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Data-Dependent Structure

Advancements in sensor construction and production cost has
led to a deluge of data
Thesis utilizes data-dependent operators to discover efficient
representations of data
This focus on learning structure splits into three topics

1 Building data-dependent graphs to capture structure and detect
anomalous objects

2 Fusing low-dimensional parameters from heterogeneous data
sources

3 Exploiting compressibility of data to reduce sampling requirements
prior to collection
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Reduced Acquisition Time

Based on the theory of compressive sensing and matrix
completion

Recover signal that is sparse in some basis
Key is that measurements are randomly made and incoherent with
respect to sparsity basis
Utilizes convex relaxation and optimization schemes to reconstruct
signal
Reconstruction only requires O (K log N) measurements

Contributions of Thesis
Proved bounded norm Parseval frames satisfy necessary
conditions for matrix reconstruction
Demonstrated use of matrix completion for solving 2D Fredholm
integrals from incomplete measurements
Improved acquisition time for nuclear magnetic resonance
spectroscopy via reducing necessary number of samples
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Fusing Low Dimensional Parameters of High
Dimensional Data

Based on graph and operator theoretic approaches to pattern
recognition and machine learning

Builds operator that encodes similarity between data points
Takes data from high-dimensional data space and embeds into
low-dimensional euclidean space
Allows common comparison across heterogeneous sensors

Contributions of Thesis
Built approximate inversion algorithm for Laplacian eigenmaps
that utilizes compressive sensing
Used inversion along with Coifman and Hirn’s graph rotation to
create data fusion algorithm
Reconstructed missing LIDAR data (altitudes) from hyperspectral
camera images (electromagnetic spectrum frequencies)
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Laplacian Eigenmaps

Let Ω = {x1, ...xn} ⊂ Rd be a set of data points, or data space
Idea is to learn structure via inter-data similarities
Encode relationships via symmetric kernel k : Ω× Ω→ [0,1]

Gaussian kernel, k(x , y) = e−
‖x−y‖2

2
2σ2

Mahalanobis distance, k(x , y) = e−(x−y)T S−1(x−y)

Graph adjacency, k(x , y) =


1 : x ∈ N (y),
0 : otherwise.

Build graph G = (Ω,E ,W ), where {x , y} ∈ E ⇐⇒ k(x , y) ≈ 1
Wx,y = k(x , y) if {x , y} ∈ E
k-Nearest Neighbors
ε-Nearest Neighbors

Key is that G is sparse
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Laplacian Eigenmaps (cont.)

Calculate the normalized graph Laplacian L = I − D−1/2WD−1/2,
where Dx,x =

∑
y Wx,y

Solve the eigenvalue problem

Lφi = λiφi

0 = λ0 ≤ λ1 ≤ ... ≤ λn−1 ≤ 2
〈φi , φj〉 = 0 for i 6= j

LE Embedding

Φ : Ω→ Rm

x 7→ [φ1(x), ..., φm(x)]

Forms low dimensional embedding that preserves local neighborhood structure

Minimizes
P
x,y
‖Φ(x)− Φ(y)‖ Wx,y√

Dx,x Dy,y
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Graph Representation of Data Set

Maps points from complicated data space to Euclidean feature
space

DLE (x , y) = ‖Φ(x)− Φ(y)‖2

Can be used to reduce dimension of data

Original Data Adjacency Matrix LE Embedding
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Complicated Distribution of Eigenvectors

Most literature simply utilizes “first m eigenvectors with non-zero
eigenvalue”

These correspond to “low frequency” information on graph

When in doubt, simply be liberal with choice of m
However, distribution of eigenvectors more complicated

Do not simply correspond to 1 eigenvector concentrated on each
cluster

Rest of talk is examination of eigenvector localization and order
of emergence

Specifically when clusters are differing sizes
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Examples of Small Clusters Failing to Emerge

Eigenvectors with non-zero eigenvalues

|C1| = 10, 000, |C2| = 1, 000



Introduction to Thesis Research
Characterizing Embeddings for Disjoint Graphs

Eigenvector Localization of Graphs with Weakly Connected Clusters
Examples and Conclusions

Outline of Approach

Assume graph G = (Ω,E) already formed from data, under
some metric and using k-NN
For simplicity, assume {x , y} ∈ E ⇐⇒ y ∈ N (x) and wx,y = 1

Approximates behavior of LE while utilizing vast literature on
regular graph

Wish to examine emergence of small clusters in eigenvectors
Approach:

1 Characterize eigenpairs of disjoint graphs with heterogeneous
sized clusters

2 Demonstrate that, upon adding edges to connect graph, eigenpairs
do not deviate far from those of disjoint graph
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Similarity of Data Generated Graphs

By analyzing graph, can bypass specifics of data set
Characteristics such as convexity and scale can be ignored
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Clusters as Regular Graphs

Need way to characterize data clusters
Define data cluster on n nodes to be random regular graph

Definition (Family of Regular Graphs)

The family of regular graphs Gn,k is the set of all graphs G = (V ,E)
such that:

1 V contains n nodes
2 ∀x ∈ V , deg(x) ≡ |{y ∈ V : {x , y} ∈ E}| = k .

Random regular graph is G ∈ Gn,k chosen uniformly at random
from all graphs
With high probability, G does not have large cycles or large
complete subgraphs
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Random Regular Graphs

Donetti, Neri, and Muño 2006
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Validity of Regular Graph Assumption

Ties into k-Nearest Neighbors edges for graph
If ignoring need for weights to be symmetric, then exactly
generates k-regular graph
Following theory also applies for Erdös Renyi graph

Figure: µdegree = 24.05, σdegree = 1.41
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Data Structure to Keep in Mind for Section

|C1| = 2000, |C2| = 200
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Eigenvalues Determine Order of LE Feature Vectors

Order in which LE eigenvectors appear determined by
eigenvalue order
Goal:

Characterize eigenvalues of two graph clusters separately
Examine interlacing of eigenvalues to determine order of features
emerging

Eigenvalue distribution of k-regular graph is well studied question

McKay, 1981 - showed empirical spectral distribution of 1√
k−1

An

converges to

fsemi (x) =
1

2π

p
4− x2, −2 < x < 2

Dumitriu, Pal 2013 - found deviation from fsemi for finite graph
Independently found by Tran, Vu, and Wang 2013
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Eigenvalues of Regular Graph (cont.)

Theorem (Dumitriu, Pal, 2012)

Fix δ > 0 and let k = (log(n))γ , and let
η = 1

2 (exp(k−α)− exp(−k−α)), for 0 < α < min(1,1/γ).
Then for

G ∈ Gn,k chosen randomly with adjacency matrix A, and
interval I ⊂ R such that |I| ≥ max{2η, η/(−δ log δ)},

there exists an N large enough such that ∀n > N,

|NI − n
∫
I

fsemi (x)dx | < nδ|I|

with probability at least 1− o(1/n). Here, NI is the number of
eigenvalues of 1√

k−1
A in the interval I.
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Eigenvalues for Disjoint Clusters

Consider two clusters C1 and C2 with |C1| = D|C2|
G1 and G2 are generated graphs on C1 and C2, respectively
G1 ∈ Gn,k and G2 ∈ G n

D ,k

σ
(

1√
k−1

A1

)
and σ

(
1√
k−1

A2

)
distributed similarly due to

Dumitriu and Pal
σ(L1) and σ(L2) distributed similarly on [0, 2]

Eigenvalues interweave in way that depends on D
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Eigenvalues for Disjoint Clusters (cont.)

Theorem (C., 2014)

Let G = (Ω,E) be graph. Suppose Ω can be split into two disjoint
regular graph clusters C1 and C2 such that |C1| = D|C2| = n.
Choose any interval I ⊂ [0,2] such that

|I| ≥
√

k − 1
k

max{2η, η/(−δ log δ)}.

Let L denote the graph Laplacian, with eigenpairs {(σi , vi )}m
i=1 that lie

in I. Let N 1
I = |{i : supp(vi ) ⊂ C1}| and N 2

I = |{i : supp(vi ) ⊂ C2}|.
Then N 1

I +N 2
I = m, and ∀n > N, with probability at least 1− o(1/n),

|N 1
I − DN 2

I | ≤ 2δn
k√

k − 1
|I|.
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Eigenvector Localization on Disjoint Graphs

Theorem implies each eigenvector is localized on either C1 or C2

Up to error, eigenvector on C2 appears approximately 1 : D + 1
times

Implies most of energy from LE embedding lies in C1

Applies for any interval I ⊂ [0,2]

Can be generalized to larger number of clusters
Argument explains initial example shown (D = 10)

Data Eigenvector 1 ... Eigenvector 12 Eigenvector 13 Eigenvector 14
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Sketch of Proof for Disjoint Graphs

L =

(
L1 0
0 L2

)
σ(L) = σ(L1) ∪ σ(L2)

L
„

v
0

«
= λ

„
v
0

«
⇐⇒ L1v = λv

L
„

0
v

«
= λ

„
0
v

«
⇐⇒ L2v = λv

Thus all eigenvectors v of L concentrated on one cluster Ci

Order determined by σ(L1) and σ(L2)

Rescale σ
(

1√
k−1

A
)

from Dumitriu and Pal Theorem to σ(L)

Because G is k-regular,

1√
k − 1

Avi = λivi ⇐⇒ Lvi = (1−
√

k − 1
k

λi )vi
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Sketch of Proof (cont.)

