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This thesis deals with two approaches to building efficient representations of

data. The first is a study of compressive sensing and improved data acquisition.

We outline the development of the theory, and proceed into its uses in matrix com-

pletion problems via convex optimization. The aim of this research is to prove

that a general class of measurement operators, bounded norm Parseval frames, sat-

isfy the necessary conditions for random subsampling and reconstruction. We then

demonstrate an example of this theory in solving 2-dimensional Fredholm integrals

with partial measurements. This has large ramifications in improved acquisition of

nuclear magnetic resonance spectra, for which we give several examples.

The second part of this thesis studies the Laplacian Eigenmaps (LE) algorithm

and its uses in data fusion. In particular, we build a natural approximate inversion

algorithm for LE embeddings using L1 regularization and MDS embedding tech-

niques. We show how this inversion, combined with feature space rotation, leads to

a novel form of data reconstruction and inpainting using a priori information. We



demonstrate this method on hyperspectral imagery and LIDAR.

We also aim to understand and characterize the embeddings the LE algorithm

gives. To this end, we characterize the order in which eigenvectors of a disjoint graph

emerge and the support of those eigenvectors. We then extend this characterization

to weakly connected graphs with clusters of differing sizes, utilizing the theory of

invariant subspace perturbations and proving some novel results.
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Chapter 1: Introduction

Advancements in sensor construction, along with a reduction in production

cost, has led to a deluge of data. Processing and interpreting this information has

become a driving force in mathematics in recent years, and opened the door to many

new fields of application of these mathematical tools. Most importantly, it has led

to a shift in the way we approach data, from attempts to learn the data using a

priori transforms (e.g., wavelets, sparse representations, filter banks), to transforms

that are constructed with data-dependent structure (e.g., data-dependent graphs,

manifold learning, dimension reduction).

Harmonic analysis, in its most general form, deals with the mathematics of

efficient representations for signals and data. This thesis is the examination of

how both classical and modern techniques in harmonic analysis can be utilized

for learning data dependent structure of a system. In particular, this focus on

learning structure splits into two branches: exploiting structure and sparsity to

reduce sampling requirements prior to collection, and exploiting data structure to

extract and fuse underlying parameters after collection has occurred.

The former branch of research ties in with the emerging field of compressive

sensing, in which one exploits sparsity in the signal and incoherence in the mea-
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surements to reduce the number of samples needed. The theory utilizes convex

relaxation of combinatorial optimization schemes to reconstruct the signal, but is

highly dependent on the structure of the measurement operator. Proving that a new

class of measurement operators satisfies the necessary conditions for reconstruction

is an active and critical area of research.

The latter branch of research is in graph and operator theoretic approaches

to pattern recognition and machine learning. We focus on assembling multiple het-

erogeneous or homogeneous data sources into a common fused end product, for the

purpose of improving knowledge compared to a single sensor. When data arrives

from heterogeneous modalities and the readings are temporally or spatially sepa-

rated, this fusion becomes highly non-trivial.

1.1 Background for Frames

This thesis’ approach to data acquisition relies heavily on the theory of frame

representations. Frames were originally introduced by Duffin and Schaeffer in [50].

They provide a natural generalization of orthonormal bases in Hilbert spaces. A

general overview of the subject can be found in [11,27,34].

Definition 1.1.1. For a Hilbert space H, a set {fi}i∈J ⊂ H is a frame if ∃A,B > 0

such that ∀x ∈ H,

A‖x‖2 ≤
∑
i∈J

|〈x, fi〉|2 ≤ B‖x‖2.

This definition serves as a generalization of orthonormal bases by relaxing

2



Parseval’s relation

‖x‖2 =
∑
i

|〈x, fi〉|2.

Here, instead of equality, we have a lower frame bound A and an upper frame bound

B.

Definition 1.1.2. Let {fi} ⊂ H be a frame with bounds 0 < A ≤ B. Then

1. a tight frame satisfies A = B, and

2. a Parseval tight frame satisfies A = B = 1.

Frames have the benefit of giving overcomplete representations of the function

x, making them much more robust to errors and erasures than orthonormal bases [28,

34, 77]. This makes frames ideal for problems involving subsampled measurements,

a property that we shall take advantage of in Section 2.3.

Definition 1.1.3. Let {fi}i∈J be a frame for H. Then several properties associated

with the frame are

1. the analysis operator A : H→ `2 with x 7→ {〈x, fi〉}i∈J ,

2. the synthesis operator A∗ : `2 → H with {aj}j∈J 7→
∑

i∈J aifi, and

3. the frame operator S = A∗A : H→ H with x 7→
∑

i∈J〈x, fi〉fi.

Since 〈Sx, x〉 =
∑
i∈J
|〈x, fi〉|2, we know A · IdH ≤ S ≤ B · IdH, so we have a

reconstruction formula

x =
∑
i∈J

〈x, S−1fi〉fi =
∑
i∈J

〈x, fi〉S−1fi.

3



Lemma 1.1.4. Let {fi}i∈J ⊂ H be a tight frame with bound A. Then the frame

operator S associated with the frame satisfies

S = A · IdH.

For the rest of this chapter, we shall focus specifically on tight frames and their

associated properties. Specifically, we focus on Parseval tight frames whose frame

elements have bounded norm, and our Hilbert space shall be the set of matrices

C
d×d.

Definition 1.1.5. A bounded norm Parseval tight frame with incoherence µ is a

Parseval tight frame {φj}j∈J on C
d×d that also satisfies

‖φj‖2 ≤ µ
d

|J |
, ∀j ∈ J. (1.1)

This definition generalizes the same type of bound for bases from [63]. Note

that, in the case of {φj}j∈J being a basis, |J | = d2, reducing the bound in (1.1) to

‖φj‖2 ≤ µ/d, c.f., [63].

This definition also generalizes the notion of finite unit norm tight frames from

[12]. These are tight frames whose frame elements all have norm 1. Definition 1.1.5

relaxes the condition that every element has norm 1, and instead simply requires

the energy of the largest norm frame element to be bounded.

1.2 Laplacian Eigenmaps

When dealing with the post-processing of collected data to learn inherent

structure, we shall be utilizing the theory of dimension reduction, and specifically

4



Laplacian Eigenmaps (LE). The purpose of Laplacian Eigenmaps, as with all non

linear dimensionality reduction techniques, is to create a mapping φ : Rd → R
m

where m is the inherent dimension of the underlying data. Intuitively, the embed-

ding relies on understanding the Laplace-Beltrami operator on the manifold. The

manifold is approximated by an adjacency graph on the data, and Laplace-Beltrami

operator is approximated by a weighted Laplacian of the adjacency matrix.

Let Ω = {x1, ...xn} ⊂ R
d be a set of training points, otherwise known as the

data space. We have a positive, symmetric kernel k : Ω × Ω → R that encodes

relationships between any two points in Ω. An example of such a kernel (and the

most common for Laplacian Eigenmaps) is

k(x, y) = e−
‖x−y‖22

2σ2 , (1.2)

where σ is a parameter that controls the width of the Gaussian.

Using k as a similarity metric, each x ∈ Ω now has a neighborhood N (x) ⊂ Ω

of nearest neighbors to x. This neighborhood can be constructed by taking a fixed

number of nearest neighbors of x, or by considering all points y such that k(x, y) >

1− ε.

Now we shall construct a graph Γ ≡ (Ω, w), where an edge between xi and xj

has weight

Ki,j =


k(xi, xj) : xj ∈ N (xi) & i 6= j,

0 : otherwise.

Note that we require K = [Ki,j]
n
i,j=1 to be symmetric in order to guarantee its

eigenvectors are orthonormal, though whether K is symmetric depends on how the

neighborhoods are generated. If K is not symmetric, simply define the weights

5



K̃i,j = max(Ki,j, Kj,i). Also define the diagonal matrix D such that

Di,i =
n∑
j=1

Ki,j.

We now define the graph Laplacian as

L = D −K.

Since K is symmetric, L is also symmetric. Also, L is semi-positive definite.

Finally, the m dimensional mapping for the LE embedding φ : Ω→ R
m comes

from solving the normalized eigenvalue problem

D−
1
2LD−

1
2v = λv, (1.3)

for the m smallest non-zero eigenvalues. The m eigenvectors corresponding to those

eigenvalues are used to form the embedding into Rm. In other words, if {vi}mi=1 are

the eigenvectors associated with eigenvalues {λi}mi=1, then

φ(xi) = (v1(i), ..., vm(i)).

It is worth mentioning that {vi}mi=1 are orthogonal, due to the fact that D−
1
2LD−

1
2

is symmetric. Also, φ preserves the local geometry of Ω, as it maps close points in

Ω to close points in Rm. This embedding into Rm shall be referred to as the feature

space.

Laplacian Eigenmaps has been studied in a variety of contexts since its in-

troduction by [9]. The original idea of representing smooth manifolds with eigen-

functions originated in [14], and has been extended by [74]. LE has been combined

with the compressive sensing literature that will arise in Chapter 2 in [66]. Also,
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Schrödinger eigenmaps generalized LE by adding a potential term to the graph,

c.f., [40, 51].

1.3 Outline of Results

In Chapter 2, we introduce the ideas of compressive sensing and matrix com-

pletion. We then demonstrate that for bounded norm Parseval tight frames, which

oversample the data, satisfy the necessary conditions to be a “nearly orthogonal”

operator (specifically it satisfies the Restricted Isometry Property). We go on to

show that this implies one can establish a minimum number of measurements nec-

essary to recover a signal measured by such frames. This leads to improved signal

acquisition from a limited number of measurements.

In Chapter 3, we introduce approximate inversion of Laplacian Eigenmaps. We

develop a non-linear approach to the problem using tools from compressive sensing

and optimization literature. This approximate inversion, otherwise known as a pre-

image, is common in denoising literature. We shall use it in Chapter 6 as a novel

approach to data fusion and reconstruction.

Chapter 4 deals with the theoretical underpinnings of Laplacian Eigenmaps

and other graph based dimension reduction techniques. Under simple assumptions

on data clusters, we prove results related to the order in which features within

eigenvectors emerge. We also demonstrate that, in realistic scenarios, detection of

anomalous (i.e., small) feature clusters becomes much more difficult than previously

believed.

7



The focus of Chapter 5 is on an application of the frame operator results from

Chapter 2 to nuclear magnetic resonance (NMR) spectroscopy. Here we demonstrate

that NMR measurements (Laplace transform type measurements) can be described

using bounded norm Parseval tight frames, and that reconstruction of a compressed

data matrix can be achieved using matrix completion. This leads to a significant

reduction of the number of measurements necessary to attain the desired resolution

of the underlying solution, which correlates with a reduction in the amount of time

necessary to acquire an NMR scan.

Finally, Chapter 6 uses the results from Chapter 3 to present a novel approach

to data fusion and integration. After embedding each data source using Laplacian

Eigenmaps, one can utilize the results of [35] to rotate both data sources into a

common space. And after applying our pre-imaging algorithm to the new set of

data, one is able to examine both data sets in a common, easy to visualize data

space. We demonstrate the effectiveness of this algorithm on remote sensing data,

including hyperspectral imagery (HSI) and LIDAR imagery.
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Chapter 2: Improved Data Acquisition from Tight Frame Measure-

ments

2.1 Sparsity, Compressibility, and Compressive Sensing

The Shannon-Nyquist sampling theorem states that continuous time band-

limited signals can be exactly recovered from a set of uniformly spaced samples

taken at a rate of twice the highest frequency present in the signal. Unfortunately,

in many applications, the resulting Nyquist rate is far too large, making sample

acquisition, or even sample storage, impossible.

To deal with the problem of data storage, we rely heavily on compression.

The aim of compression is finding a concise representation of the data without

much distortion. The most common version of compression is transform coding. in

which one utilizes a family of bases or frames that are know a priori to generate an

accurate sparse representation for signals in a class of interest.

Sparse representations refer to representing a signal f of length N with K � N

non-zero coefficients. In other words, let Φ = [φ1, ..., φN ] represent the transform

being used for compression (eg. DCT, wavelet, shearlet, etc.), and I be the indices

of the largest K elements of Φf . Then Φ generates an accurate sparse representation
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of f if

‖f −
∑
i∈I

〈f, φi〉φi‖ < ε.

In this case, f is also referred to as being compressible. This method of sparse

approximation is commonly used in many schemes, including JPEG, MPEG, and

MP3.

Dealing with the problem of data acquisition for large signals has exploded in

popularity in the past ten years, following initial results from [23, 47, 87] regarding

the question of magnetic resonance imaging. These results show that, if a signal is

compressible under a certain class of transforms, then it was unnecessary to collect

all N measurements, only to throw away all but K in the compression step.

More formally, let the object of interest be a signal f ∈ CN . If one selects a

set Ω ⊂ ZN and an orthogonal matrix U , we define our measurement y to be

y = UΩf,

where UΩ is the m × n matrix consisting of the rows of U indexed by Ω. The goal

is to recover f from this subsampled set of measurements.

Clearly, if |Ω| = N , this problem would be trivial. The interesting case is when

|Ω| = m� N . This means that UΩ is “fat” (has a high dimensional null space). In

general, this is an unsolvable problem. However, it turns out that if f is sparse, it

can be recovered exactly from y.

A simple approach would be to attempt to recover the sparse vector f ∈ CN

by solving the combinatorial optimization problem,

min
g∈CN

‖g‖0, UΩg = UΩf,
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where ‖g‖0 is the number of nonzero terms in g. However, this problem is infeasible

for even small N [23].

In order to avoid this level of computational complexity, one can instead at-

tempt to recover f by solving

min
g∈CN

‖g‖1, UΩg = UΩf.

This was originally shown by Donoho in [48], but only for UΩ = FΩ (the

discrete Fourier transform matrix). Also, if f is supported on a set T ⊂ ZN , [48]

only guarantees reconstruction if

2|T |(N − |Ω|) < N.

This result was extended in [23] for measurements taken in Fourier space.

Given a signal f ∈ CN , and observed coefficients of f̂ ∈ CN on some set Ω ⊂ ZN ,

we analyze the problem of when it is possible to recover f from those observations

by solving

min
g∈CN

‖g‖l1 , ĝ|Ω = f̂ |Ω, (2.1)

where f̂ |Ω is the restriction of f̂ to the observed set Ω.

Theorem 2.1.1. (Theorem 1.3, [23]) Let f ∈ C
N be some discrete signal with

support set T , where T is unknown. Choose Ω of size |Ω| = m uniformly at random.

For a given accuracy parameter M , if

|T | ≤ CM(logN)−1|Ω|, (2.2)

then with probability at least 1−O
(
N−M

)
, the minimizer to problem (2.1) is unique

and equal to f .
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Theorem 2.1.1, while extremely important, is a very specific case of a much

more general idea. Say we have any NxN orthogonal matrix U such that U∗U =

N · I. You observe y = UΩf on some set Ω ⊂ ZN . You can attempt to recover some

sparse f ∈ CN by solving

min
g∈CN

‖g‖1, UΩg = UΩf. (2.3)

As with Theorem 2.1.1, there are certain restrictions that will guarantee re-

construction with high probability. To make this concrete, we recall the following

result from [22].

Theorem 2.1.2. (Theorem 1.1, [22]) Fix some set T ⊂ ZN . Let U be an N × N

orthogonal matrix with µ(U) = maxi,j |Ui,j|. Choose Ω of size |Ω| = m, and a sign

sequence z on T uniformly at random. If

|Ω| ≥ C0|T |µ2(U)log(N/δ) and |Ω| ≥ C ′0log2(N/δ), (2.4)

then with probability at least 1 − δ, every signal f ∈ R
N supported on T with

ı∗sgn(f) = z can be recovered from y = UΩf by solving (2.3).

Remark: One application of this generalized U would be if U could be decom-

posed into the product of two matrices. In Theorem 2.1.1, we chose our measurement

basis to be the Fourier domain, and we choose our sparsity basis to be the standard

basis. Suppose instead x ∈ CN and we observe m measurements of the form y = Φx

(call Φ our measurement basis). x may not be sparse in the standard basis, but

maybe we can express x = Ψf for some sparse vector f (call Ψ our sparsity basis).
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Then (2.3) can be used to solve this problem if

U = ΦΨ, Ψ∗Ψ = I, Φ∗Φ = N · I.

Once we find some g# which minimizes (2.3), the best estimate for x would be

x# = Ψg#.

In the context of sparsity and measurement bases, µ(U) in Theorem 2.1.2 takes on

added meaning. Since U = ΦΨ, we can see that

µ(ΦΨ) = max
i,j
| 〈φi, ψj〉 |.

Clearly 1√
N
≤ µ(U) ≤ 1. If µ is close to 1√

N
, this means each of the measure-

ment vectors (rows of Φ) are very ”spread out” in the Ψ domain. This is another

way of saying these bases are mutually incoherent, which reduces the number of

measurements m required for Theorem 2.1.2.

