## Introduction to Compressive Sensing

#### Alex Cloninger

Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu



< ロ > < 同 > < 回 > < 回 >





- 2 Compressive Sensing in Different Basis
- Applications to Medical Imaging
- Applications to Background Subtraction



Compressive Sensing in Different Basis Applications to Medical Imaging Applications to Background Subtraction Conclusion





- 2 Compressive Sensing in Different Basis
- 3 Applications to Medical Imaging
- 4 Applications to Background Subtraction



Compressive Sensing in Different Basis Applications to Medical Imaging Applications to Background Subtraction Conclusion

### **Initial Example**



イロト イヨト イヨト イヨト

Compressive Sensing in Different Basis Applications to Medical Imaging Applications to Background Subtraction Conclusion

## **Initial Example**

#### Picture has 10 megapixels

- Effectively 10 MB of information
- Can store picture as less than 1 MB using .jpg
  - Image is compressible in wavelet basis
- Camera observes in elementary basis

#### Questions

Why was it necessary to collect all 10 MB of information, but throw
 MB away?
 Can we measure in a different basis?

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## **Initial Example**

Answer: For sparse objects, observe randomly in different basis.

#### Method

- $f \in \mathbb{C}^N$  is original signal,  $\hat{f} \in \mathbb{C}^N$  is Fourier Transform
- Observe small number of random Fourier coefficients  $\hat{f}(\gamma)$
- Wish to find sparsest solution  $g \in \mathbb{C}^N$  such that

 $\hat{g}(\gamma) = \hat{f}(\gamma), \hspace{1em} orall \gamma$  randomly observed

• Compressive Sensing claims that sparsest g is equal to f

**Overview of the Problem** 

- $f \in \mathbb{C}^N$  be sparse, and choose some  $\Omega \subset \mathbb{Z}_N$
- Let your measurements be y, where

$$y = \hat{f}|_{\Omega}$$

Can recover "sparsest" solution by solving

$$\min_{oldsymbol{g}\in\mathbb{C}^N}\|oldsymbol{g}\|_{L^0(\mathbb{Z}_N)}, \hspace{1em} \hat{oldsymbol{g}}|_\Omega=\hat{f}|_\Omega$$

# Definition ( $L^0$ norm) $\|f\|_{L^0(\mathbb{Z}_N)} = |\{x \in \mathbb{Z}_N : f[x] \neq 0\}|$

Compressive Sensing in Different Basis Applications to Medical Imaging Applications to Background Subtraction Conclusion

## **Overview of the Problem**

- $\|\cdot\|_{L^0}$  is not computationally efficient
  - Non-convex problem
  - NP-Hard

#### Main Questions

- **O** Is there metric other than  $\|\cdot\|_{L^0}$  minimization?
- e How do we define "sparse"?
- What is minimum size of Ω needed?







- 2 Compressive Sensing in Different Basis
  - 3 Applications to Medical Imaging
  - 4 Applications to Background Subtraction



Initial Results in Fourier Space

#### • Candés, Romberg, and Tao proposed:

 $L^1$  Minimization $\min_{g\in\mathbb{C}^N}\|g\|_{L^1}, \ \ \hat{g}|_\Omega=\hat{f}|_\Omega,$ 

- Problem can be solved using Interior Points Method
  - Modified Newton's method
- Remember: Fourier coefficients are sampled randomly
  - If desire *m* samples, choose  $\Omega$  uniformly at random over all  $|\Omega| = m$

## Main Theorem

#### Theorem (Candés, Romberg, Tao)

Let  $f \in \mathbb{C}^N$  be some discrete signal with support set T, where T is unknown. Choose  $\Omega$  of size  $|\Omega| = m$  uniformly at random. For a given accuracy parameter M, if

$$|T| \le C_M (\log N)^{-1} |\Omega|, \qquad (2)$$

then with probability exceeding  $1 - O(N^{-M})$ , the minimizer to problem (1) is unique and equal to *f*.

• 
$$C_M \sim O\left(\frac{1}{M}\right)$$

Arbitrary Orthogonal Matrix

- Generalize to  $N \times N$  orthogonal matrix U such that  $U^* U = N \cdot I_N$
- Observe  $y = U_{\Omega} f$
- Recover sparse  $f \in \mathbb{C}^N$  by solving

$$\min_{g\in\mathbb{C}^N} \|g\|_{L^1}, \quad U_\Omega g = U_\Omega f.$$
(3)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Successful with high probability given

$$|\Omega| \ge C \cdot [\mu(U)]^2 \cdot |T| \cdot \log(N)$$

where

$$\mu(U) = \max_{k,j} |U_{k,j}|$$

## Main Theorem

#### Theorem (Candés, Romberg)

Fix  $T \subset \mathbb{Z}_N$ . Let U be an NxN orthogonal matrix with  $\mu = \max_{i,j} |U_{i,j}|$ . Choose a sign sequence z(t) for  $t \in T$ , uniformly at random. Choose  $\Omega$  at random such that

