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A standard problem

Question

Let Φ = {ϕi}Mi=1 ⊂ RN be a complete set. Recover x from ŷ
given by ŷ given by

ŷ = Φ∗x+ η,

where Φ is the N ×M matrix whose kth column is ϕk, and η
is an error (noise).

Solution

Need to design “good” measurement matrix Φ, e.g., Φ should
lead to reconstruction methods that are robust to erasures and
noise.
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Minimal requirements on the measurement matrix

Fact

Φ = {ϕi}Mi=1 ⊂ KN is complete ⇐⇒ ∃A > 0 :

A‖x‖2 ≤
M∑
i=1

|〈x, ϕi〉|2 for all x ∈ KN

Clearly, there exists B > 0, e.g., B =
∑M

i=1 ‖ϕi‖2 such that

M∑
i=1

|〈x, ϕi〉|2 ≤ B‖x‖2 for all x ∈ KN .
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Definition of finite frames

Definition

Let K = R or K = C. {ϕi}Mi=1 ⊂ KN is called a finite frame
for KN if ∃ 0 < A ≤ B :

A‖x‖2 ≤
M∑
i=1

|〈x, ϕi〉|2 ≤ B‖x‖2, for all x ∈ KN . (1)

If A = B, then {ϕi}Mi=1 ⊂ KN is called a finite tight frame for
KN .
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Frame operator & Reconstruction formulas

For Φ = {ϕk}Mk=1 ⊂ KN let Φ =
[
ϕ1 ϕ2 . . . ϕM

]
.

Φ is a frame ⇐⇒ S = ΦΦ∗ is positive definite.

x = S(S−1x) =
M∑
i=1

〈x, S−1ϕi〉ϕi =
M∑
i=1

〈x, ϕi〉S−1ϕi

Φ̃ = {ϕ̃i}Mi=1 = {S−1ϕi}Mi=1 is the canonical dual frame.

Aopt = λmin(S) and Bopt = λmax(S). The condition
number of the frame is

κ(Φ) = λmax(S)/λmin(S) ≥ 1.
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The canonical dual frame

Lemma

Assume that Φ = {ϕi}Mi=1 ⊂ KN is a frame, and that
{ϕ̃i}Mi=1 ⊂ KN is the canonical dual frame. For each x ∈ KN ,∑M

i=1 |〈x, ϕ̃i〉|2 minimizes
∑M

i=1 |ci|2 for all {ci}Mi=1 such that

x =
∑M

i=1 ciϕi.
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Why frames?

Question

Let Φ = {ϕi}Mi=1 ⊂ RN be a unit norm frame, and assume we
wish to recover x where we have access to ŷ given by

ŷ = Φ∗x+ η.

Solution

If no assumption is made about η we can just minimize
‖Φ∗x− ŷ‖2. This leads to

x̂ = (Φ†)∗ŷ =
M∑
i=1

(〈x, ϕi〉+ ηi)ϕ̃i.
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Finite unit norm tight frames

Definition

A tight frame {ϕi}Mi=1 ⊂ KN with ‖ϕk‖ = 1 for each k is
called a finite unit norm tight frame (FUNTF) for KN . In this
case, the frame bound is A = M/N .

Remark

Tight frames and FUNTFs can be considered optimally
conditioned frames since the condition number of their frame
operator is unity.
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Reconstruction formulas for tight frames

If Φ is a tight frame then S = AI and
x = 1

A

∑M
k=1〈x, ϕk〉ϕk.

If Φ = {ϕk}Mk=1 ⊂ KN is a frame then {S−1/2ϕk}Mk=1 is a
tight frame.

Example

Any (properly normalized) N rows from the M ×M DFT
matrix is a tight frame.

Every tight frame of M vectors in KN is obtained from
an orthogonal projection of an ONB in KM onto KN .
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Examples of frames

Figure : The MB-FrameKasso Okoudjou joint with X. Chen, G. Kutyniok, F. Philipp, R. WangScalable frames
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Why tight frames?