Following these fundamental results, the study of reconstructing sparse signals

from underdetermined measurements has expanded in a variety of directions, from

sufficient conditions for measurements [26], to improved ideas of sparsity [1, 7], to

phase reconstruction [24], to algorithms for L1 optimization techniques [59]. A

number of application areas have also benefited from compressive sensing, including

single pixel imaging [8], radar [93], and background subtraction [29].

The direction we shall take this research in falls under the area of matrix

completion. Specifically, we shall consider the problem of recovering a low rank

matrix from some underdetermined set of measurements, c.f., [21, 25,63].
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2.2 Background for Matrix Completion

An n×n matrix X that is of rank r requires approximately nr parameters to be

completely specified. If r � n, then X is seen as being compressible, as the number

of parameters needed to specify it is much less than its n2 entries. It is less clear how

to recover X from a limited number of coefficients efficiently. But the results of [21]

showed it is possible to recover X from, up to a constant, nr · log(n) measurements

by employing a simple optimization problem. Also, the types of measurements we

utilize in this chapter, operator bases with bounded norm, originated from quantum

state tomography [64].

Let X ∈ Rs1×s2 be a rank r matrix of interest that is measured by

Mi = 〈φi, X〉+ ei, Mi ∈ R,

where {φi}i∈J is a set measurement modalities with |J | = N , and ei is a noise

term such that ‖e‖2 ≤ ε. Let Ω = {i1, ..., im} ⊂ {1, ..., N}, m < N , be the set of

measurements Mi that are observed. We define a masking operator as

RΩ : Rs1×s2 → R
m,

(RΩ(X))k = Mik = φik(X),

(2.5)

and M |Ω ∈ Rm denotes the entire set of observed measurements.

The problem of matrix completion has been in the center of scientific interest

and activity in recent years [16,18,20,21,24,56,63,97]. The basic problem revolves

around trying to recover a matrix X ∈ Rs1×s2 from only a fraction of the N mea-

surements taken. Without any additional assumptions, this is an ill-posed problem.
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However, there have been a number of attempts to add natural assumptions to make

this problem well posed. Other than assuming that X is low rank as we mentioned

above, there are assumptions that X is positive definite [62,81], or that X is a dis-

tance matrix [2], or that X is has a non-negative factorization [113]. A survey of

some of these other methods can be found in [73].

Let our problem take the form

y = RΩ(X) + z, ‖z‖2 ≤ ε, (2.6)

where z represents a noise vector that is typically white noise, though not necessarily.

For a general set of measurements {φi}, when m < N the problem of recovering

X from y is clearly underdetermined. Even if m > s1s2, there is no guarantee that

span{φi : i ∈ Ω} = R
s1×s2 . And considering that the measurements are noisy, stable

reconstruction becomes even more of an issue. This makes the problem of recovering

X from RΩ(X), in a general setting, unattainable.

The naive way to proceed would be to exploit the fact that X is rank r, and

solve the non-linear optimization problem

min rank(Z)

such that ‖RΩ(Z)− y‖2 ≤ ε.

(2.7)

However, the objective function rank(Z) makes the problem NP-hard. So instead

we define the convex envelope of the rank function.

Definition 2.2.1. Let σi(X) be the ith singular value of a rank r matrix X. Then

the nuclear norm of X is

‖X‖∗ :=
r∑
i=1

σi(X).
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We now proceed by attempting to solve the convex relaxation of (2.7),

min ‖Z‖∗

such that ‖RΩ(Z)− y‖2 ≤ ε.

(2.8)

As with traditional compressive sensing, there exists a restricted isometry prop-

erty (RIP) over the set matrices of rank r.

Definition 2.2.2. A linear operator RΩ : Rs1×s2 → R
m satisfies the RIP of rank r

with isometry constant δr if, for all rank r matrices X,

(1− δr)‖X‖F ≤ ‖RΩ(X)‖2 ≤ (1 + δr)‖X‖F .

The RIP has been shown to be a sufficient condition to solve (2.8) [19,56,98].

These papers build on each other to establish the following theorem.

Theorem 2.2.3. Let X be an arbitrary matrix in Cs1×s2. Assume δ5r < 1/10. Then

the X̂ obtained from solving (2.8) obeys

‖X̂ −X‖F ≤ C0
‖X −Xr‖∗√

r
+ C1ε, (2.9)

where Xr is the best r rank approximation to X, and C0, C1 are small constants

depending only on the isometry constant.

This means that, if the measurement operator RΩ is RIP, then reconstruction

via convex optimization behaves stably in the presence of noise.

2.3 Matrix Completion with Tight Frame Measurements

Whether a set of measurements {φi} satisfies RIP is a difficult question. As

we said in Section 2.2, RIP is a sufficient condition for an operator to satisfy the
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noise bounds of Theorem 2.2.3. Without this, there is no guarantee that solving

(2.8) yields an accurate prediction of X. For this reason, the rest of this section shall

focus on proving RΩ is an RIP operator for measurements which form a bounded

norm Parseval tight frame from Definition 1.1.5. In other words, our measurement

operator is

RΩ : Rs1×s2 → R
m,

(RΩ(X))k = 〈φik , X〉,
(2.10)

where {φi}i∈J form a bounded norm Parseval tight frame.

Our central theorem establishes bounds on the quality of reconstruction from

(2.8) in the presence of noise, when {φi} form a bounded norm Parseval tight frame.

The theorem and proof rely on a generalization of [86], which only assumes the

measurements to be orthonormal basis elements.

It is interesting to note that, because our measurements are overcomplete

(|J | > s1s2), our system of equations is not necessarily underdetermined. However,

2.3.1 still gives guarantees on how the reconstruction scales with the noise, whether

or not the system is underdetermined or overdetermined. This is a difference from

most compressive sensing literature. Generally the goal is to show an underdeter-

mined system still has a solution, which is stable. In our case we are showing that,

regardless of whether or not the system is underdetermined, our reconstruction is

stable in the presence of noise and the reconstruction error decreases monotonically

with the number of measurements.

Theorem 2.3.1. Let {φj}j∈J ⊂ Cs1×s2 be a bounded norm Parseval tight frame, with

incoherence parameter µ. Let n = max(s1, s2), and let the number of measurements
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m satisfy

m ≥ Cµrn log5 n · log |J |,

where C is a constant. Let the sampling operator RΩ be defined for Ω ⊂ J , with

Ω = {i1, ..., im} as

RΩ : Cs1×s2 → C
m,

(RΩ(X))j = 〈φij , X〉, j = 1, ...,m.

Let measurements y satisfy (2.6). Then with probability greater than 1− e−Cδ2 over

the choice of Ω, the solution X̂ to (2.8) satisfies

‖X̂ −X‖F ≤ C0
‖X̂ − X̂r‖∗√

r
+ C1p

−1/2ε, (2.11)

where p = m
|J | .

To prove this result, we need a key lemma, which establishes that our mea-

surements satisfy RIP.

Lemma 2.3.2. Let {φj}j∈J ⊂ Cs1×s2 be a bounded norm Parseval tight frame, with

incoherence parameter µ. Fix some 0 < δ < 1. Let n = max(s1, s2), and let the

number of measurements m satisfy

m ≥ Cµrn log5 n · log |J |, (2.12)

where C ∝ 1/δ2. Let the sampling operator RΩ be defined for Ω ⊂ J , with Ω =

{i1, ..., im} as

RΩ : Cs1×s2 → C
m,

(RΩ(X))j = 〈φij , X〉, j = 1, ...,m.
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Then with probability greater than 1− e−Cδ2 over the choice of Ω,
√
|J |
m
RΩ satisfies

the RIP of rank r with isometry constant δ.

The proof of this lemma is found in the appendix and follows [86], where the

claim is proved for an orthonormal basis. The main point here is to generalize

the measurements to a bounded norm Parseval tight frame (also mentioned in [92],

however not considering when m > n2).

Proof of Theorem 2.3.1. We assume that Lemma 2.3.2 is true. Lemma 2.3.2 states

that
√
|J |
m
RΩ satisfies the RIP. However, (2.8) is stated using only RΩ as the mea-

surement operator.

This means we must include a scaling factor of
√
|J |
m

to understand the noise

bound. Let p = m
|J | = m

N
be the percentage of elements observed. Then, to utilize

RIP, we must try to solve the problem

min ‖Z‖∗

such that ‖p−1/2RΩ(Z)− p−1/2y‖2 ≤ p−1/2ε.

(2.13)

While scaling by a constant does not affect the result of the minimization problem,

it does help us better understand the error in our reconstruction.

Theorem 2.2.3 tells us that our reconstruction error is bounded by a constant

multiple of the error bound. But (2.13) means we can rewrite the error bound as

‖X̂ −X‖F ≤ C0
‖X̂ − X̂r‖∗√

r
+ C1p

−1/2ε,

thus attaining the desired inequality.

Remark: Examination of the proof of Lemma 2.3.2 shows that the bound on

m in (2.12) is actually not sharp. We recall from (2.15) in Section 2.4 that m is
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actually bounded below by a factor of logm. In (2.16) we simply overestimate this

term with log |J | for simplicity. However, in reality the bound is

m ≥ Cλµrn log5 n · logm.

Let N = Cλµrn log5 n. This would give the bound m ≥ e−W−1(−1/N), where W−1 is

the lower branch of the Lambert W function [38]. Taking the first three terms of a

series approximation of W−1 in terms of log(1/N) and log(log(N)) [37] gives us

m ≥ e− log(1/N)elog(log(N))e−
log(log(N))
log(1/N)

= N log(N)e−
log(log(N))
log(1/N)

= Cλµrn log5 n · log(Cλµrn log5 n) · e
log(log(Cλµrn log5 n))

log(Cλµrn log5 n) .

(2.14)

Note that taking three terms is sufficient as each subsequent term is asymptotically

small compared to the previous. The bound in (2.14) is clearly much more intricate

than simply bounding by m ≥ Cλµrn log5 n log |J |, but for typical sizes of |J |, this

results in m decreasing by less than 5% from its original size.

2.4 Proof of Lemma 2.3.2

Let us define

U = {X ∈ Cs1×s2 |‖X‖∗ ≤
√
r‖X‖F}.

Notice that the set of all rank r matrices in C
s1×s2 is a subset of U by Hölder’s

inequality. For the proof, we need some notation.

U2 = {X ∈ Cs1×s2 |‖X‖F ≤ 1, ‖X‖∗ ≤
√
r‖X‖F},

εr(A) = sup
X∈U2

|〈X, (A∗A− I)X〉|.
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RIP can be rewritten as

(1− δ)2〈X,X〉 ≤ 〈X,A∗AX〉 ≤ (1 + δ)2〈X,X〉, ∀X ∈ U,

which is implied by

|〈X, (A∗A− I)X〉| ≤ 2δ − δ2, ∀X ∈ U2.

So we need to show εr(A) ≤ 2δ − δ2 ≡ ε.

One can then define a norm on the set of all self-adjoint operators from C
s1×s2

to Cs1×s2 by

‖M‖(r) = sup
X∈U2

|〈X,MX〉|.

The proof that this is a norm, and that the set of self-adjoint operators is a Banach

space with respect to ‖ · ‖(r), is found in [86].

We can now write εr(A) = ‖A∗A − I‖(r). For our purposes, as with most

compressive sensing proofs, we first bound the expected value Eεr(A), and then

show that εr(A) is concentrated around its mean.

For our problem dealing with tight frame measurements, let A∗A−I =
m∑
i=1

χi,

where χi = |J |
m
φ∗iφi − I

m
. Also, let χ′i be independent copies of the random variable

χi. Finally, let εi be a random variable that takes values ±1 with equal probability.
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Then we have that

EΩεr(A) = EΩ

∥∥∥∑χi

∥∥∥
(r)

≤ EΩ

∥∥∥∑χi − χ′i
∥∥∥

(r)

= EΩEε

∥∥∥∑ εi(χi − χ′i)
∥∥∥

(r)

= EΩEε

∥∥∥∥∑ εi(φ
∗
iφi − (φ′i)

∗φ′i)
|J |
m

∥∥∥∥
(r)

≤ 2
n

m
EΩEε

∥∥∥∥∥∑ εi

√
|J |
n
φ∗iφi

√
|J |
n

∥∥∥∥∥
(r)

.

Now we cite Lemma 3.1 in [86] which is general enough to remain unchanged

in the case of tight frames.

Lemma 2.4.1. Let {Vi}mi=1 ⊂ Cs1×s2 have uniformly bounded norm, ‖Vi‖ ≤ K. Let

n = max(s1, s2) and let {εi}mi=1 be iid uniform ±1 random variables. Then

Eε

∥∥∥∥∥
m∑
i=1

εiV
∗
i Vi

∥∥∥∥∥
(r)

≤ C1

∥∥∥∥∥
m∑
i=1

V ∗i Vi

∥∥∥∥∥
1/2

(r)

where C1 = C0

√
rK log5/2 n log1/2m and C0 is a universal constant.

For our purposes, Vi =
√
|J |
n
φi. Then

Eεr(A) ≤ 2C1
n

m
EΩ

∥∥∥∥∥∑
√
|J |
n
φ∗iφi

√
|J |
n

∥∥∥∥∥
1/2

(r)

≤ 2C1
n

m

EΩ

∥∥∥∥∥∑
√
|J |
n
φ∗iφi

√
|J |
n

∥∥∥∥∥
(r)

1/2

= 2C1

√
n

m
(E‖A∗A‖)1/2

≤ 2C1

√
n

m
(Eεr(A) + 1)1/2.

Here,

C1 = C0

√
r
√
µ log5/2 n · log1/2m. (2.15)
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If we take E0 = Eεr(A) and C = 2C1

√
n
m

, then (2.15) gives us

E2
0 − C2E0 − C2 ≤ 0.

Fix some λ ≥ 1 and choose

m ≥ Cλµrn log5 n · log |J |

≥ λn(2C1)2.

(2.16)

This makes Eεr(A) ≤ 1
λ

+ 1√
λ
.

The next step is to show εr(A) does not deviate far from Eεr(A). LetA∗A−I =

χ be a random variable and χ′ be an independent copy of χ. We now notice

Pr(‖χ‖(r) > 2Eεr(A) + u) ≤ 2 Pr(‖χ− χ′‖(r) > u).

Define Yi = χi − χ′i, so that χ− χ′ = Y =
m∑
i=1

Yi. Clearly

‖Yi‖(r) ≤ 2‖χi‖(r) = 2 sup
X∈U2

∣∣∣∣ |J |m |〈φi, X〉|2 − 1

m
‖X‖2

F

∣∣∣∣ ≤ 2
nrµ+ 1

m
≤ 1

2λC2
0

.

We now use the following result by Ledoux and Talagrand in [83].

Theorem 2.4.2. Let {Yi}mi=1 be independent symmetric random variables on some

Banach space such that ‖Yi‖ ≤ R. Let Y =
m∑
i=1

Yi. Then for any integers l ≥ q and

any t > 0

Pr(‖Y‖ ≥ 8qE‖Y‖+ 2Rl + tE‖Y‖) ≤ (K/q)l + 2e−t
2/256q,

where K is a universal constant.

Now for appropriate choices of q, l and t, and with an appropriate λ such that

λ ≥ A/ε2 for some constant A, we get that

Pr(‖χ‖(r) ≥ ε) ≤ e−Cε
2λ,

where C is a constant. Thus, probability of failure is exponentially small in λ.
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2.5 Conclusion

Theorem 2.3.1 builds upon the current matrix completion literature by gen-

eralizing the set of measurements allowed for reconstruction to a bounded norm

Parseval tight frame. Because these frame measurements are overcomplete, (2.8)

begins to blur the line between a traditional underdetermined compressive sensing

optimization problem and a regularization problem for an overdetermined system.

The number of measurements, m, is no longer bounded above by s1s2, but instead

can range to |J |. In some problems, |J | may be only slightly larger than s1s2,

and m < s1s2. But in other application areas, like Chapter 5, |J | � s1s2 forces

m > s1s2.

Further work in this theory shall be to examine the behavior of the incoherence

µ in a variety of contexts. It may be interesting to ask to what extend may it hinder

the theory when |J | � s1s2, or whether there are better bounds on m that don’t

involve µ as a parameter. These will be questions of further investigation.
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Chapter 3: The Preimage Problem for Laplacian Eigenmaps

3.1 Introduction

Non-linear dimensionality reduction has become a very important field in the

last decade due to the influx of big data. Broadly stated, dimension reduction

techniques map data for the original data space into a feature space that is better

suited for linear algorithms and classification. This is generally done by learning

a kernel which encodes important information about the mapping based on the

training data. A detailed explanation of kernel methods can be found in [84].

While the feature space is of primary importance in dimensionality reduction

techniques, the problem of mapping the data from the feature space back into the

input space is also crucial. This has become known as the pre-image problem [101].

