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Goals of Talk

1 Explain the problem of image registration.

2 Discuss existing methods for image registration, many of which use
harmonic analysis.

3 Detail an algorithm based on anisotropic features extracted from the
images. This work is joint with Jacqueline Le Moigne (NASA) and David
J. Harding (NASA).
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Introduction to image registration

The process of image registration seeks to align two or more images of
approximately the same scene, acquired at different times or with
different sensors.

Images can differ in many ways:
1 Geometrically: rotated, translated, warped, dilated.
2 Modally: different sensors, different conditions at time of image capture.

Noise may be present.

This problem is relevant to, among other fields, microscopy, biomedical
imaging and remote sensing.
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Importance of image registration

Need to be able to know exact location of a newly captured image; this
requires registration against a known image.

Registration is the first step in image fusion.

Related to more general problems in computer vision.
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Difficulties in registration

Any registration algorithm uses the content of the image; how it does so
varies substantially.

Difficult images to register include those with few dominant features, and
images of different modes.

We are particularly interested in the second case, of multimodal
registration.
Harmonic analytic techniques are well-suited for these types of problems,
when compared to other methods.
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A motivational example

Figure: A LIDAR and optical image of the Amazon rainforest. These images are very
homogeneous. How can we register them? It is hard enough for the human eye to do.
Can we use mathematical tools to efficiently extract features to be used for matching?
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Stages of image registration

Image registration may be viewed as the combination of four separate
processes:

1 Selecting an appropriate search space of admissible transformations.
This will depend on whether the images are at the same resolution, and
what type of transformations will carry the input image to the reference
image, i.e. rotation-scale-translation (RST), polynomial warping, etc.

2 Extracting relevant features to be used for matching. These could be
individual pixels that are known to be in correspondence between the two
images, or could be global structures in the images, such as roads,
buildings, rivers, and textures.

3 Selecting a similarity metric, in order to decide if a transformed input
image closely matches the reference image. This metric should make
use of the features which are extracted from the image, be they specific
pixels or global structures.

4 Selecting a search strategy, which is used to match the images based
on maximizing or minimizing the similarity metric.
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Classes of Registration Techniques

1 Manual Registration: A human selects matching pixels in the two
images, and the transformation that registers them is computed by
minimizing the distance between these pixel pairs.

2 Algorithmic Pixel Matching: Same as above, but with an algorithm
executed automatically. The SIFT algorithm is popular and effective for
images of the same modality

3 Global Feature Matching: Algorithmically determine robust, sparse
features in the images, then compute registration based on these
features.

The third class has a strong connection with harmonic analysis.
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Problem with pixel-based methods

Finding pairs of corresponding pixels is very difficult in the case of
multimodal images. Even SIFT (state of the art) struggles.

The stumbling block is that although there might be global
correspondences stemming from large-scale features, these are not
induced by local correspondences.

Consider two images of a rural scene in WA: one LIDAR, one optical.
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WA multimodal images

Figure: LIDAR and optical images of a scene in WA state.
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SIFT fails for multimodal images

Figure: The “matching” pixels computed in the LIDAR and optical images of WA using
the SIFT algorithm. Note the lack of correspondence; such points are unusable for a
registration algorithm.
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Local dissimilarity in multimodal images

In multimodal images, the similarities between the images are only
manifested on the global scale.
Locally, the images appear dissimilar.

Figure: The same hedge in the LIDAR and optical image. Although there is clear
correspondence at the macroscopic level, it is difficult to find pixel-to-pixel
correspondences.
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Global features for registration

In order to efficiently register multimodal images, we must use global
features.

Substantial work in registration using global wavelet features has been
done.

We are interested in whether generalizations of wavelets, which have
anisotropic character, can improve upon these methods.
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Shearlets for registration

We considered the anisotropic representation system of shearlets.

There is mathematical theory explaining that shearlets represent certain
images classes with optimal sparsity.

This is good for registration algorithms, because sparse features increase
the robustness of the optimization algorithm that computes the
registration transformation.

() November 24, 2014 14 / 37



Background on wavelets

Mathematically, the continuous wavelet transform decomposes a signal
according to scale and translation.
For a signal f ∈ L2(R2) and an appropriately chosen wavelet function ψ, f
may be decomposed as

f ∼
∞∑

m=−∞

∞∑
n=−∞

〈f , ψm,n〉ψm,n, (1)

where ψm,n(x) = 2
m
2 ψ(Amx − n) and A =

(
2 0
0 2

1
2

)
.