Assume each component of η has zero mean and variance σ2,
and that ηi and ηj are uncorrelated for i 6= j. Then

x− x̂ =
M∑
i=1

〈x, ϕi〉ϕ̃i −
M∑
i=1

(〈x, ϕi〉+ ηi)ϕ̃i = −
M∑
i=1

ηiϕ̃i.

Consequently,

MSE =
1

N
E‖x− x̂‖2 =

1

N
Trace(S−1) =

1

N

N∑
i=1

1

λi

where {λi}Ni=1 is the spectrum of S.

Theorem (Goyal, Kovačević, and Kelner (2001))

The MSE is minimum if and only if the frame Φ is tight.
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Frames in applications

Example

Quantum computing: construction of POVMs

Spherical t-designs

Classification of hyper-spectral data

Quantization

Phase-less reconstruction

Compressed sensing.

Question

How to construct tight frames and/or FUNTFs?
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Existence and characterization of FUNTFs

Theorem (Benedetto, Fickus (2003))

Let M ∈ N and Φ = {ϕk}Mk=1 ⊂ SN−1. The frame potential
satisfies

FP (Φ) =
M∑
i=1

M∑
j=1

|〈ϕi, ϕj〉|2 ≥ max(M,N)
M

N
.

In particular,

If M ≤ N , then minFP (Φ) = M . The minimizers are
the orthonormal systems for KN with M elements.

If M ≥ N , then minFP (Φ) = M2

N
. The minimizers are

the FUNTFs for KN with M elements.
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Proof

Proof.

FP ({ϕk}Mk=1) = M +
M∑

k 6=`=1

|〈ϕk, ϕ`〉|2 ≥M.

• So If M ≤ N the minimizers are exactly orthonormal
systems and the minimum is M .
• Now assume M ≥ N and let G = Φ∗Φ. Then,

FP ({ϕk}Mk=1) = Tr(G2) =
N∑
k=1

λ2
k

and, trace(G) =
∑N

k=1 λk = M .
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Proof (continued)

Proof.

Minimizing FP ({ϕk}Mk=1) is equivalent to minimizing

N∑
k=1

λ2
k such that

N∑
k=1

λk = M.

Solution: λk = M/N for all k.
Hence S = M

N
IN where IN is the identity matrix. The

corresponding minimizers {ϕk}Mk=1 are FUNTFs

x =
N

M

M∑
k=1

〈x, ϕk〉ϕk ∀x ∈ KN .
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Construction of FUNTFs

Fact

Numerical schemes such as gradient descent can be used
to find minimizers of the frame potential and thus find
FUNTFs.

The spectral tetris method was proposed by Casazza,
Fickus, Mixon, Wang, and Zhou (2011) to construct all
FUNTFs. Further contributions by Krahmer, Kutyniok,
Lemvig, (2012); Lemvig, Miller, Okoudjou (2012).

Other methods (algebraic geometry) have been proposed
by Cahill, Fickus, Mixon, Strawn.
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Some generic properties of scalable frames
Characterization of scalable frames
Fritz John’s ellipsoid theorem and scalable frames

Main question

Question

Given a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN can one
transform Φ into a tight frame? If yes can this be done
algorithmically and can the class of all frames that allow such
transformations be described?

Solution

1 A solution: The canonical tight frame {S−1/2ϕk}Mk=1.
Involves the inverse frame operator.

2 What“transformations” are allowed?
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Choosing a transformation

Question

Given a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN can one find
nonnegative numbers {ck}Mk=1 ⊂ [0,∞) such that

Φ̃ = {ckϕk}Mk=1 becomes a tight frame?
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Definition

Definition

Given N ≤M , a frame Φ = {ϕk}Mk=1 in RN is scalable if there

exists {xk}Mk=1 such that Φ̃I = {xkϕk}Mk=1 is a tight frame for
RN .
More generally, given N ≤ m ≤M , a frame Φ = {ϕk}Mk=1 in
RN is m−scalable if there exists a subset ΦI = {ϕk}k∈I with
#I = m, such that ΦI is scalable.
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Elementary properties

Lemma (G. Kutyniok, F. Philipp, E. K. Tuley, K. O. (2012))