Design parameters from Dumitriu and Pal Theorem that are
constant across both clusters Ci

Interval I for σ(L) has corresponding interval IA for σ( 1√
k−1

A)

Theorem guarantees that

|N 1
IA
− n

∫
IA

fd (x)dx | < nδ|IA|,

|N 2
IA
− n

D

∫
IA

fd (x)dx | < n
D
δ|IA|.

This means

|N 1
I − DN 2

I | ≤ |N 1
IA
− n

∫
IA

fd (x)dx |+ |DN 2
IA
− n

∫
IA

fd (x)dx |

≤ 2nδ|IA|

= 2nδ
k√

k − 1
|I|
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Disjoint Graph Conclusions

Important notes from Theorem
Characterizes order of feature vectors from LE
Demonstrates that, among first m eigenvectors, D

D+1 of them are
concentrated in largest cluster
Attempt to design LE similarity kernel such that graph as disjoint as
possible
Arguments generalize to larger number of clusters

Drawbacks
In practice, cannot design disconnected graph from data
Need to add edges to connect graph for better theory
Already know Fiedler vector is highly sensitive to connecting edge
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Weakly Connected Clusters

Definition
A graph with weakly connected clusters of order t is a connected
graph with adjacency matrix

A =

(
A1 B1,2

Bᵀ
1,2 A2

)
,

where
1 A1 and A2 are adjacency matrices of k-regular graphs, and
2 B1,2 has t non-zero entries.

We shall refer to the nodes of A1 as C1 and the nodes of A2 as C2
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Weakly Connected Clusters Example
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Weakly Connected Clusters as Matrix Perturbation

Now problem is characterized by perturbation of known matrix

G is weakly connected graph with adjacency A =

„
A1 B1,2

Bᵀ
1,2 A2

«
H is disjoint graph with adjacency A =

„
A1 0
0 A2

«
Let LG be normalized Laplacian of G, and similar for LH

Perturbation of LH

LG = LH + E , where ‖E‖F � ‖LH‖F

Questions:
1 Is eigenvalue ordering of LG drastically affected?
2 Are eigenvectors of LG still concentrated on clusters?
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Eigenvalue Distribution for GWCC

Theorem (Chen, et. al., 2012)

Let G = (Ω,EG) and H = (Ω,EH) be spanning graphs such that
|E(G − H)| ≤ t . If

λ1 ≤ ... ≤ λn, and θ1 ≤ ... ≤ θn

are the eigenvalues of the normalized Laplacians LG and LH
respectively, then

θi−t ≤ λi ≤ θi+t , 1 ≤ i ≤ n,

with the convention that θ−t = ... = θ0 = 0 and θn+1 = ... = θn+t = 2.

Related to Weyl’s inequality and Courant-Fischer theorem
Shows why lowest eigenvalues difficult to predict
Will lead to issues with Fiedler vector
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Eigenvalue Distribution for GWCC (cont.)

Lemma (C., 2014)

Let G = (Ω,E) be a graph with weakly connected clusters of order t,
with

|C1| = n,
|C2| = n

D .
Fix δ, k, α, η, and I as in Theorem for disjoint clusters.
Let L denote the graph Laplacian, and σ1, ..., σm denote the m
eigenvalues of L that lie in I. Then m satisfies

|m − (n +
n
D

)

∫
I

fsemi (x)dx | < δ(n +
n
D

)
k√

k − 1
|I|+ 2t , (1)

again with probability at least 1− o(1/n).
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Invariant Subspace Perturbations

Eigenvectors under perturbation require more careful treatment
Dependent on separation of spectrum

Example

Let A =

(
1 0
0 1

)
=⇒ σ(A) = {1}, V =

(
1 0
0 1

)
.

Let Ã =

(
1 ε
ε 1

)
=⇒ σ(Ã) = {1− ε,1 + ε}, Ṽ =

(
1 −1
1 1

)
.