The wavelet coefficients 〈f , ψm,n〉 describe the behavior of f at different
scales; m >> 0 large gives information at local scales, m << 0 gives
global information.
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Background on shearlets

Shearlets generalize wavelets by decomposing with respect not just to
scale and translation, but also direction.
Mathematically, given a signal f ∈ L2(R2) and an appropriate base
function ψ, we may decompose f as

f ∼
∞∑

i=−∞

∞∑
j=−∞

∑
k∈Z2

〈f , ψi,j,k 〉ψi,j,k , (2)

where:
ψi,j,k (x) = |detA|

i
2ψ(B jAix − k).

A =

(
2 0
0 2

1
2

)
, B =

(
1 1
0 1

)
.
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An SAR image

Figure: A synthetic aperture radar image containing several edge-like features.
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SAR image features

Figure: Wavelet-like and shearlet features extracted from the original SAR image.
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Evaluating registration quality

When registering images, there are two significant criteria of registration
algorithm quality:

1 Accuracy of computed registration when compared to the true registration.
2 Robustness of algorithm to initial distance between the two image.

The accuracy of the registration is obviously important.

The robustness of the algorithm is important because the initial closeness
of the two images depends greatly on the GPS technology in the sensors
and the distance of the sensing device to the location being imaged.
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Importance of robustness

If the images to be aligned start far apart, the registration algorithm could
fail to converge.

This situation occurs if the initial registration between the images is poor,
which can happen for a variety of reasons: poor GPS, lost data, satellite
orbit far from earth, etc.

Our hypothesis was that using shearlet features would increase
registration robustness, due to their sparsity in representing anisotropic
features.
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Experimental Overview

As we prototyped, we realized that using shearlets did increase
robustness, but at a slight cost in accuracy, usually a few pixels.

Consequently, we devised a two-stage registration algorithm: first, use
shearlets to get an approximate registration, then refine this with another
iteration of the algorithm, using wavelet features.

We compared this algorithm to using wavelets alone.

We performed experiments on synthetic images, as well as multimodal
image pairs.
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Basic description of algorithm

1 Search Space: RST. All of our examples feature images at the same
scale, so effectively, our search space is the space of rotations and
translations (RT).

2 Features: Wavelet features in one case and shearlet features coupled
with wavelet features in another.

3 Similarity Metric: Unconstrained least squares. That is, if FR and FI are
the reference and input features, N the number of relevant pixels, (xi , yi)
the integer coordinate of each pixel, and Tp the transformation associated
to parameters p, we seek to minimize the similarity metric given by

χ2(p) =
1
N

N∑
i=1

(FR(Tp(xi , yi))− FI(xi , yi))
2

4 Search Strategy: Modified Marquadt-Levenberg method of solving
non-linear least squares problem.
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Algorithm details (1/2)

1 Input a reference image, Ir , and an input image Ii . These will be the
images to be registered.

2 Apply shearlet feature algorithm and wavelet-like feature algorithm to Ir
and Ii . This produces a set of shearlet features for both, denoted
Sr

1, ...,S
r
n and Si

1, ...,S
i
n, respectively, as well as a set of wavelet features

for both, denoted W r
1 , ...,W

r
n and W i

1, ...,W
i
n. Here n refers to the level of

decomposition chosen.
3 Match Sr

1 with Si
1 with a least-squares optimization algorithm to get a

transformation T S
1 . Using T S

1 as an initial guess, match Sr
2 with Si

2, to
acquire a transformation T S

2 . Iterate this process by matching Sr
j with Si

j

using T S
j−1 as an initial guess, for j = 2....,n. At the end of this iterative

matching, we acquire our final shearlet-based registration, call it T S.
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Algorithm details (2/2)

4 Using T S as our initial guess, match W r
1 with W i

1 with a least-squares
optimization algorithm to acquire a transformation T W

1 . Using T W
1 as an

initial guess, match W r
2 with W i

2, to acquire a transformation T W
2 . Iterate

this process by matching W r
j with W i

j using T W
j−1 as an initial guess, for

j = 2, ...,n. At the end of this iterative matching, we acquire our final
registration, call it T .