1 If Φ ⊂ RN is scalable frame if and only if T (Φ) is scalable
for one (thus for all) orthogonal matrix T .

2 The set of scalable frames is closed in the set of all
frames with M vectors.

Fact

Let Φ = {ϕk}Mk=1 ⊂ RN \ {0} be a frame, with M ≥ N ,
ϕk 6= ϕ` for k 6= `. Φ is scalable if and only if
Φ̃ = {±ϕk/‖ϕk‖}Mk=1 is scalable.
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The scaling problem

Φ = {ϕi}Mi=1 is scalable ⇐⇒ ∃{ci}Mi=1 ⊂ [0,∞) : ΦCΦT = I,

where C = diag(ci).
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Scalable frames in R2

Question

Assume M ≥ 3. When is

ϕk =

(
cos θk
sin θk

)
∈ S1

with
0 = θ1 < θ2 < θ3 < . . . < θM < π

a scalable frame.
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Scalable frames in R2

Solution

We need to solve
ΦX2ΦT = ÃIN

which is equivalent to finding a nontrivial nonnegative vector
Y = (yk)

M
k=1 ⊂ [0,∞), such that

Φdiag(Y )ΦT = IN .
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Scalable frames in R2

Solution

We must solve:

( ∑M
k=1 yk cos2 θk

∑M
k=1 yk sin θk cos θk∑M

k=1 yk sin θk cos θk
∑M

k=1 yk sin2 θk

)
=

(
1 0
0 1

)
.

or equivalently 
∑M

k=1 yk sin2 θk = 1∑M
k=1 yk cos 2θk = 0∑M
k=1 yk sin 2θk = 0.
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Scalable frames in R2

Solution

For Φ to be scalable we must find a nonnegative vector
Y = (yk)

M
k=1 in the kernel of the matrix whose kth column is(

cos 2θk
sin 2θk

)
.

The first equation is just a normalization condition.
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Scalable frames of 3 vectors in R2

Solution

We need to find non-trivial nonnegative vectors in the kernel of(
1 cos 2θ2 . . . cos 2θM
0 sin 2θ2 . . . sin 2θM

)
. (2)
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Scalable frames of 3 vectors in R2

Example

Figure : Frames with 3 vectors in R2. The original frames are in
blue, the frames obtained by scaling (when there exist) are in red,
and for comparison the associated canonical tight frames are in
green.
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Scalable frames in R2 and R3

Proposition (G. Kutyniok, F. Philipp, E. K. Tuley, K. O.
(2012))

(i) A frame Φ ⊂ R2 \ {0} for R2 is not scalable if and only if
there exists an open quadrant cone which contains all
frame vectors of Φ.

(ii) A frame Φ ⊂ R3 \ {0} for R3 is not scalable if and only if
all frame vectors of Φ are contained in the interior of an
elliptical conical surface with vertex 0 and intersecting the
corners of a rotated unit cube.
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A geometric characterization of scalable frames

Theorem (G. Kutyniok, F. Philipp, K. Tuley, K.O. (2012))

Let Φ = {ϕk}Mk=1 ⊂ RN \ {0} be a frame for RN . Then the
following statements are equivalent.

(i) Φ is not scalable.

(ii) There exists a symmetric M ×M matrix Y with
trace(Y ) < 0 such that 〈ϕj, Y ϕj〉 ≥ 0 for all
j = 1, . . . ,M .

(iii) There exists a symmetric M ×M matrix Y with
trace(Y ) = 0 such that 〈ϕj, Y ϕj〉 > 0 for all
j = 1, . . . ,M .
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Fritz John’s Theorem

Theorem (F. John (1948))

Let K ⊂ B = B(0, 1) be a convex body with nonempty
interior. There exits a unique ellipsoid Emin of minimal volume
containing K.
Moreover, Emin = B if and only if there exist
{λk}mk=1 ⊂ [0,∞) and {uk}mk=1 ⊂ ∂K ∩ SN−1, m ≥ N + 1
such that

(i)
∑m

k=1 λkuk = 0

(ii) x =
∑m

k=1 λk〈x, uk〉uk,∀x ∈ RN .