Consider for example the problem of data fusion. When two different measurement

modalities are present, it may be impossible to consider their fusion in the data

space. However, it is possible to compare these modalities in a more appropriate,

lower dimensional feature space [35]. The problem with this feature space fusion is

that it may be important to pull back the data into the original space in order to

better understand the results of the data fusion. This step is where the pre-image

problem arises.
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We start by noting that the pre-image may not necessarily exist [91]. The

simplest example of this would be a line of data points

X =
{
xi ∈ Rd|xi+1 = xi + z for fixed z ∈ Rd, i = 1, ..., n

}
.

Any dimension reduction map φ : Rd → R
2 learned on X would reduce X to a

straight line in R
2. Now introduce a new point ψ 6∈ span(φ(X)). There does not

exist an x ∈ Rd such that φ(x) = ψ. Thus, the pre-image of ψ does not exist.

Despite this issue, it is still important to consider calculating an approximate

pre-image. Several papers [3, 78, 79, 91, 101] have focused on this problem in the

context of kernel PCA [102]. Unlike Laplacian Eigenmaps, kPCA forms a dense

kernel matrix K measuring the distances between all input vectors. The algorithm

then performs PCA on the double centered kernel matrix resulting in the principle

components, with appropriate weights, as the desired feature vectors. The algorithm

allows for the extension of PCA to non-linear manifolds by linearizing the manifold

in higher dimensions. However, because K is dense for kernel PCA, computing the

eigenvector decomposition is much more computationally expensive than finding the

decomposition for the sparse Laplacian in LE [9].

We shall examine a pre-image algorithm for Laplacian Eigenmaps (LE), as

defined in Section 1.2. Several papers [78, 109] use linear extrapolation to define

pre-images for Laplacian Eigenmaps and diffusion maps. We shall focus on a non-

linear pre-image algorithm and demonstrate its effectiveness in pulling new points

added to the feature space back into the original data space.
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3.2 Nyström Extension

Having defined the embedding φ on the training set Ω in Section 1.2, we aim

to extend it to other points from the data manifold. Let x ∈ Rd\Ω. The goal is to

calculate φ(x) to embed x, but without having to recalculate the entire Laplacian

Eigenmap embedding. The Nyström extension [13,57] is a linear time approximation

of φ(x) where

φ̂(x) =
n∑
i=1

K(x, xi)φ(xi). (3.1)

Note that this extends the entire mapping, but also requires us to extend the kernel

K. It would be straightforward if K were defined over all Ω as a simple function

defined in Rd. However, in the case of Laplacian Eigenmaps, K depends inherently

on the training data (due to the nearest neighbor condition), making the extension

non-trivial.

In [13] the authors propose an extension for this and other dimension reduction

maps. Let k̃ be a nearest neighbor Gaussian kernel, like in (1.2). In other words,

let

k̃(x, xi) =


k(x, xj) : xj ∈ N (x),

0 : otherwise.

Now we define the kernel extension to all of Rd to be

K(x, xi) =
k̃(x, xi)√

n∑
j=1

k̃(x, xj)
n∑
j=1

k̃(xi, xj)

. (3.2)

For notational ease, we shall use Kx = [K(x, xi)]
n
i=1. We now write (3.1) in
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Figure 3.1: Diagram of Laplacian Eigenmaps Mapping and Pre-image

matrix form, namely

φ̂(x) = E∗Kx, (3.3)

where E = [φ1, ..., φm]. Note that ‖Kx‖0 = #N (x) due to the nearest neighbors

criteria. This comes into play in Section 3.3.

3.2.1 The Pre-image Problem

The pre-image of ψ ∈ Rm is a point x ∈ Rd such that φ(x) = ψ (see Figure

3.1). Because x may not necessarily exist, this problem is ill-defined. So instead, we

shall look for x ∈ Rd such that φ(x) is “as close as possible” to ψ by some definition

of closeness. The most intuitive definition is

x = arg min
x∈Rd
‖φ(x)− ψ‖2.

This notion of minimizing distance is the common approach taken for kernel PCA

[79,91,101]. However, this minimization is next to impossible without a closed form

definition of φ : Rd → R
m, which we do not have.

For this reason, [3] makes the observation that, for kernel PCA, one could

change the problem slightly to approximate φ(x) with the Nyström extension. Let
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E ∈ Rm×n be the Nyström extension for a general dimension reduction scheme. We

can create a new objective function by solving

x = arg min
x∈Rd
‖EKx − ψ‖2. (3.4)

From here, [3] solves (3.4) for the optimal Kx by calculating the Penrose-Moore

pseudo-inverse. This gives us

K̂x = E†ψ. (3.5)

Now in the special case of kernel PCA, we know that (Kx)i = e−
‖x−y‖22

2σ2 . This

means (3.5) yields

‖x− xi‖2
2 = −2σ2 log((K̂x)i). (3.6)

Finding x now reduces to a localization problem that is solved using MDS [3], and

the distances between x and N (x). An explanation of this step is found in [60,79].

In Laplacian Eigenmaps, however, the relationship between Kx and ‖x− xi‖2

is not so immediate, as each (Kx)i is a function of ‖x− xi‖2 for all xi ∈ N (x). For

this reason, one cannot immediately apply the methods of [3]. Section 3.3.1 solves

this problem.

Since the original works by Mika, Schölkopf and Kwok, other attempts have

been made to solve the pre-image problem by building upon their ideas. Notably

in [114] the authors use a Laplacian, ridge, and weakly supervised penalty function,

in conjunction with the optimization function, to improve the pre-image learning

process. A non-iterative solution to the pre-image problem is proposed in [72] which

improves the computational complexity of the original algorithms. In [55, 109] the
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authors use diffusion maps as their embedding technique and seek to find a pre-

image for the purposes of learning shape priors. They suggest that if a point lies

outside of the convex hull of training points they could use its orthogonal projection

onto the convex hull to acquire a valid pre-image. In [5,6] the authors focus on the

fact that there are labeled samples (the training points) available for the unknown

pre-image map and with a kernel regression technique these samples can improve

the pre-image learning process for minimal noise situations. Recently, in [107], the

authors used diffusion kernels with linear extrapolation to learn to a pre-image map.

3.3 Laplacian Eigenmaps Pre-image

We now focus on the advancements that we have made to extend the pre-

image problem to Laplacian Eigenmaps. In fact, we shall show in Section 3.3.2 that

Laplacian Eigenmaps is actually the more intuitive dimension reduction map to use

in a pre-image problem, due to the sparsity of Kx.

In Sections 3.3.2 and 3.3.3, we shall demonstrate the improvements our method

provides by considering a simple experiment on the MNIST handwriting dataset,

which contains 28 × 28 resolution images of handwritten digits. Section 3.4.2 uses

this dataset for a complete analysis of our pre-image problem, but in Sections 3.3.2

and 3.3.3 we shall simply examine the accuracy of individual components of the

algorithm. A training dataset was built using 200 randomly chosen samples for

each digit (2000 samples total). Given a new image, we project this image into the

feature space via the Nyström extension, and then, using a pre-image algorithm,
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pull it back into the learned digit space. The feature space is 250 dimensions, less

than a third the dimensionality of the original images.

3.3.1 Solving for Input Distances

The biggest challenge with simply applying the kernel PCA framework devel-

oped in [3] to Laplacian Eigenmaps comes in (3.6). Namely, Laplacian Eigenmaps

does not have a simple, closed form solution that relates (Kx)i to ‖x− xi‖2. Recall

that for Laplacian Eigenmaps, (Kx)i behaves as in (3.2). The problem is that, due

to the term
n∑
j=1

k̃(x, xj) in the denominator, (Kx)i depends simultaneously on all

‖x− xj‖2, j ∈ {1, ..., n}.

However, we recall that ‖Kx‖0 = c� n. Let {xi1 , ..., xic} = N (x), and define

ej = k(x, xij),

so that e ∈ Rc is a vector of the non-zero contributions to Kx, with

(Kx)ij =
ej√∑

l

el
∑

xl∈N (xij )

k(xij , xl)
.

This means

ej√∑
l

el
= (Kx)ij

√ ∑
xl∈N (xij )

k(xij , xl) = aj.

By squaring both sides, we obtain a non-linear system of c equations

e2
j − a2

j

∑
l

el = 0, 1 ≤ j ≤ c. (3.7)

The system of equations in (3.7) can be solved with a variety of methods,

which shall be discussed in a moment. But once the ej are found, we solve for the
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distances in the input space of the c nearest neighbors of x,

‖x− xij‖2
2 = −2σ2 log(ej), xij ∈ N (x). (3.8)

From here, the MDS approach from [60, 79] is applied to calculate x, just as in the

majority of algorithms for kernel PCA.

We now discuss solving (3.7). The simplest solution would be to use Newton’s

method to find the non-trivial zero of this system. However, only a noisy version

of Kx is known, so a more stable algorithm is required. The system of equations in

(3.7) is rewritten as

min
e∈Rc
‖A(e)‖2,

where Ai(e) = e2
i − a2

i

∑
j

ej, i = 1, ..., c. Now assume, without loss of generality,

that a1 ≥ a2 ≥ ... ≥ ac. Then we add constraints to our minimization to force

1 ≥ e1 ≥ ... ≥ ec ≥ 0, which is mathematically accurate, by defining a matrix B

and a parameter α such that

Bi,j =


−1 + α : j = i

1 : j = i+ 1

0 : otherwise

.

Now (3.7) is solved with

min
e∈(0,1)c

‖A(e)‖2 such that B(e) < 0 (3.9)

Table 3.1 demonstrates the advantages of using (3.9) over a standard root find-

ing algorithm, e.g., Newton’s method. In this experiment, the true ej = k(x, xj) were
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generated as uniform random variables with ej ∈ (2
3
, 1), and #N (x) = 25. Gaussian

noise, where the standard deviation is determined as a percentage of max(Kx), was

added to Kx after it is calculated from ej, j ∈ {1, ..., 25}. The error is taken to be

‖ê − e‖2/‖e‖2. Clearly, (3.9) outperforms Newton’s method in its stability in the

presence of noise. For this reason, we shall use (3.9) in future pre-image calculations.

Noise Level σ = 2% of max(Kx) σ = 4% of max(Kx) σ = 6% of max(Kx)

Err. Newton’s Method 0.0269 0.0575 0.0837

Err. Min. Problem (3.9) 0.0187 0.0347 0.0487

Table 3.1: Average over 100 trials using various estimate methods. True ei ∈ ( 2
3 , 1) are i.i.d.

uniform random, i = {1, ..., 25}. Noise is added to Kx, and ê estimated via either Newton’s

method or (3.9). Err.= ‖ê− e‖2/‖e‖2.

3.3.2 Better Estimates of Kx

The pre-image problem is very susceptible to noise and errors. Almost all of

this error comes in the estimation of Kx and the fact that (3.4) is akin to solving an

underdetermined system. Thus, the least squares solution in (3.5) is far from the

optimal Kx.

Instead, one can use the a priori information that ‖Kx‖0 = c. This sparsity is

utilized by changing (3.4) to

K̂x = arg min ‖V ∗Kx − ψ‖2 such that ‖Kx‖0 ≤ c. (3.10)

The constraint in (3.10) exactly mirrors the a priori information about Kx, and
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could be solved using Orthogonal Matching Pursuit [94] or some other optimization

algorithm with an L0 constraint. However, the computational complexity of L0

constraints grows quickly with n, which is the number of training points we begin

with. This is a serious problem, as this removes the incentive of choosing a large

n and training on as many points as possible. For this reason, we propose instead

using an L1 constraint,

K̂x = arg min ‖V ∗Kx − ψ‖2 such that ‖Kx‖1 ≤ τ. (3.11)

The L1 constrained minimization problem is solved using any common quadratic

programming algorithm with the same reconstruction guarantees and solved much

faster than the L0 problem [22].

The only issue that arises is lack of knowledge about the correct τ . In (3.10), c

is understood immediately as the number of nearest neighbors in the graph (#N (x)).

However, τ in (3.11) does not necessarily have immediate and intuitive bounds. In

some applications, it may be possible to estimate τ a priori, but we assume for now

that τ is unknown.

To analyze τ , we first consider the quantity α = ‖ψ‖2
‖Kx‖1 , where Kx is the optimal

kernel vector. Because ψ = V ∗Kx, we know

α =

∥∥∥∥V ∗( Kx

‖Kx‖1

)∥∥∥∥
2

=

∥∥∥∥∥∥
∑

xi∈N (x)

aiV
∗
i,·

∥∥∥∥∥∥
2

,

where Vi,· is the ith row of V and ai = (Kx)i
‖Kx‖1 . This means we need only estimate

these weights the neighborhood N (x) and the associated weights ai.

The easiest estimate of these weights is to begin with the pseudoinverse (3.5),
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choose the c largest values {ki1 , ..., kic}, and choose

âij =
kij∑
j

kij
.

This gives us an estimate

α̂ =

∥∥∥∥∥
c∑
j=1

âijV
∗
ij ,·

∥∥∥∥∥
2

.

Now that α has been estimated, we see that ‖Kx‖1 = ‖ψ‖2
α

. This means that,

in order for Kx to be an admissible point for (3.11), we must have τ > ‖Kx‖1. Thus,

the estimate we choose for this parameter is

τ =
‖ψ‖2

α̂
=

‖ψ‖2∥∥∥∥∥ c∑
j=1

âijV
∗
ij ,·

∥∥∥∥∥
2

.
(3.12)

The L1 regularized step from (3.11) generates much more accurate estimates

of the kernel vector Kx than previous methods. We demonstrate this using the

MNIST dataset. Table 3.2 compares our L1 regularized method with τ chosen via

(3.12) to two methods that exist in literature and are based around the Penrose-

Moore pseudoinverse. K̂x denotes the estimate from each method, and Kx is the

true kernel vector for the new image. We note that one issue that occurs with

existing methods is they misestimate the magnitude of the kernel vector, as one can

see by examining ‖K̂x‖2/‖Kx‖2.

Table 3.3 discusses our choice of τ in (3.12). Clearly, choosing an incorrect

size of τ can significantly affect the reconstruction quality of K̂x. Moreover, using

(3.12) we get a dynamic estimate of τ for each new point. This is advantageous

as compared to using a static value of τ as we do in the final column of the table.
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τ = 5.276 was chosen by taking the average value of τ from (3.12) across the 100

trials. While this static estimate works well, the dynamic choice of τ is clearly

superior.

Method of Estimate L1 Min. in (3.11) K̂x from [3] K̂x from [79]

‖K̂x‖2/‖Kx‖2 0.9838 6.0171 0.8387

‖K̂x −Kx‖2/‖Kx‖2 0.0428 5.2063 0.5366

Table 3.2: Average over 100 trials using various estimate methods. K̂x denotes the recon-

structed kernel vector, Kx denotes the true kernel vector

L1 Bound in (3.11) 75% of τ from (3.12) τ from (3.12) 125% of τ from (3.12) Static τ = 5.276

‖ bKx‖2/‖Kx‖2 0.8075 0.9838 0.9752 0.9749

‖ bKx −Kx‖2/‖Kx‖2 0.3063 0.0428 0.2153 0.0744

Table 3.3: Average over 100 trials using various sizes of τ in L1 minimization step. In first

three cases, τ is chosen using (3.12). The static τ = 5.276 was chosen as 5.276 is the average

value of τ from (3.12) across the 100 trials.

3.3.3 Noisy Pre-images

Until this point, we have assumed that the problem had no noise component.

However, Section 3.4 details examples where this assumption is clearly violated. For

that reason, we now consider a more complicated expression

ψ = φ(x+ η),
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where η ∼ N (0, ε2 · Id×d). Because φ is nonlinear, this increases the difficulty of

finding x from ψ. Also, by adding noise to x, we are removing x from the range of

the training data. And, as [3] points out, this causes ‖ψ‖ to tend toward 0. For

this reason, we consider the slight modification to our estimate of Kx when noise is

present.

Let Kx+η be the solution to the L1 regularization problem in (3.11) when noise

is present. In order to use the MDS step of (3.6), we must have an estimate for Kx

instead. So the goal is to relate these two terms.

If we continue to take k(x, y) to be Gaussian as in (1.2), then we see the ith

component must satisfy

(Kx+η)i =
e−
‖x−xi+η‖

2

2σ2√ ∑
xj∈N (x)

e−
‖x−xj+η‖2

2σ2
∑

xj∈N (xi)

k(xi, xj)

=
e−
‖x−xi‖

2−2〈x−xi,η〉
2σ2√ ∑

xj∈N (x)

e−
‖x−xj‖2−2〈x−xj,η〉

2σ2
∑

xj∈N (xi)

k(xi, xj)

√
e−
‖η‖2
2σ2

=
e−
‖x−xi‖

2(1−Xi)
2σ2√ ∑

xj∈N (x)

e−
‖x−xj‖2(1−Xj)

2σ2
∑

xj∈N (xi)

k(xi, xj)

· e−
‖η‖2

4σ2 ,

where Xi := 2〈x−xi,η〉
‖x−xi‖2 ∼ N (0, 4ε2

‖x−xi‖2 ). Because Var(Xi) � 1 for reasonable ε, we

ignore these terms.

