation operator M_k , is defined as

$$(M_k f)(n) = \sqrt{N} f(n) \varphi_k(n).$$

On ℝ,

modulation in the time domain = translation in the frequency domain

$$\widehat{M_{\xi}f}(\omega)=\widehat{f}(\omega-\xi).$$

Example - Classical Setting

$$\begin{array}{l} G = \mathsf{SG}_6\\ \hat{f}(\lambda_l) = \delta_2(l) \implies f = \varphi_2. \end{array}$$

$$G = \text{Minnesota}$$
$$\hat{f}(\lambda_l) = \delta_2(l) \implies f = \varphi_2.$$

2 Modulation

Graph Convolution - Motivation and Definition

• Classically, for signals $f, g \in L^2(\mathbb{R})$ we define the convolution as

$$f * g(t) = \int_{\mathbb{R}} f(u)g(t-u) \, du.$$

 However, there is no clear analogue of translation in the graph setting. So we exploit the property

$$(\widehat{f*g})(\xi) = \widehat{f}(\xi)\widehat{g}(\xi),$$

and then take inverse Fourier transform.

Definition

For $f, g: V \to \mathbb{R}$, we define the *graph convolution* of *f* and *g* as

$$f * g(n) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l) \hat{g}(\lambda_l) \varphi_l(n).$$

Jenter plications

22. 22. 4 2. 23

Outline

Fourier Transform

2 Modulation

3 Convolution

Graph Translation

- For signal $f \in L^2(\mathbb{R})$, the translation operator, T_u , can be thought of as a convolution with δ_u .
- On \mathbb{R} we can calculate $\hat{\delta}_u(k) = \int_{\mathbb{R}} \delta_u(x) e^{-2\pi i k x} dx = e^{-2\pi i k u} (= \varphi_k^*(u)).$
- Then by taking the convolution on $\mathbb R$ we have

$$(T_u f)(t) = (f * \delta_u)(t) = \int_{\mathbb{R}} \hat{f}(k) \hat{\delta}_u(k) \varphi_k(t) \, dk = \int_{\mathbb{R}} \hat{f}(k) \varphi_k^*(u) \varphi_k(t) \, dk$$

Definition

For any $f: V \to \mathbb{R}$ the graph translation operator, T_i , is defined to be

$$(T_i f)(n) = \sqrt{N}(f * \delta_i)(n) = \sqrt{N} \sum_{l=0}^{N-1} \hat{f}(\lambda_l) \varphi_l^*(i) \varphi_l(n).$$

Ter Harmonic Analysis and Applications

Example - Classical Setting

Translation in the time domain = Modulation in the frequency domain

G = Minnesota $f = \mathbb{1}_1$

G = Minnesota $\hat{f}(\lambda_l) = e^{-5\lambda_l}$

$$G = SG_6$$

 $\hat{f}(\lambda_l) = e^{-5\lambda_l}$

G = Minnesota $\hat{f} \equiv 1$

Nice Properties of Graph Translation

Theorem

For any $f, g: V \rightarrow \mathbb{R}$ and $i, j \in \{1, 2, ..., N\}$ then

•
$$T_i(f * g) = (T_i f) * g = f * (T_i g).$$

$$T_i T_j f = T_j T_i f.$$

• The translation operator is not isometric

 $\|T_i f\|_{\ell^2} \neq \|f\|_{\ell^2}$

In general, the set of translation operators {*T_i*}^N_{i=1} do not form a group like in the classical Euclidean setting.

 $T_i T_j \neq T_{i+j}$

In general, Can we even hope for *T_iT_j* = *T_{i•j}* for some semigroup operation, • : {1, ..., N} × {1, ..., N} → {1, ..., N}?

Theorem (B. & O.)

• The translation operator is not isometric

 $\|T_i f\|_{\ell^2} \neq \|f\|_{\ell^2}$

In general, the set of translation operators {*T_i*}^N_{i=1} do not form a group like in the classical Euclidean setting.

 $T_i T_j \neq T_{i+j}$

In general, Can we even hope for *T_iT_j* = *T_{i•j}* for some semigroup operation, • : {1, ..., N} × {1, ..., N} → {1, ..., N}?

Theorem (B. & O.)

• The translation operator is not isometric

 $\|T_i f\|_{\ell^2} \neq \|f\|_{\ell^2}$

In general, the set of translation operators {*T_i*}^N_{i=1} do not form a group like in the classical Euclidean setting.

$$T_i T_j \neq T_{i+j}$$

In general, Can we even hope for T_iT_j = T_{i•j} for some semigroup operation, • : {1, ..., N} × {1, ..., N} → {1, ..., N}?

Theorem (B. & O.)

• The translation operator is not isometric

 $\|T_i f\|_{\ell^2} \neq \|f\|_{\ell^2}$

In general, the set of translation operators {*T_i*}^N_{i=1} do not form a group like in the classical Euclidean setting.

$$T_i T_j \neq T_{i+j}$$

In general, Can we even hope for T_iT_j = T_{i•j} for some semigroup operation, • : {1, ..., N} × {1, ..., N} → {1, ..., N}?

Theorem (B. & O.)

- With these time-frequency operators generalized to vertex-frequency operators, we are able to convert many nice results and theories from harmonic analysis to the graph setting.
 - Wavelets and Wavelet Transform
 - Windowed/Short-Time Fourier Transform (STFT)
 - Windowed Fourier Frames

Why should we care?

Why should we care?

Thank you!