In particular, the points uk are contact points of K and SN−1.
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Frame interpretation of F. John Theorem

Remark

Let {uk} ⊂ ∂K ∩ SN−1 be the contact points of K and
SN−1. The second part of John’s theorem can be written:

Id =
m∑
k=1

λk〈·, uk〉uk =
m∑
k=1

〈·,
√
λkuk〉

√
λkuk.

So the contact points {uk} k = 1m form a frame in RN , then
we just transformed this frame into an optimally conditioned,
i.e., tight frame {

√
λkuk}mk=1!
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F. John’s characterization of scalable frames

Setting

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame for RN . We apply
F. John’s theorem to the convex body
K = PΦ = conv({±ϕk}Mk=1). Let EΦ denote the ellipsoid of
minimal volume containing PΦ, and VΦ = Vol(EΦ)/ωN where
ωN is the volume of the euclidean unit ball.

Theorem (Chen, Kutyniok, Philipp, Wang, K.O. (2014))

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame. Then Φ is scalable if
and only if VΦ = 1. In this case, the ellipsoid EΦ of minimal
volume containing PΦ = conv({±ϕk}Mk=1) is the euclidean unit
ball B.
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Numerical aspects of F. John’s characterization of

scalable frames

1 Let Φ = {ϕk}Mk=1 ⊂ SN−1. What is the cost of
computing VΦ?

2 Khachiyan’s barycentric coordinate descent algorithm:
E ⊇ PΦ with
Vol(E) ≤ (1 + η) Vol(Minimal ellipsoid(PΦ)) with a total
of O(M3.5 ln(Mη−1)) operations: L. G. Khachiyan
(1996).

3 Can be reduced to O(MN3η−1) when N �M :
P. Kumar and E. A. Yildirim (2005).

4 Can one find other (algorithmic) methods to optimally
condition a frame?

5 What happen when Vφ < 1?
Kasso Okoudjou joint with X. Chen, G. Kutyniok, F. Philipp, R. WangScalable frames
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A quadratic programing approach to optimally

conditioning frames

Setting

Φ = {ϕi}Mi=1 is scalable ⇐⇒ ΦCΦT = I.
Let CΦ = {ΦCΦT =

∑M
i=1 ciϕiϕ

T
i : ci ≥ 0} be the cone

generated by {ϕiϕTi }Mi=1.
Φ = {ϕi}Mi=1 is scalable ⇐⇒ I ∈ CΦ.

DΦ := min
C≥0 diagonal

∥∥ΦCΦT − I
∥∥
F
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Comparing DΦ to the frame potential

Proposition (Chen, Kutyniok, Philipp, Wang, K.O. (2014))

(a) Φ is scalable if and only if DΦ = 0.

(b) If Φ = {ϕk}Mk=1 ⊂ RN is a unit norm frame we have

D2
Φ ≤ N − M2

FP (Φ)
,

where FP (Φ) =
∑M

k,`=1 |〈ϕk, ϕ`〉|2.

Remark

DΦ can be computed via Quadratic Programming (QP), and
is computationally less expansive to compute that VΦ.
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Comparing the measures of scalability

Theorem (Chen, Kutyniok, Philipp, Wang, K.O. (2014))

Let Φ = {ϕk}Mk=1 ⊂ RN is a unit norm frame, then

N(1−D2
Φ)

N −D2
Φ

≤ V
4/N

Φ ≤ N(N − 1−D2
Φ)

(N − 1)(N −D2
Φ)
≤ 1,

where the leftmost inequality requires DΦ < 1. Consequently,
VΦ → 1 is equivalent to DΦ → 0.
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Comparing the measures of scalability

Values of VΦ and DΦ for randomly generated frames of M
vectors in R4.
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Figure : Relation between VΦ and DΦ with M = 6, 11. The black
line indicates the upper bound in the last theorem, while the red
dash line indicates the lower bound.
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Comparing the measures of scalability