Now we address the right hand term of (3.13), the noise term e−
‖η‖2

4σ2 . Clearly,

‖η‖2 ∼ ε2χ2(d). It is interesting to note that e−
‖η‖2

4σ2 ∼ ln
(

Γ(d
2
, ε2

4σ2 )
)

, which is a log

Gamma distribution. However, due to (3.6), we are only interested in log((Kx)i).
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This means we are able to simply focus on E
(
‖η‖2
4σ2

)
, which is ε2d

4σ2 . Thus, we take

K̂x = Kx+η · e
ε2d
4σ2 . (3.13)

This makes the distances

‖x− xi‖2
2 = −2σ2

(
log((K̂x)i) + Zi

)
, (3.14)

where Zi ∼ ε2χ2(d)−ε2d
4σ2 , which has mean 0 and variance ε4d

8σ4 .

The size of ε can be estimated in any number of ways that are going to be

application specific, either algorithmically or with a priori knowledge of the problem.

As a simple example, the algorithm from [85] can be used to estimate ε in the case

of RGB images.

We now examine the benefits of this step of the algorithm. In this experiment,

the new image MNIST digit we project into the feature space has been corrupted

by Gaussian noise with standard deviation ε = .2. The noise level was estimated

using [85]. Table 3.4 compares the kernel vector estimate K̂x for the new noisy image

and the correct Kx calculated using the non-noisy version of that image, averaged

over 100 trials. The errors for L1 reconstruction without adjusting for noise and

the estimate from [79] are just under 1 because these methods underestimate the

magnitude of K̂x, and error from using the algorithm in [3] is larger 1 because it

overestimates the magnitude of K̂x. The magnitude of K̂x is important in solving

(3.9), which is why we report it here. Clearly, adjusting for noise in the kernel vector

estimate is crucial.

To summarize, Algorithm 1 shows the complete process for calculating the

pre-image of ψ. Complete tests of our method are located in Section 3.4.
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Method of Estimate Noise Adjusted L1 in (3.13) Not Noise Adjusted L1
bKx from [3] bKx from [79]

‖ bKx‖2/‖Kx‖2 1.0239 0.2610 6.0171 0.2181

‖ bKx −Kx‖2/‖Kx‖2 0.0752 0.7315 5.3563 0.7686

Table 3.4: Average over 100 trials using various estimate methods. K̂x denotes the recon-

structed kernel vector, Kx denotes the true kernel vector without the added noise

Algorithm 1 Calculate Pre-image of ψ ∈ Rm

Required: Training points Ω ∈ Rd

LE mapping φ : Ω→ R
m

New point ψ ∈ Rm

Result: x ∈ Rd that approximates φ−1(ψ)

1. Calculate K̂x using (3.11), setting τ using (3.12).

2. If there is noise present with variance ε2, set K̂x ← K̂x · e
ε2d
4σ2 as is done in

(3.13).

3. Solve for ei using (3.9).

4. Calculate for ‖x− xi‖ for all xi ∈ N (x) using (3.8).

5. Find x using the ‖x− xi‖ calculated and the MDS algorithm from [60].

3.4 Examples

To test the feasibility of this method, we shall work with two experiments.

Section 3.4.1 focuses on advantages of our method over other ways of defining the
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pre-image for Laplacian Eigenmaps. Section 3.4.2 focuses on denoising, which is a

common application in the pre-image literature [3,79,91,101], and show the exper-

imental advantages of our method.

3.4.1 Points Outside the Convex Hull of Training Data

Due to the ill-conditioned nature of the inverse problem for Laplacian Eigen-

maps, one can define the approximate pre-image in different ways. In [78], the

pre-image is defined in terms of linear extrapolation from training points. In other

words, [78] defines the pre-image of ψ ∈ Rm to be

φ−1(ψ) =
∑
xi∈Ω

wixi, (3.15)

where

wi =
e
− ‖ψ−φ(xi)‖

2

2σ2
ψ∑

φ(xj)∈N (ψ)

e
−
‖ψ−φ(xj)‖2

2σ2
ψ

. (3.16)

This effectively interpolates between points in Ω ⊂ Rd based off the distances

between ψ and the embedded training points in R
m. However, because (3.15) is a

weighted average of xi ∈ Ω and
∑
wi = 1 from (3.16), φ−1(ψ) must lie in the convex

hull of Ω. This is not a limitation of our algorithm, as our reconstruction creates

φ−1(ψ) based off the MDS embedding technique of [60].

This issue is demonstrated in a simple experiment. Figure 3.2 shows a set of

blue training points to be embedded using Laplacian Eigenmaps. The new point

(red + marker) is then embedded via Nyström extension. The key is that the

new point lies outside the convex hull of the training points. We then apply pre-
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image algorithms to pull it back to the original space. The linear extrapolation

method of [78] fails to properly reconstruct the extended point, whereas our pre-

image algorithm properly recovers it based off the new point’s distances from the

training points.

(a) Original Points (b) Extrapolation [78] (c) LE Pre-image

Figure 3.2: Pre-image of points outside convex hull: The training points (blue) are embedded

via Laplacian Eigenmaps, and then the new point (red + marker) is embedded via Nyström

extension. The new point is then pulled back into the original space.

3.4.2 Digit Denoising

We shall compare the performance of the kernel PCA pre-image, a Laplacian

Eigenmaps extension algorithm from [78], and our Laplacian Eigenmaps pre-image

algorithm with L1 regularization. We analyze our pre-image algorithm by comparing

its performance using the 28 × 28 pixel MNIST handwriting dataset [82]. Section

3.3.3 gives a brief explanation of the approach, but we repeat it here for ease: A

training dataset was built using 200 randomly chosen samples for each digit (2000

samples total). Given a new noisy image, we denoise by projecting this image into

the feature space via the Nyström extension, and then using a pre-image algorithm
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to pull it back into the digit space. For all algorithms, the feature space is 250

dimensions. The noise level ε was estimated using [85].

Table 3.5 shows the denoising results of the kernel PCA (kPCA) pre-image

algorithm from [3], Laplacian Eigenmaps pre-image with the Penrose-Moore pseu-

doinverse, and Laplacian Eigenmaps with L1 regularization. White Gaussian noise

was added at several intensities, and the SNR is calculated over 10 samples of each

digit.

σ2 = .2 σ2 = .4 σ2 = .6

Digit kPCA Extrap LE w/ L1 kPCA Intrpl LE w/ L1 kPCA Intrpl LE w/ L1

0 4.28 3.17 5.38 4.08 2.79 5.09 4.20 3.24 4.75

1 5.37 4.77 4.85 5.02 4.55 4.64 5.13 4.28 4.45

2 4.27 2.55 5.12 3.92 2.50 4.76 3.68 2.76 4.54

3 4.17 3.15 4.73 4.02 2.97 4.30 3.94 2.73 4.32

4 3.66 2.51 4.65 3.66 2.24 4.32 3.37 2.34 3.72

5 3.54 2.55 4.63 3.48 2.50 4.39 3.35 2.53 3.99

6 4.20 2.59 5.41 3.98 2.70 5.07 3.99 2.50 4.85

7 4.33 3.08 4.85 4.35 3.73 4.50 4.04 3.73 3.90

8 3.68 2.55 4.44 3.33 2.40 4.16 3.55 2.24 4.10

9 3.97 3.36 4.72 3.76 3.18 4.25 3.67 3.07 4.01

Avg. 4.15 3.03 4.88 3.96 2.96 4.55 3.89 2.94 4.26

Table 3.5: SNR for MNIST Dataset Comparing Pre-image Algorithms for kernel PCA,

Laplacian Eigenmaps with linear extrapolation (Extrap) Scheme from [78], and Laplacian

Eigenmaps with L1 Regularization

These results clearly show our LE pre-image algorithm with L1 regularization

performs just as well, if not slightly better, than the kernel PCA pre-image algorithm
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of [3]. This is very promising for two reasons. First, as [84] points out, LE performs

much better for data clustering than for dimensionality reduction. The fact that

these LE reconstructions outperform kernel PCA with reduced dimensions is a very

good sign. Second, LE has numerous computational advantages over kernel PCA.

Namely, kernel PCA requires taking an eigenvalue decomposition of a full n × n

matrix K, whereas LE only requires taking an eigenvalue decomposition of the

sparse matrix D−
1
2LD−

1
2 . For this reason, LE is more advantageous, especially in

the region of large n (a large number of training points).

Also, these results show improvement over the linear extrapolation extension

in [78]. This is explained by two observations. First, the estimate of K̂x in (3.11) and

(3.13), followed by (3.9), give more accurate relationships between the embedded

points than (3.16). Second, using the MDS embedding technique based off the

distance estimates in (3.6), as detailed in [60, 79], give a more robust embedding

technique than using a linear extrapolation formula (3.15).
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Chapter 4: Emergence of Anomalous Features in Laplacian Eigen-

maps

4.1 Introduction to Graph Theory in Dimension Reduction

Many nonlinear dimensionality reduction techniques, such as Laplacian Eigen-

maps, Diffusion Maps [36], and Local Linear Embedding [99], center on building a

graph on the data. This allows one to look at inter-data structure as a way to

extract useful relationships. Successful analyses of these techniques focus on the

assumption that the data lies on a smooth manifold and that the graph Laplacian

approximates the Laplace-Beltrami operator on that manifold [10], or on the kernel

applied to the data as a way to generate a better embedding [49,103].

While these directions of research have led to numerous important results, they

mostly ignore the important fact that the embeddings are completely dependent on

the properties of the graph Laplacian. This chapter instead proposes to study these

operators from the context of graph theory.

Graph theoretic analysis of dimension reduction allows the results to be in-

dependent of distance metric or local geometry of the data. An example of this is

shown in Figure 4.1. These two data sets differ in geometry and even dimension.

44



However, the individual points relate to each other in a similar manner, and both

data sets generate virtually identical graph Laplacians. Namely, both graphs consist

of two nearly disjoint clusters.

Figure 4.1: Two data sets with differing geometries that generate virtually identical graph

Laplacians with a Gaussian kernel.

These clusters can also be described graph theoretically. Let us simplify the

context slightly, and assume that the kernel k(x, y) is an indicator function of

whether x and y are nearest neighbors. We shall define a cluster on n points as

being a randomly chosen k-regular graph with n nodes. This is because each row of

the adjacency matrix has k non-zero entries due to the k nearest neighbors algorithm

for choosing edges. Also, the edges in this cluster will be randomly chosen between

points in the cluster, as there is no structural difference between the clustered points

(only noise and slight variability). This means the degree of each clustered point

will be k, and the distribution of those weights is independent of which point in the

cluster is chosen.

Figure 4.2 shows this is a good approximation for the two datasets in Figure
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4.1. We chose k = 25 nearest neighbors, and used a Gaussian kernel. For both

graph Laplacians, the two clusters are almost completely disjoint. Also, we report

the mean (µ) and standard deviation (σ) of the degree of the nodes. Clearly, all of

the nodes have almost identical degree for both graphs, and are fairly close to being

k-regular graphs.

(a) Gaussian Clusters, µ = 23.7, σ = 1.64 (b) Moon Clusters, µ = 23.4, σ = 2.23

Figure 4.2: Non-zero terms in graph Laplacian generated by datasets in Figure 4.1. Note

that the indices are pre-sorted into their respective clusters for easy visualization of the graph.

For the rest of this chapter, we shall prove results about graphs with k-regular

subgraph clusters. Also, we shall assume the kernel k(x, y) is an indicator function

of whether x and y are nearest neighbors. This shall allow us to approximate

the behavior of Laplacian Eigenmaps by utilizing the vast literature that exists on

regular graphs.
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4.2 Eigenvector Distribution for Disjoint Clusters with Heteroge-

neous Sizes

For graph based non-linear dimensionality reduction techniques, such as LE,

diffusion maps, and local linear embedding, the common assumption is that one

only needs to keep the m smallest eigenvectors. However, the choice of m is com-

monly overlooked, other than assuming m must be at least as large as the intrinsic

dimensionality of the data.

4.2.1 Example of Eigenvector Distribution

A general approach to choosing m is deciding on the intrinsic dimension of the

data. However, Figure 4.3 demonstrates the choice of m is much more complicated.

The data consists of two clusters in R
2, with cluster C1 containing 10,000 points,

and cluster C2 containing 1000 points. Laplacian eigenmaps is run on this example

with a Gaussian kernel and 50 nearest neighbors. The images below show the 14

smallest eigenvectors with non-zero associated eigenvalues. Observe that, due solely

to the differing sizes between the clusters, all but one of the eigenvectors has its

entire energy concentrated in C1.

This can serve as a problem for a number of reasons. For one, there are

no intercluster features in the data. However, 13 of the first 14 eigenvectors are

picking up erroneous features in C1. This can lead to issues when the embedded

points φ(Ω) are inputs to a clustering algorithm such as k-means [89] or support
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Figure 4.3: Top left image shows the two original clusters. Then moving left to right, top

to bottom are the intensities of each eigenvector of the graph Laplacian. Notice that the first

appearance of the smaller cluster does not occur until the 13th eigenvector.

vector machines [39]. These erroneous features are given undue weight in clustering,

leading to errors in classification.

Second, and most importantly, despite C2 constituting significant data, almost

all the energy in φ(Ω) is concentrated in C1. Again, this poses problems for clustering

and classification algorithms. To see this, fix i0 ∈ {1, ...,m} such that supp(φi0) ⊂

C1. This means φi0(x) = 0 for x ∈ C2. However, ∃x, y ∈ C1 such that φi0(x) < 0

and φi0(y) > 0. Thus, a separating line on φi0 would be unable to differentiate C1

from C2. And since most of the energy of φ(Ω) lies in C1, most i ∈ {1, ...,m} satisfy

supp(φi) ⊂ C1.
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4.2.2 Rigorous Derivation of Eigenvector Distribution

The logic behind the phenomenon of Laplacian eigenvector localization is based

in the distribution of eigenvalues of the Laplacian. Specifically, it depends on the

eigenvalue distribution of regular graphs. The first significant progress in this prob-

lem came 30 years ago in a paper by McKay [90].

Theorem 4.2.1. (Theorem 1.1, [90]) Let X1, X2, ... be a sequence of random graphs

with corresponding adjacency matrices A1, A2, ..., each with degree k ≥ 2. Let n(Xi)

be the number of nodes for graph Xi, and ck(Xi) be the number of cycles of length

k. Let the family {Xi} satisfy n(Xi)→∞ and ck(Xi)/n(Xi)→ 0 as i→∞. Then

the empirical spectral distribution of the scaled adjacency matrix 1√
k−1

An, Fn,d(x) =

|{i : λi(
1√
k−1

An) < x}|/n converges to the semicircle law

fd(x) =
1

2π

√
4− x2, −2 < x < 2. (4.1)

Following this result, the necessity to avoid cycles was removed in exchange for

proving results about random regular graphs. Also, it raised the question of whether

such convergence results could be made for n.

Definition 4.2.2. The family of regular graphs Gn,k is the set of all graphs G =

(V,E) with n nodes and ∀x ∈ V , deg(x) ≡
∑

{x,y}∈E
wx,y = k.

Theorem 4.2.3. (Theorem 2, [52]) Fix δ > 0 and let k = (log(n))γ, and let η =

1
2
(exp(k−α) − exp(−k−α)) for 0 < α < min(1, 1/γ). Then there exists an N large

enough such that ∀n > N , for G ∈ Gn,k chosen randomly with adjacency matrix A,
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for any interval I ⊂ R such that |I| ≥ max{2η, η/(−δ log δ)},

|NI − n
∫
I
fd(x)dx| < nδ|I|

with probability at least 1− o(1/n). Here, NI is the number of eigenvalues of 1√
k−1

A

in the interval I and fd is the semicircle law in (4.1).

Using this result, we begin to address the phenomenon that occurs in Figure

4.3.

Theorem 4.2.4. Let Γ = (Ω, E) be an undirected graph. Suppose Ω can be split

into disjoint two clusters C1 and C2 such that, for the subgraph G1 generated by

C1 and the subgraph G2 generated by C2, G1 ∈ Gn,k and G2 ∈ G n
D
,k. Furthermore,

assume @{x, y} ∈ E such that x ∈ C1 and y ∈ C2.

Fix δ, k, α, and η as in Theorem 4.2.3. Choose any interval I ⊂ [0, 2] such

that |I| ≥
√
k−1
k

max{2η, η/(−δ log δ)}.

Let L denote the graph Laplacian, and σ1, ..., σm denote the m eigenvalues of

L that lie in I. Then there exists an orthonormal basis {v1, ..., vm} of associated

eigenvectors such that, if N 1
I = |{i : supp(vi) ⊂ C1}| and N 2

I = |{i : supp(vi) ⊂

C2}|, then N 1
I + N 2

I = m and there exists some N such that ∀n > N numbers of

points,

|N 1
I −DN 2

I | ≤ 2δn
k√
k − 1

|I|

with probability at least 1− o(1/n) over the choice of subgraphs G1 and G2.