Introduced by Davis 1963 for single eigenvector

Generalized by Davis and Kahan 1970

“Matrix Perturbation Theory” by Stewart and Sun 1990

Localization of QR, LU, and Cholesky by Krishtal, Strohmer, and Wertz

Studied on graphs by Rajapakse 2013



Introduction to Thesis Research
Characterizing Embeddings for Disjoint Graphs

Eigenvector Localization of Graphs with Weakly Connected Clusters
Examples and Conclusions

Invariant Subspace Perturbations (cont.)

Theorem (Davis, 1963)

Let A,E ∈ Cn×n. Let (λ, x) be an eigenpair of A such that

sep(λ, σ(A) \ λ) = min{|λ− γ| : γ ∈ σ(A) \ λ} = δ.

Let
P be a spectral projector of A such that Px = x
P ′ be the corresponding spectral projector of A + E, and
P ′z = z − P ′z.

Then if ‖E‖ ≤ ε ≤ δ/2,

‖P ′P‖ ≤ ε

δ − ε
.
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Poor Prediction Using Existing Theory

Consider two moons example
{(eλi , vi )} eigenpairs of weakly connected graph LG

{(λi ,wi )} eigenpairs of disjoint graph LH

Generate LH by removing off block diagonal entries

σ(LH) ∈ [0,2] is not sufficiently separated for existing theory
Assumptions in literature are too strict for problem
Also we are interested in localization, not angle



Introduction to Thesis Research
Characterizing Embeddings for Disjoint Graphs

Eigenvector Localization of Graphs with Weakly Connected Clusters
Examples and Conclusions

Poor Prediction Using Existing Theory (cont.)

Actual Vector Angles Predicted Vector Angles
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Eigengap Dependence on Similar Eigenvectors

Actual Vector Angles

Figure: Green Line Denotes Eigenvector of LH Concentrated on Smaller C2 Cluster
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Eigengap Dependence on Similar Eigenvectors (cont.)

Problem eigenvector wi follows pattern
supp(wi ) ⊂ C2

supp(wi−1) ⊂ C1

supp(wi+1) ⊂ C1

This is case for most eigenvectors from smaller C2 cluster
|C1| = D|C2| =⇒ D

D+1 eigenvectors of LH concentrated on C1

Consider eigenvector w25 of LH as example

λ20 = 0.0287 ... λ25 = 0.0371 ... λ30 = 0.0479 λ31 = 0.0481 λ32 = 0.0494
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Eigenvector Localization

Theorem (C., 2014)

Let LH ∈ Rn×n be symmetric with eigendecomposition LH = V ΣV ∗.
Let (λi , vi ) be an eigenpair of LH .
Partition V = [V1,V2, vi ,V3,V4] where V2,V3 ∈ Rn×s.
Moreover, assume ∃C ( {1, ...,n} such that supp(vi ) ⊂ C and
supp(vj ) ⊂ C where vj is a column of V2, V3.
Let (λ̃, x) an eigenvector of the perturbed matrix LG = LH + E, where
x = [x1, ..., xn]. Then

∑
j∈Cc

|xj |2 ≤
‖(λ̃− λi )x − Ex‖2

2
min(λi − λi−s, λi+s − λi )2 .

Apply SVD Theorem to symmetric matrix LH − λi I
SVD equivalence with eigendecomposition up to parity
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Singular Vector Localization

Theorem (C., 2014)

Let A ∈ Rn×n with SVD A = UΣV ∗. Partition

V = [V1,V2, vn],

where vn ∈ Rn, V2 ∈ Rn×s.
Moreover, assume ∃C ( {1, ...,n} such that

supp(vi ) ⊂ C for i ∈ {n − s, ...,n}.

Let x ∈ Rn such that ‖x‖2 = 1. Then

∑
i∈Cc

|xi |2 ≤
‖Ax‖2

2 − ‖Avn‖2
2

σ2
n−s−1(A)− σ2

n(A)
.
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Sketch of Proof for SVD Localization

Assume x = V1c1 + V2c2 + vnc3.
Bound

‖Ax‖2
2 = ‖U1Σ1V∗1 x + U2Σ1V∗2 x + unσnv∗n x‖2

2

=⇒ ‖Ax‖2
2 − ‖Avn‖2

2 ≥ (σ2
n−s−1 − σ

2
n)‖c1‖2

2

=⇒ ‖c1‖2
2 ≤
‖Ax‖2

2 − ‖Avn‖2
2

σ2
n−s−1 − σ

2
n

.

