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Initial Example

Picture has 10 megapixels
Effectively 10 MB of information

Can store picture as less than 1 MB using .jpg
Image is compressible in wavelet basis

Camera observes in elementary basis

Questions
1) Why was it necessary to collect all 10 MB of information, but throw
9 MB away?
2) Can we measure in a different basis?
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Initial Example

Answer: For sparse objects, observe randomly in different basis.

Method

f ∈ CN is original signal, f̂ ∈ CN is Fourier Transform

Observe small number of random Fourier coefficients f̂ (γ)

Wish to find sparsest solution g ∈ CN such that

ĝ(γ) = f̂ (γ), ∀γ randomly observed

Compressive Sensing claims that sparsest g is equal to f
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Overview of the Problem

f ∈ CN be sparse, and choose some Ω ⊂ ZN

Let your measurements be y , where

y = f̂ |Ω

Can recover “sparsest” solution by solving

min
g∈CN

‖g‖L0(ZN ), ĝ|Ω = f̂ |Ω

Definition (L0 norm)

‖f‖L0(ZN ) = |{x ∈ ZN : f [x ] 6= 0}|
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Overview of the Problem

‖ · ‖L0 is not computationally efficient
Non-convex problem
NP-Hard

Main Questions
1 Is there metric other than ‖ · ‖L0 minimization?
2 How do we define “sparse”?
3 What is minimum size of Ω needed?
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Initial Results in Fourier Space

Candés, Romberg, and Tao proposed:

L1 Minimization

min
g∈CN

‖g‖L1 , ĝ|Ω = f̂ |Ω, (1)

Problem can be solved using Interior Points Method
Modified Newton’s method

Remember: Fourier coefficients are sampled randomly
If desire m samples, choose Ω uniformly at random over all |Ω| = m
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Main Theorem

Theorem (Candés, Romberg, Tao)

Let f ∈ CN be some discrete signal with support set T , where T is
unknown. Choose Ω of size |Ω| = m uniformly at random. For a given
accuracy parameter M, if

|T | ≤ CM(log N)−1|Ω|, (2)

then with probability exceeding 1−O
(
N−M

)
, the minimizer to

problem (1) is unique and equal to f .

CM ∼ O
( 1

M

)
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Arbitrary Orthogonal Matrix

Generalize to NxN orthogonal matrix U such that U∗U = N · IN
Observe y = UΩf
Recover sparse f ∈ CN by solving

min
g∈CN

‖g‖L1 , UΩg = UΩf . (3)

Successful with high probability given

|Ω| ≥ C · [µ(U)]2 · |T | · log(N)

where

µ(U) = max
k,j
|Uk,j |
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Main Theorem

Theorem (Candés, Romberg)

Fix T ⊂ ZN . Let U be an NxN orthogonal matrix with µ = max
i,j
|Ui,j |.

Choose a sign sequence z(t) for t ∈ T , uniformly at random.
Choose Ω at random such that

|Ω| ≥ C0|T |µ2(U)log(N/δ) and |Ω| ≥ C′0log2(N/δ)

Let f ∈ CN have supp(f ) = T and

sgn(f )(t) = z(t), ∀t ∈ T .

Then with probability exceeding 1− δ, f is the unique minimizer to (3).
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Alternate Interpretation of U

Consider U = ΦΨ

Ψ is sparsity basis, Ψ∗Ψ = I
Call Φ measurement basis, Φ∗Φ = N · I

Corollary (Sparsity and Measurement Basis)

Let x ∈ CN (not necessarily sparse). Wish to recover x from

y = ΦΩx .

Assume ∃ sparse f such that x = Ψf , so

y = ΦΩΨ · f = UΩf .

If f # minimizes (3), best estimate for x is

x# = Ψf #.
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Theory Behind Matrix Completion

Consider only observing rank r matrix M ∈ CN×N on some
subset Ω of its indices
Let SVD of M be M = UΣV ′

Possible to recover M as solution to

min
X

rank(X )

such that (UXV ′)i,j = (UΣV ′)i,j , (i , j) ∈ Ω

This problem is NP-hard
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Matrix Completion Approach

Definition (Nuclear Norm)

Let σi (M) be the i th largest singular value of M. If rank(M) = r , then

‖M‖∗ :=
r∑

i=1

σi (M)

Recovery Algorithm

Wish to recover M by solving problem (P*), which is

min
X

‖X‖∗

such that (UXV ′)i,j = Mi,j , (i , j) ∈ Ω
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Applications to Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) imaging studies molecular
structure.
Multidimensional correlations found can identify and study
fluid-saturated porous medium

Specifically can use T1-T2 relaxation times (longitudinal and
traverse)
Collisions of spin-bearing molecules with pore walls induce more
rapid relaxation
Simple correlation between relaxation rate and pore
surface-to-volume ratio

Best way to measure T1-T2 times is using pulse train of RF
energy particles
Problem is NMR is incredibly slow



Introduction
Compressive Sensing in Different Basis

Applications to Medical Imaging
Applications to Background Subtraction

Conclusion

Math Behind NMR

Echo measurements are related to T1-T2 correlations via
Laplace Transform

M(τ1, τ2) =

∫ ∫
(1− 2eτ1/T1 )eτ2/T2F(T1,T2)dT1dT2 + E(τ1, τ2)

We’ll consider more general 2D Fredholm Integral

M(τ1, τ2) =

∫ ∫
k1(τ1,T1)k2(τ2,T2)F(T1,T2)dT1dT2 + E(τ1, τ2)

where E(τ1, τ2) ∼ N (0, ε)
Discretize to

M = K1FK′2 + E
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Recovery from Small Number of Entries
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Error Analysis
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Video

Video Presentation
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Robust PCA

Principal Component Pursuit

Let L0 be low rank background and S0 be sparse foreground.
Wish to recover L0 and S0 by solving

min
L,S

‖L‖∗ + λ‖S‖1 (4)

such that L + S = M
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Video

Video Split
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Final Thoughts

Whole field based around observations being redundant
In reality, most objects can be represented more sparsely in
different way
Still large number of applications that can benefit
(Wojtek made me put this in) NWC has many more problems of
interest
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