Moreover, m satisfies

|m− (n+
n

D
)

∫
I
fd(x)dx| < δ(n+

n

D
)

k√
k − 1

|I|,
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again with probability at least 1− o(1/n).

4.3 Proof of Theorem 4.2.4

To prove this theorem, we shall use a couple of basic lemmas.

Lemma 4.3.1. Let Γ = (Ω, E) be a graph that can be separated into two disjoint

components G1 and G2 of size |G1| = n and |G2| = m. Let A be the adjacency

matrix for Γ, and A1 and A2 be the adjacency matrices for G1 and G2, respectively.

Then

1. the spectrum of A satisfies σ(A) = σ(A1) ∪ σ(A2), and

2. if the eigenpairs of A1 and A2 are {(λi1, vi1)}ni=1 and {(λj2, v
j
2)}mj=1 respectively,

then {(λi1, [(vi1)ᵀ, 0]ᵀ)}ni=1 and {(λj2, [0, (v
j
2)ᵀ]ᵀ)}mj=1 are corresponding eigenpairs

of A.

Proof. Let G1 have n nodes, and G2 have m nodes. By assumption

A =

A1 0

0 A2

 .

Notice that vi is an eigenvector of A1 if and only if [vi, 0]ᵀ is an eigenvector of A, and

both share the same eigenvalue λi. This accounts for n eigenvalues of A. And since

the same holds for A2 and [0, vi]
ᵀ, we have accounted for another m eigenvalues of A.

But since A is an (n+m)× (n+m) matrix, these are the only possible eigenvalues

of A. Also, {[(vi1)ᵀ, 0]ᵀ}ni=1 and {[0, (vj2)ᵀ]ᵀ}mj=1 clearly form an eigenbasis for A.

Lemma 4.3.2. Let Γ = (Ω, E) be a k-regular graph with adjacency matrix A. Then
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1. the normalized Laplacian satisfies L = I − 1
k
A, and

2. σ(L) = {1−
√
k−1
k
λ : λ ∈ σ( 1√

k−1
A)}, and

3. 1√
k−1

Av = λv ⇐⇒ Lv = (1−
√
k−1
k
λ)v.

Proof. 1. By definition, L = I − D−1/2AD−1/2, where D is a diagonal matrix

such that Di,i =
∑

j wi,j. However, for a k-regular graph, each node satisfies

deg(xi) =
∑

j wi,j = k. Thus L = I − (kI)−1/2A(kI)−1/2 = I − 1
k
A.

2. Let λ ∈ σ( 1√
k−1

A), meaning det(λI − 1√
k−1

A) = 0. Then

det(λI − 1√
k − 1

A) = 0

=⇒ det(

√
k − 1

k
λI − 1

k
A) = 0

=⇒ det((

√
k − 1

k
λ− 1)I − (

1

k
A− I)) = 0

=⇒ det(−λ̃I + L) = 0,

where λ̃ = 1−
√
k−1
k
λ, and λ̃ is an eigenvalue of L.

3. By definition,

Lv = (1−
√
k − 1

k
λ)v

⇐⇒ (I − 1

k
A)v = v −

√
k − 1

k
λv

⇐⇒ Av =
√
k − 1λv

⇐⇒ 1√
k − 1

Av = λv.
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Proof of Theorem 4.2.4. The proof of this theorem relies heavily on Theorem 4.2.3.

Note, k can be kept constant for both G1 and G2 by setting k = log(n)γ1 =

log(n/D)γ2 . Choose α < min{1, 1/γ1, 1/γ2}, and set η accordingly. Now for both

G1 and G2, the parameters are set and constant across the clusters.

Let A be the adjacency matrix of Γ. By Lemma 4.3.1, σ(A) = σ(A1)∪ σ(A2).

Also, by Lemma 4.3.2, σ(L) =
(

1−
√
k−1
k
σ( 1√

k−1
A1)
)
∪
(

1−
√
k−1
k
σ( 1√

k−1
A2)
)

.

Let I ⊂ [0, 2], and for notation let IA = k√
k−1

(1− I) be the corresponding

interval for σ( 1√
k−1

A). Now let λi ∈ IA and vi be the associated eigenvector. Then

by Lemma 4.3.1, if λi ∈ σ( 1√
k−1

A1) then supp(vi) ⊂ C1 and i ∈ N 1
IA . And if

λi ∈ σ( 1√
k−1

A2) then supp(vi) ⊂ C2 and i ∈ N 2
IA .

By Lemma 4.3.2, 1√
k−1

Avi = λivi ⇐⇒ Lvi = (1 −
√
k−1
k
λi)vi, so we know

(1−
√
k−1
k
λi) is an eigenvalue of L with the corresponding eigenvector vi remaining

unchanged. This means N 1
I = N 1

IA and N 2
I = N 2

IA .

Since i ∈ N 1
IA ⇐⇒ λi ∈ σ( 1√

k−1
A1) (and same for A2), Theorem 4.2.3

guarantees us that

|N 1
IA − n

∫
IA
fd(x)dx| < nδ|IA|,

|N 2
IA −

n

D

∫
IA
fd(x)dx| < n

D
δ|IA|.
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This means

|N 1
I −DN 2

I | = |N 1
IA −DN

2
IA + n

∫
IA
fd(x)dx− n

∫
IA
fd(x)dx|

≤ |N 1
IA − n

∫
IA
fd(x)dx|+ |DN 2

IA − n
∫
IA
fd(x)dx|

≤ 2nδ|IA|

= 2nδ
k√
k − 1

|I|.

As for a bound on m, we know m = N 1
I +N 2

I since {i : supp(vi) ⊂ C1} ∩ {i :

supp(vi) ⊂ C2} = ∅. This means

|m− (n+
n

D
)

∫
I
fd(x)dx| = |N 1

I +N 2
I − (n+

n

D
)

∫
I
fd(x)dx|

≤ |N 1
I − n

∫
I
fd(x)dx|+ |N 2

I −
n

D

∫
I
fd(x)dx|

≤ δ(n+
n

D
)

k√
k − 1

|I|.

4.4 Weakly Connected Clusters with Heterogeneous Sizes

In applications of dimension reduction techniques, it is unlikely that clusters

are disjoint. However, Theorem 4.2.4 serves as a first step in the direction of a

theory of eigenvector localization for Laplacian Eigenmaps.

The next question that arises concerns the behavior weakly connected clusters

with heterogeneous sizes (ie. when there exist a small number of edges between

the clusters). This characterizes a larger and more realistic class of data analysis

problems.
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Definition 4.4.1. A graph with weakly connected clusters of order t is a connected

graph with adjacency matrix

A =

 A1 B1,2

Bᵀ
1,2 A2

 ,

where B1,2 has t non-zero entries, and A1 and A2 are adjacency matrices of k-regular

graphs.

This definition is equivalent to characterizing a graph with two clusters, and

t edges linking the two clusters. We now characterize the eigenvalues and eigenvec-

tors of a graph with weakly connected clusters as a problem of matrix perturbation.

Consider two graphs H and G, where H is a disjoint regular graph from the assump-

tions of Theorem 4.2.4, and G is a graph with weakly connected clusters of order t.

In other words, the adjacency matrix AH =

A1 0

0 A2

 and AG =

 A1 B1,2

Bᵀ
1,2 A2

.

Then AG = AH + B, where B is a block 2 × 2, 2t sparse adjacency matrix

that only has terms on the block off-diagonal. Clearly, one can see AG as a per-

turbed version of AH , and the eigenvalues and eigenvectors of AH are completely

characterized by Theorem 4.2.4. This makes perturbation theory a valid approach

to showing the eigenvalues and eigenvectors of AG (and the graph Laplacian LG) do

not deviate much from the known quantities of AH .

4.4.1 Eigenvalue Distribution

First, we shall consider the eigenvalue distribution of this new perturbed ma-

trix.
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Theorem 4.4.2. (Theorem 2.4, [32]) Let G be a graph with weakly connected clus-

ters of order t and H be the graph of the two disjoint clusters. If

λ1 ≤ ... ≤ λn, and

θ1 ≤ ... ≤ θn

are the eigenvalues of the normalized Laplacians LG and LH respectively, then

θi−t ≤ λi ≤ θi+t, 1 ≤ i ≤ n,

with the convention that θ−t = ... = θ0 = 0 and θn+1 = ... = θn+t = 2.

Theorem 4.4.2 guarantees the order of the eigenvalues shall not deviate much

from Theorem 4.2.4. Specifically, it leads to the following lemma.

Lemma 4.4.3. Let Γ = (Ω, E) be a graph with weakly connected clusters of order

t, such that one cluster is of size n and the other cluster is of size n
D

. Fix δ, k, α,

η, and I as in Theorem 4.2.4.

Let L denote the graph Laplacian, and σ1, ..., σm denote the m eigenvalues of

L that lie in I. Then m satisfies

|m− (n+
n

D
)

∫
I
fd(x)dx| < δ(n+

n

D
)

k√
k − 1

|I|+ 2t,

again with probability at least 1− o(1/n).

Proof. Let G be a graph with weakly connected clusters of order t and H be the

graph of the two disjoint clusters, with Laplacians LG and LH respectively. Let

λmin = min{λ ∈ σ(LH) : λ ∈ I}, λmax = max{λ ∈ σ(LH) : λ ∈ I},

λ̃min = min{λ̃ ∈ σ(LG) : λ̃ ∈ I}, λ̃max = max{λ̃ ∈ σ(LG) : λ̃ ∈ I}.
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By Theorem 4.4.2,

Nmin = |{λ̃ ∈ σ(LG) : λ̃min ≤ λ̃ ≤ λmin or λmin ≤ λ̃ ≤ λ̃min}| ≤ t,

Nmax = |{λ̃ ∈ σ(LG) : λmax ≤ λ̃ ≤ λ̃max or λ̃max ≤ λ̃ ≤ λmax}| ≤ t.

Then if mG (resp. mH) is the number of eigenvalues of LG (resp. LH) in I,

|mG − (n+
n

D
)

∫
I
fd(x)dx| = |mG −mH +mH − (n+

n

D
)

∫
I
fd(x)dx|

≤ |mG −mH |+ |mH − (n+
n

D
)

∫
I
fd(x)dx|

≤ Nmin +Nmax + |mH − (n+
n

D
)

∫
I
fd(x)dx|

≤ 2t+ δ(n+
n

D
)

k√
k − 1

|I|.

4.4.2 Eigenvector Distribution

Now, we shall consider the eigenvector distribution of a graph with weakly

connected clusters by considering it as a matrix perturbation problem. Davis and

Kahan [41,42] were the first to give general theorems relating to the invariant sub-

spaces of two Hermitian matrices. These results were extended by Stewart [105] via

an iterative process for generating the invariant subspaces. For a detailed account

of matrix perturbation results, see [106].

These theories are center around the distribution of eigenvalues and eigenvalue

gaps.

Definition 4.4.4. The eigenvalue separation of two n× n matrices A and B with

spectrum σ(A) = {λA1 , ..., λAn} and σ(B) = {λB1 , ..., λBn }. Then the separation is
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defined as

sep(A,B) = min
i,j
|λAi − λBj |.

Theorem 4.4.5. (Theorem 4.11, [105]) Let A,E ∈ Cn×n. Let X = [X1, X2] be a

unitary matrix with X1 ∈ Cn×l, and suppose R(X1) is an invariant subspace of A.

Let

X∗AX =

A1,1 A1,2

0 A2,2

 , X∗EX =

E1,1 E1,2

E2,1 E2,2

 .

Let δ = sep(A1,1, A2,2)− ‖E1,1‖ − ‖E2,2‖. Then if

‖E2,1‖(‖A1,2‖+ ‖E1,2‖)
δ2

≤ 1

4
, (4.2)

there is a matrix P satisfying

‖P‖ ≤ 2
‖E2,1‖
δ

such that

X̃1 = (X1 +X2P )(I + P ∗P )−1//2 (4.3)

is an invariant subspace of A+ E.

Theorem 4.4.5 gives a sufficient condition for guaranteeing an eigenspace X1

remains relatively preserved under perturbation. Under the condition that A is a

graph with weakly connected clusters, and sep(A1,1, A2,2) 6= 0, Theorem 4.4.5 gives

us bounds the individual eigenvectors under perturbation.

This type of theorem is an approach to showing the eigenvectors of a graph

with weakly connected clusters remains localized. It implies the fact that greater
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eigenvalue separation leads to better eigenvector localization. However, the condi-

tions that need to be satisfied are too strict for our problem.

To demonstrate this disparity between theory and example, consider the prob-

lem in Figure 4.4. In this dataset, there are 7 edges connecting C1 and C2. |C1| =

1989 and |C2| = 211, meaning |C1| = D · |C2| where D = 9.4. We shall examine

the smallest 10% of eigenvalues and their associated eigenvectors, as these are the

vectors that are chosen for the Laplacian Eigenmaps algorithm.

Figure 4.4: Two Moons Weakly Connected. |C1| = 1989, |C2| = 211

Let LG be the Laplacian of the graph with weakly connected clusters, and

LH be the Laplacian of the graph with disjoint clusters. Let {v1, ..., v200} be the

eigenvectors of LG and {w1, ..., w200} be the eigenvectors of LH . Figure 4.5 plots

〈vi, wi〉 for i ∈ {1, ..., 200}. Clearly, there is a large discrepancy between theory and

practice. Theorem 4.4.5 only predicts 26 eigenvectors satisfy the assumptions of the

spectral gap necessary to guarantee (4.3) holds for ‖P‖ < 1 (which would imply
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〈vi, wi〉 >
√

2
2

). However, 180 of the eigenvectors actually satisfy 〈vi, wi〉 >
√

2
2

.

(a) Vector Angles

(b) Vector Angles Predicted by Theorem 4.4.5

Figure 4.5: Actual Vector Angles 〈vi, wi〉 for the first 200 eigenvectors of data from Figure

4.4 versus Predicted spectral gap from Theorem 4.4.5.

A more enlightening depiction of this discrepancy can be seen in Figure 4.6.
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This is another plot of the vector angles (same as Figure 4.5(a)), except now the in-

dices for which supp(wi) ⊂ C2 are marked with a vertical line. Recall from Theorem

4.2.4, this occurs on average once out of every D indices.

Figure 4.6: Vector Angles for first 200 eigenvectors of data from Figure 4.4, with green

vertical lines denoting eigenvalues for which λi ∈ {λi : supp(wi) ⊂ C2}. Blue dot: {〈wi, vi〉 :

supp(wi) ⊂ C1}, Red dot: {〈wi, vi〉 : supp(wi) ⊂ C2}.

Notice that the only deviations 〈vi, wi〉 make from the neighborhood of 1 oc-

cur on or incredibly near the indices for which supp(wi) ⊂ C2. This suggests why

Theorem 4.4.5 is not sufficient for the current setting. Theorem 4.4.5 gives a condi-

tion for which ‖P‖ < 1. However, it does not speak to which eigenvectors from X2

contribute to X̃1 in (4.3), regardless of whether (4.2) is violated.

Figure 4.6 suggests that the eigenvectors from X2 that contribute to X̃1 are

exactly those that are nearest in eigenvalue. This is why only points near a vertical

line for λi ∈ {λi : supp(wi) ⊂ C2} have vector angles far from 1. This leads to the

following conjecture:
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Conjecture 4.4.6. Let A,E ∈ Cn×n. Let X = [X1, X2] be a unitary matrix with

X1 = [X1
1 , ..., X

l
1] ∈ Cn×l. Suppose R(X1) is an invariant subspace of A associated

with eigenvalue λ, and the columns X2 = [X1
2 , ..., X

n−l
2 ] correspond to eigenvalues

[λ1, ..., λn−l]. Let

X∗AX =

A1,1 A1,2

0 A2,2

 , X∗EX =

E1,1 E1,2

E2,1 E2,2

 .

Let ε > 0 satisfy some minimum size condition depending on ‖E‖. Then if

∃C1 ( {1, ..., n} such that supp(X i
1) ⊂ C1 for i = 1, ..., l and

λi ∈ (λ− ε, λ+ ε) =⇒ supp(X i
2) ⊂ C1,

there is a matrix P such that X̃1 = (X1 + X2P )(I + P ∗P )−1//2 is an invariant

subspace of A+ E, and supp(X̃ i
1) ⊂ C1 for i ∈ {1, ..., l}.

It may be the case that Conjecture 4.4.6 must be refined to only refer to

symmetric diagonally dominant matrices, of which graph Laplacians are an example.

4.5 Partial Result in the Direction of Conjecture 4.4.6

For this section, we shall utilize the singular value decomposition (SVD) in-

stead of the eigendecomposition. To avoid ambiguity, we shall define the singular

values of a matrix A to be σ1 ≥ ... ≥ σn ≥ 0. Also, we shall define the SVD

A = UΣV ∗ by calculating the right singular vectors V and the singular values Σ from

the eigendecomposition of A∗A and the right singular values U via U = A ∗ V ∗Σ†.