 $|\Omega| \geq C_0 |T| \mu^2(U) \log(N/\delta)$  and  $|\Omega| \geq C_0' \log^2(N/\delta)$ 

Let  $f \in \mathbb{C}^N$  have supp(f) = T and

 $\operatorname{sgn}(f)(t) = z(t), \quad \forall t \in T.$ 

Then with probability exceeding  $1 - \delta$ , f is the unique minimizer to (3).

for Harmonic Analysis and Application

イロト イポト イヨト イヨト

## Alternate Interpretation of U

• Consider  $U = \Phi \Psi$ 

- $\Psi$  is sparsity basis,  $\Psi^*\Psi = I$
- Call  $\Phi$  measurement basis,  $\Phi^* \Phi = N \cdot I$

Corollary (Sparsity and Measurement Basis)

Let  $x \in \mathbb{C}^N$  (not necessarily sparse). Wish to recover x from

 $y = \Phi_{\Omega} x.$ 

Assume  $\exists$  sparse f such that  $x = \Psi f$ , so

$$y = \Phi_{\Omega} \Psi \cdot f = U_{\Omega} f.$$

If  $f^{\#}$  minimizes (3), best estimate for x is

$$x^{\#}=\Psi f^{\#}.$$

Center





- 2 Compressive Sensing in Different Basis
- Applications to Medical Imaging
  - 4 Applications to Background Subtraction



# **Theory Behind Matrix Completion**

- Consider only observing rank *r* matrix *M* ∈ C<sup>N×N</sup> on some subset Ω of its indices
- Let SVD of *M* be  $M = U\Sigma V'$
- Possible to recover M as solution to

 $\begin{array}{ll} \min_{X} & \operatorname{rank}(X)\\ \text{such that} & (UXV')_{i,j} = (U\Sigma V')_{i,j}, \ (i,j) \in \Omega \end{array}$ 

This problem is NP-hard



# Matrix Completion Approach

#### Definition (Nuclear Norm)

Let  $\sigma_i(M)$  be the *i*<sup>th</sup> largest singular value of *M*. If rank(*M*) = *r*, then

$$\|\boldsymbol{M}\|_* := \sum_{i=1}^r \sigma_i(\boldsymbol{M})$$

#### Recovery Algorithm

Wish to recover M by solving problem (P<sup>\*</sup>), which is

$$\begin{array}{c} \min_{X} & \|X\|_{*} \\ \text{such that} & (UXV')_{i,j} = M_{i,j}, \ (i,j) \in \Omega \end{array}$$

or manmonic Amatysis and Application

# Applications to Nuclear Magnetic Resonance

- Nuclear Magnetic Resonance (NMR) imaging studies molecular structure.
- Multidimensional correlations found can identify and study fluid-saturated porous medium
  - Specifically can use T1-T2 relaxation times (longitudinal and traverse)
  - Collisions of spin-bearing molecules with pore walls induce more rapid relaxation
  - Simple correlation between relaxation rate and pore surface-to-volume ratio
- Best way to measure T1-T2 times is using pulse train of RF energy particles
- Problem is NMR is incredibly slow



## Math Behind NMR

 Echo measurements are related to T1-T2 correlations via Laplace Transform

$$M(\tau_1,\tau_2) = \int \int (1-2e^{\tau_1/T_1})e^{\tau_2/T_2}\mathcal{F}(T_1,T_2)dT_1dT_2 + E(\tau_1,\tau_2)$$

We'll consider more general 2D Fredholm Integral

$$M(\tau_1,\tau_2) = \int \int k_1(\tau_1,T_1)k_2(\tau_2,T_2)\mathcal{F}(T_1,T_2)dT_1dT_2 + E(\tau_1,\tau_2)$$

where  $E(\tau_1, \tau_2) \sim \mathcal{N}(\mathbf{0}, \epsilon)$ 

Discretize to

$$\mathbf{M}=\mathbf{K_1FK_2'}+\mathbf{E}$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## **Recovery from Small Number of Entries**



In Harmonic Analy

#### **Error Analysis**



## Outline



- 2 Compressive Sensing in Different Basis
- 3 Applications to Medical Imaging
- Applications to Background Subtraction





#### Video Presentation



## **Robust PCA**

#### Principal Component Pursuit

Let  $L_0$  be low rank background and  $S_0$  be sparse foreground. Wish to recover  $L_0$  and  $S_0$  by solving

$$\min_{L,S} ||L||_* + \lambda ||S||_1$$
(4)  
such that  $L + S = M$ 





Video Split



## Outline



- 2 Compressive Sensing in Different Basis
- 3 Applications to Medical Imaging
- 4 Applications to Background Subtraction



## **Final Thoughts**

- Whole field based around observations being redundant
- In reality, most objects can be represented more sparsely in different way
- Still large number of applications that can benefit
- (Wojtek made me put this in) NWC has many more problems of interest