Values of VΦ and DΦ for randomly generated frames of M
vectors in R4.
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Figure : Relation between VΦ and DΦ with M = 15, 20. The black
line indicates the upper bound in the last theorem, while the red
dash line indicates the lower bound.
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Probability of a frame to be scalable

Theorem (Chen, Kutyniok, Philipp, Wang, K.O. (2014))

Let Φ = {ϕi}Mi=1 ⊂ RN be a frame such that each frame
vector ϕi is drawn independently and uniformly from SN−1.
Let PM,N be the probability of Φ being scalable, then

(a) PM,N = 0, when M < N(N+1)
2

,

(b) PM,N > 0, when M ≥ N(N+1)
2

, and

g(M,N) ≤ PM,N ≤ f(M,N),

where limM→∞ f(M,N) = limM→∞ g(M,N) = 1.
Consequently, limM→∞ PM,N = 1.
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Scalable frames: when and how?

Question

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame.

1 VΦ and DΦ are ideal measures of scalability.

2 If VΦ = 1 (equivalently DΦ = 0) how to find the
coefficients needed to make the frame scalable?

3 If VΦ < 1 (equivalently DΦ > 0), then Φ is not scalable.
Can one find {ck}Mk=1 ⊂ [0,∞) such that {ckϕk}Mk=1 is
“almost tight”, i.e., its condition number is 1 + ε?

Kasso Okoudjou joint with X. Chen, G. Kutyniok, F. Philipp, R. WangScalable frames



Finite frames theory
Scalable frames

References

Transforming a frame into a tight frame
Some generic properties of scalable frames
Characterization of scalable frames
Fritz John’s ellipsoid theorem and scalable frames

Scalable frames and Farkas’s lemma

Setting

Let F : RN → Rd, d := (N − 1)(N + 2)/2, defined by

F (x) =


F0(x)
F1(x)

...
FN−1(x)



F0(x) =


x2

1 − x2
2

x2
1 − x2

3
...

x2
1 − x2

N

 , . . . , Fk(x) =


xkxk+1

xkxk+2
...

xkxN


and F0(x) ∈ RN−1, Fk(x) ∈ RN−k, k = 1, 2, . . . , N − 1.Kasso Okoudjou joint with X. Chen, G. Kutyniok, F. Philipp, R. WangScalable frames
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Scalable frames and Farkas’s lemma

Theorem (G. Kutyniok, F. Philipp, K.O. (2013))

Φ = {ϕk}Mk=1 ⊂ RN is scalable if and only if F (Φ)u = 0 has a
nonnegative non trivial solution, where F (Φ) is the d×M
matrix whose kth row is F (ϕk). This is equivalent to 0 being
in the relative interior of the convex polytope whose extreme
points are {F (ϕk)}Mk=1.
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Scalable frames and Farkas’s lemma

Lemma (Farkas’ Lemma)

For every real N ×M -matrix A exactly one of the following
cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial
nonnegative solution x ∈ RM (i.e., all components of x
are nonnegative and at least one of them is strictly
positive.)

(ii) There exists y ∈ RN such that ATy is a vector with all
entries strictly positive.
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Scalable frames and Farkas’s lemma

Remark
1 Solving F (Φ)u = 0 : u ≥ 0 and
‖u‖0 = #{k : uk > 0} = m can be converted into a
linear programing.

2 Greedy-type algorithm can be used to solve the
corresponding LP

3 Even when the frame is not scalable one can a
“sub-optimally” conditioned frame

4 Use of algorithms similar to some introduced by
J. Batson, D. Spielman and N. Srivastava for graph
sparsification.
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Concluding remarks

1 Scalable frames are just one method for optimally
conditioned a frame.

2 Other methods from preconditioning techniques from
numerical linear algebra are now being considered.

3 Application of the theory to construction of tight wavelet
frames and wavelet filter banks have been done in
dimension N = 1: Y. Hur and K. O. (2014). Nontrivial
and relies on Fejer-Riesz factorization lemma. Extension
to N ≥ 2 very challenging.

4 Connection to graph sparsification.
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Thank You!
http://www2.math.umd.edu/ okoudjou
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