Lemma 4.5.1. Let A be an n×n symmetric real matrix. Let the SVD of A = UΣV ∗

and the eigendecomposition of A = XDX−1. Then V = X.
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Proof. Because A is symmetric, its eigenvectors form an orthonormal basis for Rn.

This means X−1 = X∗ since XX∗ = X∗X = Idn×n.

The right singular vectors of A are calculated via the eigendecomposition of

A∗A. However, A∗A = (XDX∗)∗(XDX∗) = X(DD∗)X∗. This means the eigenvec-

tors of A∗A, and thus the right singular vectors of A, are X. Thus, V = X.

Let λ be an eigenvalue of A. Our results shall refer to the singular vectors (and

thus eigenvectors) of Ã = A− λI. The reason for this is that, for the SVD of Ã, we

now the singular value σn = 0 as λ is an eigenvalue of A. This means, to speak of

the eigenvector of A corresponding to λ, we may simply refer to the singular vector

vn corresponding to σn = 0. This result is along the lines of Theorem 3 in [100].

Theorem 4.5.2. Let A by an n × n matrix with SVD A = UΣV ∗. Partition

V = [V1, V2, vn] where vn ∈ Rn, V2 ∈ Rn×s. Moreover, assume ∃C ( {1, ..., n} such

that supp(vi) ⊂ C for i ∈ {n− s, ..., n}. Let x ∈ Rn such that ‖x‖2 = 1. Then

∑
i∈Cc
|xi|2 ≤

‖Ax‖2
2 − ‖Avn‖2

2

σ2
n−s−1(A)− σ2

n(A)
.

Proof. Let x = V1c1 + V2c2 + vnc3 where c1 ∈ Rn−s−1, c2 ∈ Rs, and c3 ∈ R. We shall

bound the quantity ‖c1‖ to arrive at our desired result. Partition U and Σ in the

same way as V . Recalling that U and V have orthogonal columns,

‖Ax‖2
2 = ‖U1Σ1V

∗
1 x+ U2Σ1V

∗
2 x+ unσnv

∗
nx‖2

2

= ‖Σ1c1‖2
2 + ‖Σ2c2‖2

2 + ‖σnc3‖2
2

≥ σ2
n−s−1‖c1‖2 + σ2

n−1‖c2‖2 + σ2
n|c3|2,
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where the inequality comes from the fact that σ1 ≥ ... ≥ σn ≥ 0. Now note that

|c3|2 = 1− ‖c1‖2
2 − ‖c2‖2

2,

since x∗x = c∗1c1 + c∗2c2 + c∗3c3 = 1. This means

‖Ax‖2
2 ≥ (σ2

n−s−1 − σ2
n)‖c1‖2

2 + (σ2
n−1 − σ2

n)‖c2‖2
2 + σ2

n.

Noting that ‖Avn‖2
2 = σ2

n and (σ2
n−1 − σ2

n)‖c2‖2
2 > 0, we clearly see

‖Ax‖2
2 − ‖Avn‖2

2 ≥ (σ2
n−s−1 − σ2

n)‖c1‖2
2

=⇒ ‖c1‖2
2 ≤
‖Ax‖2

2 − ‖Avn‖2
2

σ2
n−s−1 − σ2

n

.

Now recall that (V2)i,j = (vn)i = 0 for all i 6∈ C and j ∈ {1, ..., s}. This means

∑
i∈Cc
|xi|2 ≤

n∑
i=1

n−s−1∑
j=1

|(V1)i,jcj|2

=
n−s−1∑
j=1

|cj|2
n∑
i=1

|(V1)i,j|2

=
n−s−1∑
j=1

|cj|2

≤ ‖Ax‖
2
2 − ‖Avn‖2

2

σ2
n−s−1 − σ2

n

.

Theorem 4.5.2 demonstrates that, when there exists a series of singular vectors

concentrated on a subset of the points C, then the angle between those singular

vectors to a new vector is inversely proportional to the square of the singular value.

This, along with Lemma 4.5.1, lead to following immediate corollary.
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Corollary 4.5.3. Let A be a symmetric n×n matrix with eigendecomposition A =

V ΣV ∗. Let (λi, vi) be an eigenpair of A. Partition V = [V1, V2, vi, V3, V4] where

V2, V3 ∈ R
n×s. Moreover, assume ∃C ( {1, ..., n} such that supp(vi) ⊂ C and

supp(vj) ⊂ C where vj is a column of V2, V3. Let (λ̃, x) an eigenvector of the

perturbed matrix A+ E, where x = [x1, ..., xn]. Then

∑
j∈Cc
|xj|2 ≤

‖(λ̃− λi)x− Ex‖2
2

min(λi − λi−s, λi+s − λi)2
.

Proof. We applying Theorem 4.5.2 to the matrix A − λiI. Lemma 4.5.1 allows us

to shift the problem from singular vectors to eigenvectors. The only other change

of note lies in the denominator. The denominator is

‖(A− λiI)x‖2
2 − ‖(A− λiI)vi‖2

2.

We notice the right hand term is 0 as (λi, vi) is an eigenpair. For the left hand term,

we notice

‖(A− λiI)x‖2
2 = ‖(A+ E)x− Ex− λix‖2

2.

Since (A+ E)x = λ̃x, the desired result follows immediately.

Using Corollary 4.5.3, we attempt to predict the number of eigenvectors from

Figure 4.4 that remain concentrated in the appropriate cluster. Recall that 180

of the first 200 eigenvectors satisfied 〈vi, wi〉 >
√

2
2

, which is a similar condition to

predicting that
∑
j∈Cc
|xj|2 < .5. Corollary 4.5.3 predicts that 130 of the eigenvectors

will satisfy
∑
j∈Cc
|xj|2 < .5 and remain concentrated in their respective clusters. While

this is less than the 180 that actually remain localized, the prediction of 130 is far

better than the prediction of 26 that occurs using Theorem 4.4.5. More importantly,
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of those 130 predicted eigenvectors, 127 are concentrated on the larger cluster C1.

Only 3 are concentrated on the smaller cluster C2.

4.6 Interpretations and Conclusions

Let us assume there is a positive result to Conjecture 4.4.6. Then the results

of Theorem 4.2.4, along with Figure 4.6 and Conjecture 4.4.6, suggest a negative

result for differentiating small clusters C2 from a larger background cluster C1 using

Laplacian Eigenmaps. These results would suggest that small clusters are forced

to 0 for most eigenvectors of the graph Laplacian. This makes classification, and

especially determining inter-cluster differences, very difficult.

On top of that, Conjecture 4.4.6 suggests that even if eigenvalue λi has an

eigenvector wi supported on C2 for the disjoint graph, its corresponding eigenvector

for the graph with weakly connected clusters vi may not remain supported on C2.

This is because, while supp(vi) ⊂ C2, supp(vi−1) and supp(vi+1) are most likely

concentrated on C1 due to Theorem 4.2.4.
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Chapter 5: Solving 2D Fredholm Integral from Incomplete Measure-

ments for Improved Acquisition of NMR Spectra

5.1 Introduction

5.1.1 2D Fredholm Integral

We present a method of solving the 2-dimensional Fredholm integral of the

first kind from a limited number of measurements. This is particularly useful in the

field of nuclear magnetic resonance (NMR), in which making a sufficient number

of measurements takes several hours. Our work is an extension of the algorithm

in [111] based on the new idea of matrix completion, cf. [21, 63,98].

A two-dimensional Fredholm integral of the first kind is written as

g(x, y) =

∫ ∫
k1(x, s)k2(y, t)f(s, t)dsdt,

where k1 and k2 are continuous Hilbert-Schmidt kernel functions and f, g ∈ L2(R2),

cf. [61]. Two dimensional Fourier, Laplace, and Hankel transforms are all common

examples of Fredholm integral equations. Applications of these transformations arise

in any number of fields, including methods for solving PDEs [65], image deblurring

[15, 75], and moment generating functions [76]. This chapter specifically focuses on
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Laplace type transforms, where the kernel singular values decay quickly to zero.

To present the main idea of the problem, the data M is measured over sampling

times τ1 and τ2, and is related to the object of interest F(x, y) by a 2-D Fredholm

integral of the first kind with a tensor product kernel,

M(τ1, τ2) =

∫ ∫
k1(x, τ1)k2(y, τ2)F(x, y)dxdy + ε(τ1, τ2),

where ε(τ1, τ2) is assumed to be Gaussian, white noise. In most applications, includ-

ing NMR, the kernels k1 and k2 are explicit functions that are known to be smooth

and continuous a priori. Solving a Fredholm integral with smooth kernels is an

ill-conditioned problem, since the kernel’s singular values decay quickly to zero [69].

This makes the problem particularly interesting, as small variations in the data can

lead to large fluctuations in the solution.

For our purposes, F(x, y) represents the joint probability density function of

the variable x and y. Specifically in NMR, x and y can be the measurements of

the two combination of the longitudinal relaxation time T1, transverse relaxation

time T2, diffusion D and other dynamic properties. Knowledge of the correlation

of these properties of a sample is used to identify its microstructure properties and

dynamics [17].

This chapter focuses on the discretized version of the 2D Fredholm integral,

M = K1FK
′
2 + E, (5.1)

where our data is the matrix M ∈ RN1×N2 , matrices K1 ∈ RN1×Nx and K2 ∈ RN2×Ny

are discretized versions of the smooth kernels k1 and k2, and the matrix F ∈ RNx×Ny

is the discretized version of the probability density function F(x, y) we are interested
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in recovering. We also assume that each element of the Gaussian noise matrix E

is zero mean and constant variance. And since we have assumed that F(x, y) is a

joint pdf, each element of F is non-negative.

5.1.2 Existing Algorithm in [111]

Venkataramanan, Song, and Hürlimann [111] laid out an efficient strategy for

solving this problem given complete knowledge of the data matrix M . The approach

centers around finding an intelligent way to solve the Tikhonov regularization prob-

lem,

F̂ = arg min
F≥0
‖M −K1FK

′
2‖2
F + α‖F‖2

F , (5.2)

where ‖ · ‖F is the Frobenius norm.

There are three steps to the algorithm in [111] for solving (5.2).

1. Compress the Data: Let the SVD of Ki be

Ki = UiSiV
′
i , i ∈ {1, 2}.

Because K1 and K2 are sampled from smooth functions k1 and k2, the singular

values decay quickly to 0. Let s1 be the number of non-zero singular values of

K1 and s2 number of non-zero singular values of K2. Then Ui ∈ RNi×si and

Si ∈ Rsi×si for i = 1, 2, as well as V1 ∈ RNx×s1 and V2 ∈ RNy×s2 .

The data matrix M can be projected onto the column space of K1 and the row

space of K2 by U1U
′
1MU2U

′
2. We denote this as M̃ = U ′1MU2. The Tikhonov
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regularization problem (5.2) is now rewritten as

F̂ = arg min
F≥0
‖U1M̃U ′2 − U1U

′
1K1FK

′
2U2U

′
2‖2
F (5.3)

+ ‖M‖2
F − ‖U1M̃U ′2‖2

F + α‖F‖2
F

= arg min
F≥0
‖M̃ − (S1V

′
1)F (S2V

′
2)′‖2

F + α‖F‖2
F , (5.4)

where (5.4) comes from U1 and U2 having orthogonal columns, and the second

and third terms in (5.3) being independent of F . The key note here is that

M̃ ∈ Rs1×s2 , which significantly reduces the complexity of the computations.

2. Optimization: For a given value of α, (5.4) has a unique solution due to

the second term being quadratic. We shall detail the method of finding this

solution in Section 5.3.

3. Choosing α: Once (5.4) has been solved for a specific α, an update for α is

chosen based on the characteristics of the solution in Step 2. Repeat between

Steps 2 and 3 until convergence. Again, this is detailed in Section 5.3.

5.1.3 Subsampling NMR Measurements

The approach in [111] assumes complete knowledge of the data matrix M.

However, in applications with NMR, there is a cost associated with collecting all

the elements of M, which is time. With the microstructure-related information

contained in the multidimensional diffusion-relaxation correlation spectra of the

biological sample [43,46,54,70,95,110] and high-resolution spatial information that

magnetic resonance imaging (MRI) technique can provide, there is a need to combine
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the multidimensional correlation spectra NMR with 2D/3D MRI for pre-clinical and

clinical applications [44]. Without any acceleration, however, it could take several

days to acquire this data.

In practice, the potential pulse sequences for the combined multidimensional

diffusion-relaxation MRI would be single spin echo (90◦-180◦-acquisition and spatial

localization) with saturation, inversion recovery, driven-equilibrium preparation to

measure T1-T2 correlation and diffusion weighting preparation for D-T2 measure-

ments. With these MRI pulse sequences, a single point in the two dimensional T1-T2

or D-T2 space is acquired for each “shot”, and the total time for the sampling of the

T1-T2 or D-T2 space is determined directly by the number of measurements required

to recover F from (5.2). Together with rapid MRI acquisition techniques, which can

include, e.g., parallel imaging [96], echo planar imaging (EPI) [53], gradient-recalled

echo [71], sparse sampling with compressed sensing [87], along with a vastly reduced

number of sample points in M, could reduce the total experiment time sufficiently

to make this promising technique practicable for pre-clinical and clinical in vivo

studies.

Notice that, despite collecting all N1 × N2 data points in M , Step 1 of the

algorithm immediately throws away a large amount of that information, reducing

the number of data points to a matrix of size s1 × s2. M̃ is effectively a compressed

version of the original M , containing the same information in a smaller number of

entries. But this raises the question of why all of M must be collected when a large

amount of information is immediately thrown away, since we are only interested in

M̃ .

71



The goal for the rest of this chapter is to use the compressive sensing results

from Chapter 2 to reduce the number of measurements required to determine M̃ .

This allows for a stable reconstruction of F from a limited number of measure-

ments, and the possibility of reducing the time required for the acquisition of the

2D multidimensional correlated spectra.

5.2 Relation to Parseval Tight Frame Compressive Sensing

For the NMR problem, let us say

M = K1FK
′
2 + E

= U1M̃0U
′
2 + E,

(5.5)

where Ui ∈ RNi×si , M̃ ∈ Rs1×s2 , and E ∈ RN1×N2 . This means that

M̃0 = S1V
′

1FV2S2. (5.6)

To subsample the data matrix M , we shall observe it on random entries. Let

Ω ⊂ {1, ...N1} × {1, ...N2} be the set of indices where we observe M . For |Ω| = m,

let the indices be ordered as Ω = {(ik, jk)}mk=1. Then we define the masking operator

AΩ as

AΩ : RN1×N2 → R
m

(AΩ(X))k = Xik,jk

Recall that the goal is to recover M̃0. This means that our actual sampling operator
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is

RΩ : Rs1×s2 → R
m

RΩ(X) = AΩ(U1XU
′
2)

Now the problem of speeding up NMR can be written as an attempt to recover M̃0

from measurements

y = RΩ(M̃0) + e, ‖e‖2 ≤ ε. (5.7)

Note that [111] is assuming Ω = {1, ...N1}×{1, ...N2}, making the sampling operator

RΩ(M̃0) = U1M̃0U
′
2.

Then in the notation of this NMR problem, our recovery step takes the form

min ‖Z‖∗

such that ‖RΩ(Z)− y‖2 ≤ ε.

(5.8)

Now notice that in our problem, ignoring noise, each observation can be written

as

Mj,k = (uj1)M̃0(uk2)′

= 〈(uj1)′(uk2), M̃0〉,

where uj1 (resp. uj2) is the jth row of U1 (resp. U2). Noting that U1 and U2 are left

orthogonal (ie. U ′iUi = Idsi), one can immediately show that {(uj1)′(uk2)}(j,k)∈ZN1
×ZN2

forms a Parseval tight frame for Rs1×s2 . Also, because K1 and K2 are discretized

versions of smooth continuous function, {(ui1)′(uj2)} are a bounded norm frame for

a reasonable constant µ (further discussion of µ in Section 5.4.2). Thus, RΩ is
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generated by randomly selecting measurements from a bounded norm Parseval tight

frame.

This means reconstruction of M̃0 from RΩ(M̃0) meets the assumptions of The-

orem 2.3.1 from Chapter 2. Thus, if the number of measurements is

m ≥ Cµrn log5 n · log(N1N2),

where n = max(s1, s2), we are guaranteed that the solution to (5.8), which we shall

denote M̃ , satisfies

‖M̃ − M̃0‖F ≤ C0
‖M̃0 − M̃0,r‖∗√

r
+ C1p

−1/2ε,

where p = m
N1N2

.

5.3 Inverse 2D Fredholm Integral Algorithm with Nuclear Norm Min-

imization

The algorithm for solving for F in (5.1) from partial data consists of three

steps. An overview of the original algorithm in [111] is in Section 2.1. Our modifi-

cation and the specifics of each step are detailed below.

1. Construct M̃ from Given Measurements: Let y = RΩ(M̃0) + e be the set of

observed measurements, as in (5.7). While Section 2.3 guarantees (5.8) has a

stable solution from a limited number of measurements, we can also solve the

relaxed Lagrangian form

min
X

µ‖X‖∗ +
1

2
‖RΩ(X)− y‖2

2. (5.9)
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To solve (5.9), we use the Singular Value Thresholding algorithm from [16,88].