Using the localization of V2,

X
i∈Cc

|xi |2 ≤
nX

i=1

n−s−1X
j=1

|(V1)i,j cj |2

=

n−s−1X
j=1

|cj |2

≤
‖Ax‖2

2 − ‖Avn‖2
2

σ2
n−s−1 − σ

2
n

.
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Eigenvector Localization Conclusions

Eigenvector 25 Eigenvector 31

LH

LG

Important notes from Theorem
Theorem implies 124 of 180 eigenvectors supported on C1 remain
concentrated
Only 3 of 20 eigenvectors supported on C2 remain concentrated
Makes determining inter-cluster differences difficult for small
clusters
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Nuclear Data
Wish to detect anomalous material that emit radiation
Build LE graph from radiological spectra

Background 1 Background 2 Anomalous Material

Data courtesy of Kevin Kochersberger, Virginia Tech



Introduction to Thesis Research
Characterizing Embeddings for Disjoint Graphs

Eigenvector Localization of Graphs with Weakly Connected Clusters
Examples and Conclusions

Anomalous Clusters Washed Out
Use simple L2 distance to create binary similarity kernel, 10 nearest neighbors

# background measurements = 1137, # anomalous measurements = 23
D = 49.4 =⇒ energy on anomalous cluster shows up 1 : 50 times at best
All other eigenvectors (not shown) are only noise

Eigenvector 1 Eigenvector 3

Random Eigenvector Eigenvector 81
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Conclusions

Takeaways:
Small clusters in disjoint graphs appear rarely in LE feature vectors

Proportional to number of data points in cluster

LE eigenvectors concentrated on small cluster rarely remain
localized as graph becomes connected
Eigenvectors concentrated on larger cluster almost always remain
localized

Leads to points on small cluster being forced to zero

Phenomenon is supported by simulated and real-world data

Future Directions:
Upper bound on localization theory that doesn’t require A + E
eigenvector
Theory for anomalous clusters that are smaller than k data points
Alter selection to subset of “low-frequency” eigenfunctions

Subset of indices originally introduced by Jones, Maggioni, Schul
2010
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Small clusters in disjoint graphs appear rarely in LE feature vectors

Proportional to number of data points in cluster

LE eigenvectors concentrated on small cluster rarely remain
localized as graph becomes connected
Eigenvectors concentrated on larger cluster almost always remain
localized

Leads to points on small cluster being forced to zero

Phenomenon is supported by simulated and real-world data

Future Directions:
Upper bound on localization theory that doesn’t require A + E
eigenvector
Theory for anomalous clusters that are smaller than k data points
Alter selection to subset of “low-frequency” eigenfunctions

Subset of indices originally introduced by Jones, Maggioni, Schul
2010
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Thank you!
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Eigenvalues of Regular Graph

Theorem (McKay, 1981)

Let X1,X2, ... be a sequence of random k-regular graphs with
adjacency matrices A1,A2, ....
Let the family {Xi} satisfy

1 n(Xi )→∞
2 ck (Xi )/n(Xi )→ 0.

Then the empirical spectral distribution

Fn(x) = |{i : λi

(
1√

k − 1
An

)
< x}|/n

converges pointwise to the semicircle law

fsemi (x) =
1

2π

√
4− x2, −2 < x < 2.
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Invariant Subspace Perturbations (cont.)

Theorem (Davis, 1963)

Let A,E ∈ Cn×n. Let (λ, x) be an eigenpair of A such that

sep(λ, σ(A) \ λ) = min{|λ− γ| : γ ∈ σ(A) \ λ} = δ.

Let
P be a spectral projector of A such that Px = x
P ′ be the corresponding spectral projector of A + E, and
P ′z = z − P ′z.

Then if ‖E‖ ≤ ε ≤ δ/2,

‖P ′P‖ ≤ ε

δ − ε
.
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Invariant Subspace Perturbations (cont.)

Theorem (Stewart, 1973)

Let A,E ∈ Cn×n. Let X = [X1,X2] be a unitary matrix with X1 ∈ Cn×l , and
suppose R(X1) is an invariant subspace of A. Let

X∗AX =

„
A1,1 A1,2

0 A2,2

«
, X∗EX =

„
E1,1 E1,2

E2,1 E2,2

«
.

Let δ = sep(A1,1,A2,2)− ‖E1,1‖ − ‖E2,2‖. Then if

‖E2,1‖(‖A1,2‖+ ‖E1,2‖)
δ2 ≤ 1

4
,

there is a matrix P satisfying ‖P‖ ≤ 2 ‖E2,1‖
δ

such that

fX1 = (X1 + X2P)(I + P∗P)−1//2

is an invariant subspace of A + E.
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