5 Output T = (Tx ,Ty ,Tθ).
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Computing harmonic-analytic features

The wavelet features to be used come in three classes, all implemented
in C:

1 Spline wavelets.
2 Simoncelli band-pass wavelet-like features.
3 Simoncelli low-pass wavelet-like features.

The shearlet features are based on the Kaiserslautern MATLAB package,
coded by S. Häuser.
All coefficients are thresholded before computing the registration
transformation via the Marquadt-Levenberg optimization scheme.
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Overview of experiments

We shall discuss three classes of experiments: one synthetic, two
multimodal.

We shall perform, for each image pair, many iterations of our algorithm.
Each iteration, we shall move the images farther apart.

The distance shall be parametrized by rotation and translation in the x
and y directions. For convenience, these are coupled together as RT .
So, RT = 1.8 means a rotation of 1.8 degrees and a translation of 1.8
pixels in both the x and y direction. Fraction translations and rotations
are interpolated by splines.
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Introduction to synthetic experiments

The synthetic experiments are performed by fixing a reference image,
applying a warp (rotation and translation), then extracting a
corresponding input image.

This is convenient, since we know the exact registration between the
input and reference images. However, the images are of the same mode
(the same image, in fact), so this is not a true test for multimodal image
registration.

() November 24, 2014 27 / 37



Landsat image for synthetic experiments

Figure: Landsat-TM scene used for synthetic experiments.
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Reg. Technique # Conv. (out of 200) RMS % Conv. Rel. Impro.
Spl. Wavelets 108 .0019 54% -

Sim. Band-Pass 21 .0045 10.5% -
Sim. Low-Pass 113 .0040 55.5% -

Shear.+ Spl. Wave. 154 .0058 77% 42.45%
Shear.+ Sim. L-P 154 .0080 77 % 633.33%
Shear. + Sim. B-P 154 .0081 77 % 30.83%

Table: Comparison of registration algorithms for Landsat-TM synthetic experiment.
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Introduction to multimodal experiments

We now consider experiments with registering two real images, with
different modalities and radiometries.

This represents a more realistic test of the functionality of our algorithms,
since in reality, image registration will be between two different images,
not an image and a synthetic translation and rotation of itself.

To test our algorithm, we warp our input image according to the RT
parameter, and attempt to recover the registration that will bring the
images back into alignment.

The images are not in alignment to begin with, so the true registration
was computed by hand.

() November 24, 2014 30 / 37



Belgium multimodal images

Figure: Multispectral and panchromatic images of Hasselt, Belguim.
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Belgium multimodal results

Reg. Technique # Conv. RMS % Conv. Rel. Impro.
Spl. Wavelets 8 .6376 7.92% -

Sim. Band-Pass 19 .7534 18.81% -
Sim. Low-Pass 14 .6034 13.86% -

Shear. + Spl. Wave. 20 .5185 19.80% 150%
Shear. + Sim. L-P 27 .6494 26.73% 42%
Shear. + Sim. B-P 20 .5513 19.80% 43%

Table: Comparison of Registration Algorithms for panchromatic to multispectral
experiment.
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WA multimodal images

Figure: LIDAR and optical images of a scene in WA state.
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WA multimodal results

Reg. Technique # Conv. (out of 101) RMS % Conv. Rel. Impro.
Spl. Wavelets 55 1.3439 54.46% -

Sim. Band-Pass 61 1.5862 60.40 % -
Sim. Low-Pass 86 1.4848 85.15% -

Shear.+ Spline Wave. 60 1.3144 59.41 % 9%
Shear. + Sim. L-P 65 1.5836 64.36 % 7%
Shear. + Sim. B-P 88 1.4861 87.13 % 2%

Table: Comparison of Registration Algorithms for WA Lidar to optical experiment.
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Experiment conclusions

Overall, using shearlets and wavelets together outperforms using only
wavelets.

The improvement appears more pronounced when there are substantial
edges.

When the image is texturally dominant, there is minimal improvement.
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Future directions

1 Use other anisotropic methods besides shearlets: composite wavelets,
curvelets.

2 Instead of using LIDAR data in the format of an image, use the “raw data,”
the digital elevation model (DEM).

3 Registration of hyperspectral data cubes, i.e. registering more than two
images at a time.
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Thank you for your time!
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