To do this, we need some notation. Let the matrix derivative of the L2 norm

term be written as

g(X) = R∗Ω(RΩ(X)− y)

= U ′1(A∗Ω(AΩ(U1XU
′
2)− y))U2.

We also need the singular value thresholding operator Sν that reduces each

singular value of some matrix X by ν. In other words, if the SVD of X =

UΣV ′, then

Sν(X) = UΣ̃V ′, Σ̃i,j =


max(Σi,i − ν, 0) i = j,

0 otherwise.

Using this notation, the algorithm can then be written as a simple, two step

iterative process. Choose a τ > 0. Then, for any initial condition, solve the

iterative process 
Y k = Xk − τg(Xk)

Xk+1 = Sτµ(Y k)

. (5.10)

The choices of τ and µ are detailed in [88], along with adaptations of this

method that speed up convergence. However, this method is guaranteed to

converge to the correct solution.

This means that, given partial observations y, the iteration scheme in (5.10)

converges to a matrix M̃ , which is a good approximation of M̃ + 0. Once M̃

has been generated, we recover F by solving

arg min
F≥0
‖M̃ − (S1V

′
1)F (S2V

′
2)′‖2

F + α‖F‖2
F . (5.11)
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2. Optimization: For a given value of α, (5.11) has a unique solution due to the

second term being quadratic. This constrained optimization problem is then

mapped onto an unconstrained optimization problem for estimating a vector

c.

Let f be the vectorized version of F and m be a vectorized version of M̃ . Then

we define the vector c from f implicitly by

f = max(0, K ′c), where K = (S1V
′

1)⊗ (S2V
′

2).

Here, ⊗ denotes the Kronecker product of two matrices. This definition of c

comes from the constraint that F ≥ 0 in (5.11), which can now be reformed

as the unconstrained minimization problem

min

(
1

2
c′[G(c) + αI]c− c′m

)
, (5.12)

where

G(c) = K



H(K ′1,·c) 0 ... 0

0 H(K ′2,·c) ... 0

...
...

...

0 0 ... H(K ′Nx×Ny ,·c)


K ′,

and H(x) is the Heavyside function. Also, Ki,· denotes the ith row of K.

The optimization problem (5.12) is solved using a simple gradient descent

algorithm.

3. Choosing α: There are several methods for choosing the optimal value of α.
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• BRD Method: Once an iteration of Step 2 has been completed, it is shown

in [111] that a better value of α can be calculated by

αopt =

√
s1s2

‖c‖
.

If one iterates between Step 2 and the BRD method, the value of α

converges to an optimal value. This method is very fast, however it can

have convergence issues in the presence of large amounts of noise, as well

as on real data [104].

• S-Curve: Let Fα be the value returned from Step 2 for a fixed α. The

choice of α should be large enough that Fα is not being overfitted and

unstable to noise, yet small enough that Fα actually matches reality. This

is done by examining the “fit-error”

χ(α) = ‖M −K1FαK
′
2‖F .

This is effectively calculating the standard deviation of the resulting re-

construction. Plotting χ(α) for various values of α generates an S-curve,

as in Figure 5.1. The interesting value of α occurs at the bottom “heel”

of the curve (i.e., d logχ(α)
d logα

≈ .1). This is because, at αheel, the fit error is

no longer demonstrating overfitting as it is to the left of αheel, yet is still

matching the original data, unlike to the right of αheel. This method is

slower than the BRD method, however it is usually more stable in the

presence of noise.

For the rest of this chapter, we use the S-curve method of choosing α.
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Figure 5.1: Plot of the fit error for various α

5.4 Numerical Considerations

Chapter 2 gives theoretical guarantees about error of estimating M̃0 with the

recovered M̃ . We shall address several issues related to practical applications in this

Section. We shall let M̃0 be the original compressed data matrix we are hoping to

recover, and let M̃ be the approximation obtained by solving (5.8) for the sampling

operator RΩ. We consider the guarantee given in (2.9) term by term.

For the rest of this chapter, we take the kernels K1 and K2 to be Laplace type

kernels with quickly decaying singular values. For our purposes, we shall use the

kernels k1(τ1, x) = 1 − e−τ1/x and k2(τ2, y) = e−τ2/y to represent the general data

structure of most multi-exponential NMR spectroscopy measurements. The same

kernels shall be used in Section 5.5 for simulations and experiments. Also, τ1 is

logarithmically sampled between 0.0005 and 4 and τ2 is linearly sampled between
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0.0002 and 0.4, as these are typical values in practice. Also for this section, F is

taken to be a two peak distribution, namely Model 3 from Section 5.5.

When needed, we set s1 = s2 = 20. This choice is determined by the discrete

Picard Condition (DPC) [68]. For ill-conditioned kernel problems Kf = g, with

{ui} denoting left singular vectors of K and {σi} the corresponding singular values,

the DPC guarantees the best reconstruction of f is given by keeping all σi 6= 0

such that
|u∗i g|
σi

on average decays to zero as σi decrease. For our kernels with tensor

product structure in (5.1), Figure 5.2 shows the relevant singular values and vectors

to keep. The s1 = s2 = 20 rectangle provides a close estimate for what fits inside

this curve, implying that at a minimum we could set s1 = s2 = 20 to satisfy DPC.

DPC provides a stronger condition than simply keeping the largest singular values,

or attempting to preserve some large percentage of the energy [67].

Figure 5.2: Points denote which singular values of K1 (rows of plot) and K2 (columns of

plot) to keep in order to satisfy the discrete Picard condition for stable inversion.

5.4.1 Noise Bound in Practice

Theorem 2.2.3 hinges on the assumption that δ5r < 1/10, where δr is the

isometry constant for rank r. This puts a constraint on the maximum size of r.
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Let us denote that maximal rank by r0. If we knew a priori that M̃0 was at most

rank r0, then this term of ‖
fM0−fM0,r‖∗√

r
would have zero contribution, as M̃0 = M̃0,r.

However, because of (5.6), M̃0 could theoretically be full rank, since S1 and S2 are

decaying but not necessarily 0.

This problem is rectified by utilizing the knowledge that K1 and K2 have

rapidly decaying singular values. Figure 5.3 shows just how rapidly the singular

values decay, for a typical choice of kernels and discretization points. This means

M̃0 from (5.6) must have even more rapidly decaying singular values, as V ′1FV2 is

multiplied by both S1 and S2. Figure 5.4 shows that the singular values of M̃0 drop

to zero almost immediately for a typical compressed data matrix.

Figure 5.3: Plots of the singular value decay of the kernels. Left: K1, Right: K2

This means that even for small r0, ‖
fM0−fM0,r‖∗√

r
≤

∥∥∥∥∥min(s1,s2)∑
i=r0+1

σi(M̃0)

∥∥∥∥∥ is very close

to zero, as the tail singular values of M̃0 are almost exactly zero.

Figure 5.5 shows how the relative error decays for larger percentages of mea-

surement, and how that curve matches the predicted curve of p−1/2‖e‖2. One can

see from this curve that the rank r error does not play any significant role in the
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Figure 5.4: Plot of the singular value decay for data matrix M

reconstruction error.

Figure 5.5: Plot of the error in reconstruction

5.4.2 Incoherence

The incoherence parameter µ to bound the number of measurements in (2.12)

plays a vital role in determining m in practice. It determines whether the mea-
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surements {u′ivj} are viable for reconstruction from significantly reduced m, even

though they form a Parseval tight frame.

To demonstrate that µ does not make reconstruction prohibitive, we demon-

strate on a typical example of K1 and K2, as described at the beginning of this

section.

Figure 5.6 shows the ‖φj‖2 |J |
n

for each measurement {u′ivj} from the above

description, making µ = max ‖φj‖2 |J |
n

= 89.9. While this bound on µ is not ideal,

as it makes m > n2, there are two important notes to consider. First, as was

mentioned in Section 2.3, Theorem 2.2.3 guarantees strong error bounds regardless

of the system being underdetermined. Second, as is shown in Section 5.4.3, the

estimate M̃ is still significantly better than a simple least squares minimization,

which in theory applies as the system isn’t underdetermined.

Also note from Figure 5.6 the fact that mean(‖φj‖2 |J |
n

) and median(‖φj‖2 |J |
n

)

differ greatly from max(‖φj‖2 |J |
n

). This implies that, while a small number of the

entries are somewhat problematic and coherent with the elementary basis, the vast

majority of terms are perfectly incoherent. This implies that Theorem 2.2.3 is a

non-optimal lower bound on m. Future work shall be to examine the possibility of

bounding m below with an average or median coherence, or considering a reweighted

nuclear norm sampling similar to [33]. Another possibility is to examine the idea of

asymptotic incoherence [1].
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Figure 5.6: Plot of ‖u′ivj‖ |J|n for each measurement element from the NMR problem.

5.4.3 Least Squares Comparison

One could also attempt to solve for M̃0 using a least squares algorithm on the

observed measurements via the Moore-Penrose pseudoinverse. However, as we shall

show, due to noise and ill-conditioning, this is not a viable alternative to the nuclear

norm minimization algorithm employed throughout this chapter. As an example,

we shall again use K1 and K2 as described in the beginning of this section. The

noise shall range over various signal-to-noise ratio.

We will consider a noisy estimate M̃ of the compressed matrix M̃0, generated

either through the pseudoinverse, nuclear norm minimization, or simply projecting

a full set of measurements M via U ′1MU2. Figure 5.7 shows the relative error of

each of these recoveries, defining error to be

‖M̃0 − M̃‖F
‖M̃0‖F

.
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Clearly, nuclear norm minimization, even for a small fraction of measurements kept,

mirrors the full measurement compression almost perfectly, as was shown in Figure

5.5. However, the least squares minimization error is drastically higher. Even at 20%

measurements kept, the difference in error between least squares reconstruction and

the full measurement projection error is 4 times higher than the difference between

nuclear norm reconstruction and the full measurement projection error.

Figure 5.7: Relative error of least squares approximation compared to nuclear norm min-

imization versus percentage of measurements kept. Left: SNR=15dB, Center: SNR=25dB,

Right: SNR=35dB.

5.5 Simulation Results

In simulation, we shall use the kernels k1(τ1, x) = 1 − e−τ1/x and k2(τ2, y) =

e−τ2/y and sample τ1 logarithmically and τ2 linearly, as was done in Section 5.4.

Our simulations revolve around inverting subsampled simulated data to recover the

density function F (x, y). We shall test three models of F (x, y). In model 1, F (x, y)

is a small variance Gaussian. In model 2, F (x, y) is a positively correlated density

function. In model 3, F (x, y) is a two peak density, one peak being a small circular

Gaussian and the other being a ridge with positive correlation.
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The data is generated for a model of F (x, y) by discretizing F and computing

M = K1FK
′
2 + E,

where E is Gaussian noise. That data is then randomly subsampled by only keeping

λ fraction of the entries.

Each true model density F (x, y) is sampled logarithmically in x and y. τ1 is

logarithmically sampled N1 = 30 times, and τ2 is linearly sampled N2 = 4000 times.

Each model is examined for various SNR and values of λ, and α is chosen using the

S-curve approach for each trial.

Let us also define the signal-to-noise ratio (SNR) for our data to be

SNR = 10 log10

‖M‖2

‖E‖2
dB.

Note that [111] has extensively examined Steps 2 and 3 of this algorithm,

including the effects of α and SNR on the reconstruction of F . Our examination

focuses on the differences between the F generated from full knowledge of the data

and the F generated from subsampled data. For this reason, Ffull refers to the

correlation spectra generated from full knowledge of the data using the algorithm

from [111]. Fλ refers to the correlation spectra generated from only λ fraction of

the measurements using our algorithm.

5.5.1 Model 1

In this model, F (x, y) is a small variance Gaussian. This is the simplest

example of a correlation spectra, given that the dimensions are uncorrelated. F (x, y)
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is centered at (x, y) = (.1, .1) and have standard deviation .02. The maximum signal

amplitude is normalized to 1. This model of F (x, y) is a base case for any algorithm.

In other words, any legitimate algorithm to invert the 2D Fredholm integral must

at a minimum be successful in this case.

Figure 5.8 shows the quality of reconstruction of a simple spectra with an

SNR of 30dB. Figure 5.9 shows the same spectra, but with an SNR of 15dB. Almost

nothing is lost in either reconstruction, implying that both the original algorithm and

our compressive sensing algorithm are very robust to noise for this simple spectra.

Figure 5.8: Model 1 with SNR of 30dB. (Top-Left) True spectra, (Top-Right) Ffull, (Bottom-

Left) Reconstruction from 30% Measurements, (Bottom-Right) Reconstruction from 10% Mea-

surements
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Figure 5.9: Model 1 with SNR of 15dB. (Top-Left) True spectra, (Top-Right) Ffull, (Bottom-

Left) Reconstruction from 30% Measurements, (Bottom-Right) Reconstruction from 10% Mea-

surements

5.5.2 Model 2

In this model, F (x, y) is a positively correlated density function. The spectra

has a positive correlation, thus creating a ridge through the space. F (x, y) is centered

at (x, y) = (.1, .1), with the variance in x+y direction being 7 times greater than the

variance in the x− y direction. The maximum signal amplitude is normalized to 1.

This is an example of a spectra where it is essential to consider the two dimensional

image. A projection onto one dimensions would yield an incomplete understanding
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of the spectra, as neither projection would convey that the ridge is very thin. This

is a more practical test of our inversion algorithm.

Figure 5.10 shows the quality of reconstruction of a correlated spectra with

an SNR of 30dB. Figure 5.11 shows the same spectra, but with an SNR of 20dB.

There is slight degradation in the 10% reconstruction, but the reconstructed spectra

is still incredibly close to Ffull. Overall, both of these figures show the quality of

our compressive sensing reconstruction relative to using the full data.

Figure 5.10: Model 2 with SNR of 30dB. (Top-Left) True spectra, (Top-Right) Ffull,

(Bottom-Left) Reconstruction from 30% Measurements, (Bottom-Right) Reconstruction from

10% Measurements
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Figure 5.11: Model 2 with SNR of 20dB. (Top-Left) True spectra, (Top-Right) Ffull,

(Bottom-Left) Reconstruction from 30% Measurements, (Bottom-Right) Reconstruction from

10% Measurements

5.5.3 Model 3

In this model, F (x, y) is a two peak density, with one peak being a small

circular Gaussian and the other being a ridge with positive correlation. The ridge

is centered at (x, y) = (.1, .1), with the variance in x + y direction being 7 times

greater than the variance in the x − y direction. The circular part is centered at

(x, y) = (.05, .4). The maximum signal amplitude is normalized to 1. This is an

example of a common, complicated spectra that occurs during experimentation.
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Figure 5.12 shows the quality of reconstruction of a two peak spectra with an

SNR of 35dB. In this instance, there is some degradation from Ffull to any of the

reconstructed data sets. Once again, there is slight degradation in the 10% model,

but the compressive sensing reconstructions are still very close matches to Ffull.

Figure 5.12: Model 3 with SNR of 30dB. (Top-Left) True spectra, (Top-Right) Ffull,

(Bottom-Left) Reconstruction from 30% Measurements, (Bottom-Right) Reconstruction from

10% Measurements
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5.6 Conclusion

In this chapter, we introduce a matrix completion framework for solving two-

dimensional Fredholm integrals. This method allows us to invert the discretized

transformation via Tikhonov regularization using far fewer measurements than pre-

vious algorithms. We proved that the nuclear norm minimization reconstruction of

the measurements is stable and computationally efficient, and demonstrated that

resulting estimate of F(x, y) is consistent with using the full set of measurements.

This allows us in application to reduce the measurements conducted by a factor of

5 or more.

While the theoretical framework of this paper applies to 2D NMR spectroscopy,

the approach is easily generalized to larger dimensional measurements. This allows

for accelerated acquisition of 3D correlation maps [4] that would otherwise take days

to collect. This shall be a subject of forthcoming work.
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Chapter 6: Data Fusion and Reconstruction with Preimages

6.1 Data Fusion Algorithm

Constructing a novel data fusion framework has been a major research focus in

recent years. When the data comes from homogeneous sensors, the so-called multi-

sensor problem, a number of algorithms exist. However, less is known about fusion

of heterogeneous sensors. In [35], the authors develop a diffusion maps approach

to merging heterogeneous sensors in a common, fused space. However, that fusion

space is the feature space Rm, not the original image space Rd. In other words, the

fusion space has no physical meaning.

This means there are basic questions that cannot be addressed in their frame-

work. For example, [35] considers the idea of viewing a scene with two different

hyperspectral cameras. This is an interesting problem when the cameras measure

at different frequencies, which means there is no immediate way to fuse these mea-

surements. The authors address the problem of measuring changes to the scene

with Camera A having taken a picture at some time and Camera B having taken

a picture at some later time, and they arrive at a novel method of analyzing these

changes.

But what if Camera A has some section of its pixels occluded? Is there any
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way to use the information from Camera B to fill in those missing pixels? In the

framework of [35], this problem cannot be considered. However, we are set to propose

a novel algorithm to answer questions of this type. This algorithm is completely

based off of spectral similarity; there is no spatial component to this approach, as

there is in [112].

It is important to note that, while [35] creates this framework for diffusion

maps, the same argument applies for Laplacian Eigenmaps when solving the nor-

malized eigenvalue problem in (1.3). We shall demonstrate this in Section 6.2. The

algorithm goes as follows:

For notation, let pixel xB be measured by Camera B, but not by Camera A.

We shall use this information to recover an estimate of xA, the occluded pixel from

Camera A.

1. Let X be the set of pixels that are common to both Camera A and Camera B.

Let (X, kα), α ∈ {A,B} be the set of measurements of the common scene by

each camera. First, we embed each (X, kα) with Laplacian Eigenmaps into its

own feature space Γα with the mapping Φα : X → Γα. For notation, mα ∈ N

is the feature space dimension (so Γα ⊂ Rmα), and

Φα(x) =
(
φ(i)
α (x)

)mα
i=1

,

where {φ(i)
α } are the eigenvectors from solving (1.3).

Use the Nyström extension to generate Φ̂B(xB).

2. We must now embed Γα, α ∈ I into one common space in order to use Φ̂B(xB)

to gain information about xA. For this reason, we define a rotation operator
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OB→A : ΓB → ΓA by

OB→Ax =

(
mB∑
j=1

xj〈φ(i)
A , φ

(j)
B 〉

)mA

i=1

.

One thing to note is that {φ(i)
A } form an orthogonal basis for ΓA, so this is

similar to a change of basis operation between two different spaces.

Calculate the rotation of Φ̂B(xB) into ΓA with OB→AΦ̂B(xB)

3. Let ψ = OB→AΦ̂B(xB) and use our LE pre-image algorithm to recover xA.

6.2 Feature Space Rotation for Laplacian Eigenmaps

For this section, let (X,µ) be a measure space with µ(X) = 1. We assume we

have two kernels kA : X ×X → [0, 1] and kB : X ×X → [0, 1]. For the rest of the

section, if we denote an operator (·)α, that means α ∈ {A,B}. These definitions

follow from the diffusion maps equivalent in [35].

Define mα(x) =
∫
X

kα(x, z)dµ(z). Then we define a similarity function

aα(x, y) =
kα(x, y)√

mα(x) ·mα(y)
,

which are elements of the matrix Aα = [aα(x, y)]x,y∈X . From here, we define the

normalized Laplacian Lα = I−Aα. If Lα ∈ L2(X×X,µ⊗µ), then it has a discrete

set of eigenfunctions {φ(i)
α }. The LE embedding (i.e., the m smallest eigenvectors of

Lα) is denoted by Φα(x) = [φ
(1)
α (x), ..., φ

(m)
α (x)].

If there were only one kernel (i.e., Lα = L), then we could define a metric on
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the data, the LE distance, to be

D(x, y)2 =

∫
X

(
m∑
i=1

φ(i)(x)φ(i)(u)−
m∑
i=1

φ(j)(y)φ(j)(u)

)2

dµ(u),

and immediately see that D(x, y)2 = ‖Φ(x)− Φ(y)‖2
2.

In the case of two kernels and two Laplacians, LA and LB, we define the LE

distance similarly between a point xA and yB as

D(xA, yB)2 =

∫
X

(
m∑
i=1

φ
(i)
A (x)φ

(i)
A (u)−

m∑
i=1

φ
(j)
B (y)φ

(j)
B (u)

)2

dµ(u). (6.1)

However, D(xA, yB)2 6= ‖ΦA(x)− ΦB(y)‖2
2. Expanding (6.1) gives

D(xA, yB)2 =
m∑
i=1

φ
(i)
A (x)2 +

m∑
i=1

φ
(i)
B (y)2 (6.2)

− 2
m∑

i,j=1

φ
(i)
A (x)φ

(j)
B (y)

∫
X

φ
(i)
A (u)φ

(j)
B (u)dµ(u).

Due to the final term in (6.2), we define the rotation operator

OB→Ax =

(
m∑
j=1

xj〈φ(i)
A , φ

(j)
B 〉

)m

i=1

, x ∈ ΦB(X).

Finally, we see that

D(xA, yB) = ‖ΦA(x)−OB→AΦB(y)‖2.

6.3 Data Reconstruction for Hyperspectral Imagery

This section shows an application of this method on the well known AVIRIS

Indian Pines hyperspectral image data set [80]. Figure 6.1 shows two of the more

than two hundred frequency bands collected in the Indian Pines hyperspectral data

set; an image that consists of 16 labeled classes of various types of vegetation. This
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image contains a number of different spectrum, ranging from grass to soybeans

to roads. For our experiment, we started with bands in the region of 900nm -

1400nm, because this is the most important spectral region for vegetation [108]. We

then randomly selected twenty of these bands to be the spectrum for Camera A,

and another twenty bands disjoint from the first to be the spectrum for Camera

B. We then occluded a random pixel from each class (because some of the classes

have a small number of samples, occluding too many pixels from one class could

prove problematic). Experiments were run keeping only 25 dimensions for each LE

embedding, and using 25 nearest neighbors.

Figure 6.1: Random Bands of Indian Pines Hyperspectral Image

Figure 6.2 shows several of the classes that were reconstructed using our al-

gorithm. Figure 6.3 shows those same pixels, but from Camera B. It is clear that

the pixels are significantly changed by our algorithm, and that the reconstructions

match very closely with the original pixels from Camera A. Table 6.1 shows the

reconstruction errors for every class in the Indian Pines image. Every one of the

classes is reconstructed fairly accurately, despite the fact that some of the classes

have as few as 20 samples in the image.

As one more example of power of this reconstruction, we ran an experiment
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Class L1 Reg. Rel. Error

Alfalfa 0.0448

Corn-notill 0.0548

Corn-mintill 0.0709

Corn 0.0505

Grass-pasture 0.0596

Grass-trees 0.0544

Grass-pasture-mowed 0.0519

Hay-windrowed 0.0445

Oats 0.0590

Soybean-notill 0.0117

Soybean-mintill 0.0697

Soybean-clean 0.0194

Wheat 0.0177

Woods 0.0138

Buildings-Grass-Trees-Drives 0.0892

Stone-Steel-Towers 0.0801

Table 6.1: Reconstruction Error for Random Pixel from Each Class. Error = ‖cxA−xA‖2
‖xA‖2

in which an entire block of the pixels in Camera A is occluded. Figure 6.4 shows an

example from one of the bands of Camera A (it is a zoomed in on the bottom left

corner of the image). If we let I be the set of all occluded pixels x, then our relative

error is

1

|I|
∑
x∈I

‖x̂A − xA‖2

‖xA‖2

= 0.0885.
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(a) Alfalfa (b) Soybean, Notill

(c) Wheat (d) Woods

Figure 6.2: Reconstructed Pixels of Camera A from Four Classes of Indian Pines HSI

6.4 LIDAR Reconstruction from HSI Measurements

This section deals with the data fusion algorithm of Section 6.1 for HS and

LIDAR imagery, which are drastically heterogeneous modalities. LIDAR is a tech-

nology that measures height of objects below, which can be vital information in

urban environments or forest canopy surveying. We shall run two experiments of

this type: one on an artificial HSI LIDAR dataset, and a second on the MUUFL

Gulfport Campus dataset [58]. In both cases, the HS and LIDAR images have pixel

registration.
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(a) Alfalfa (b) Soybean, Notill

(c) Wheat (d) Woods

Figure 6.3: Same Pixels from Figure 6.2 from Camera B

It is important to note that, unlike cameras with different HSI bands, LIDAR

and HSI contain asymmetric information. Namely, if there are multiple classes

of materials at the same elevation (e.g. roads and grass), LIDAR has no way of

distinguishing between the classes. However, there is clear separation between these

classes for HSI. This implies that certain types of fusion and reconstruction are

unattainable. For this reason, we shall consider using HSI (camera B) to reconstruct

missing information from LIDAR (camera A).
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(a) Original (b) Occluded Section

(c) Interpolation from [78] (d) L1 Regularized Pre-

image

Figure 6.4: Bottom Left Corner of 966nm Wavelength Band of Camera A

6.4.1 Artificial HSI LIDAR Dataset

The artificial dataset consists of ground and two buildings of differing heights

(heights 0, 1, and 2). Each building is given a distinct HSI signature, whereas the

ground contains multiple signatures. See Figure 6.5 for details. Each HSI pixel is

corrupted by high frequency, low amplitude sinusoidal noise. The LIDAR heights

are corrupted by white Gaussian noise with standard deviation 10% the height of

the shorter building.

For the LE embeddings, 250 dimensions were kept for HSI and 50 dimensions

for LIDAR. This number of dimensions is necessary for the feature space rotation.

This is evidenced by Figure 6.6. The top row shows the HSI spectra of each data
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(a) LIDAR (b) Pure HSI Spectra

Figure 6.5: LIDAR and Pure HSI Bands for Artificial Data Fusion Experiment

point, the middle row shows the LIDAR spectra of each data point, and the bottom

row shows the HSI spectra after having been rotated into the LIDAR feature space.

The left column is spectra corresponding to the ground class, the middle column is

spectra corresponding to the building 1 class, and the right column is the spectra

corresponding to the building 2 class.

In an ideal setting, the middle and bottom columns should be identical, im-

plying the rotation of HSI spectra worked perfectly. For 250 HSI dimensions, these

images match fairly well. However, as the number of HSI dimensions decrease,

these images begin to diverge. These differences make inpainting via pre-imaging

algorithms difficult, as the input is flawed.

Figure 6.7 shows the quality of reconstruction of the missing LIDAR pixels.

Note that the reconstructed pixels are actually of a higher SNR than the original

measurements, implying that our algorithm has actually denoised these pixels. In

fact, if we let I be the set of all occluded pixels x, and xA is the true LIDAR height,
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(a) Spectra with 250 HSI dimensions and 50 LIDAR dimensions

(b) Spectra with 50 HSI dimensions and 50 LIDAR dimensions

Figure 6.6: Spectra for different classes of artificial HSI and LIDAR. Top row: HSI spectra,

Middle row: LIDAR spectra, Bottom row: HSI rotated into LIDAR space; Left column: ground

level class, Middle column: level 1 building class, Right column: level 2 building class

then our relative error is

1

|I|
∑
x∈I

‖x̂A − xA‖2 = 0.0373.
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(a) Occluded LIDAR Pixels (b) Reconstructed LIDAR Pixels

Figure 6.7: Missing LIDAR and Reconstructed LIDAR for Artificial Data Fusion Experiment

6.4.2 MUUFL Gulfport HSI LIDAR Dataset

The MUUFL Gulfport dataset consists of coregistered LIDAR and HS images

of University of Southern Mississippi Gulfport campus. See Figure 6.8 for details.

Each HSI pixel contains 72 frequency bands.

(a) LIDAR (b) Pseudocolor Image

Figure 6.8: LIDAR and Pseudocolor Image Made From Three HSI bands

Figure 6.9 shows the quality of reconstruction of the missing LIDAR pixels.
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We occluded pixels in two separate sections of the image. In both cases, the recon-

structions reflect the geometry of the missing buildings.

(a) Occluded LIDAR Pixels (b) Reconstructed LIDAR Pixels

(c) Occluded LIDAR Pixels (d) Reconstructed LIDAR Pixels

Figure 6.9: Missing LIDAR and Reconstructed LIDAR for Gulfport Data Fusion Experiment

6.4.3 Advantages of Pre-image Inpainting

There are two important takeaways from this LIDAR reconstruction. First,

by using our method which is completely based on the spectral properties of an

individual pixel, we are able to reconstruct concave sections of the image with the

same precision as the convex sections. This is one advantage of our method over
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spatial inpainting methods, such as total variation regularization [30] or wavelet and

shearlet inpainting [31,45].

The second take away is the viability of this approach on a large scale. Once

enough training data has been collected to learn the correspondences between HSI

and LIDAR pixels, one would be able to generate LIDAR images from entire areas

where only HSI collection has occurred. Because there is no spatial component, the

reconstructed LIDAR pixels need not be in the center of the image. It may even be

geographically separated from the training data, provided the material breakdown

and general elevation schemes are similar to the training data.

Figure 6.10 demonstrates the second point. The left two thirds of the image

were taken as training data. The right third of the image was only measured using

HSI bands, and that entire LIDAR region was reconstructed from our pre-image

algorithm applied to these HSI bands, along with knowledge of the training data.

Figure 6.10: Right Third of LIDAR Image Reconstructed Entirely from HSI Observation in

that Region. Note: Black separating line added for visualization purposes
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[62] R. Grone, C. Johnson, E. Sà, and H. Wolkowicz. Positive definite completions
of partial hermitian matrices. Linear Algebra Appl., 58:109–124, 1984.

[63] D. Gross. Recovering low-rank matrices from few coefficients in any basis.
IEEE Trans. Inform. Theory, 57:1548 – 1566, 2011.

[64] D. Gross, Y. Liu, S. Flammia, S. Becker, and J. Eisert. Quantum state to-
mography via compressed sensing. Phys. Rev. Lett., 105, 2010.

[65] R. Haberman. Applied Partial Differential Equations with Fourier Series and
Boundary Value Problems. Pearson, London, England, 2004.

[66] A. Halevy. Extensions of laplacian eigenmaps for manifold learning. PhD
thesis, University of Maryland, 2011.

[67] P. Hansen. The discrete picard condition for discrete ill-posed problems. BIT
Numerical Mathematics, 30(4):658–672, 1990.

[68] P. Hansen. Rank-deficient and discrete ill-posed problems: numerical aspects
of linear inversion, volume 4. Siam, 1998.

[69] R. Hanson. A numerical method for solving Fredholm integral equations of
the first kind using singular values. SIAM J. Numer. Anal., 8:616–622, 1971.

[70] R. Harrison, M. Bronskill, and R. Henkelman. Magnetization transfer and t2
relaxation components in tissue. Magn. Reson. Med., 33(4):490–496, 1995.

[71] R. Hashemi, W. Bradley, and C. Lisanti. MRI the Basics. Lippincott Williams
& Wilkins, Philadelphia, 2004.

[72] P. Honeine and C. Richard. Solving the pre-image problem in kernel machines:
A direct method. In IEEE International Workshop on Machine Learning for
Signal Processing, pages 1–6. IEEE, 2009.

110



[73] C. Johnson. Matrix completion problems: a survey. In Proc. Sympos. Appl.
Math., volume 40, pages 171–198, 1990.

[74] P. Jones, M. Maggioni, and R. Schul. Universal Local Parametrizations via
Heat Kernels and Eigenfunctions of the Laplacian. Ann. Acad. Scient. Fen,
35(203):1–45, 2010.

[75] J. Kamm and J. Nagy. Kronecker product and SVD approximations in image
restoration. Linear Algebra Appl., 284:177–192, 1998.

[76] L. Koralov and Y. Sinai. Theory of Probability and Random Processes.
Springer, Berlin, Germany, 2007.

[77] J. Kovacevic, P. Dragotti, and V. Goyal. Filter Bank Frame Expansions with
Erasures. IEEE Trans. Inform. Theory, 48:1439 – 1450, 2002.

[78] D. Kushnir, A. Haddad, and R. R. Coifman. Anisotropic diffusion on sub-
manifolds with application to earth structure classification. Applied and Com-
putational Harmonic Analysis, 2012.

[79] J. T. Kwok and I. W. Tsang. The pre-image problem in kernel methods. IEEE
Transactions on Neural Networks, 15(6):1517–25, Nov 2004.

[80] D. Langrebe. Indiana’s Indian Pines 1992 data set. Technical report, Purdue,
1992.

[81] M. Laurent. The real positive semidefinite completion problem for series-
parallel graphs. Linear Algebra Appl., 252:347–366, 1997.

[82] Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998.

[83] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, Berlin,
Germany, 1991.

[84] J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer,
2007.

[85] X. Liu, M. Tanaka, and M. Okutomi. Noise level estimation using weak tex-
tured patches of a single noisy image. In Image Processing (ICIP), 2012 19th
IEEE International Conference on, pages 665–668, Sept 2012.

[86] Y. Liu. Universal low-rank matrix recovery from Pauli measurements. Adv.
Neural Inf. Process. Syst., 24:1638–1646, 2011.

[87] M. Lustig, D. Donoho, and J. Pauly. Sparse MRI: The application of com-
pressed sensing for rapid MR imaging. Magn. Reson. Med., 58:1182–1195,
2007.

[88] S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods
for matrix rank minimization. Math. Program. Series A, 128:321–353, 2011.

111



[89] J. MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. California, USA, 1967.

[90] B. McKay. The Expected Eigenvalue Distribution of a Large Regular Graph.
Linear Algebra and its Applications, 10017:203–216, 1981.

[91] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch.
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