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The classical notion of discrete frame originated in 1952, and
generalizes the notion of orthonormal basis to allow for
redundant decompositions:

Definition

A sequence {fn}n∈N of elements of H a Hilbert space is a discrete
frame for H if:

∃A,B > 0 such that ∀f ∈ H, A‖f‖2 ≤
∞∑

n=1

|〈f , fn〉|2 ≤ B‖f‖2.
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The notion of continuous frame generalizes this, by replacing
∑

with
∫

in the definition:

Definition
Let H be a separable Hilbert space, X a locally compact Hausdorff
space equipped with a positive Radon measure µ such that supp(µ)
= X . A family F = {ψx}x∈X is a continuous frame for H if:
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This definition looks difficult to verify, but in fact many familiar
object from harmonic analysis are continuous frames with
respect to particular indexing spaces X and Hilbert spaces H.

This definition truly does generalize the notion of discrete frame.
Indeed, if X = N and µ is a counting measure, we acquire a
discrete frame.

Let’s briefly investigate two examples of continuous frames.



This definition looks difficult to verify, but in fact many familiar
object from harmonic analysis are continuous frames with
respect to particular indexing spaces X and Hilbert spaces H.

This definition truly does generalize the notion of discrete frame.
Indeed, if X = N and µ is a counting measure, we acquire a
discrete frame.

Let’s briefly investigate two examples of continuous frames.



This definition looks difficult to verify, but in fact many familiar
object from harmonic analysis are continuous frames with
respect to particular indexing spaces X and Hilbert spaces H.

This definition truly does generalize the notion of discrete frame.
Indeed, if X = N and µ is a counting measure, we acquire a
discrete frame.

Let’s briefly investigate two examples of continuous frames.



The first example of a continuous frame is the short-time Fourier
transform (STFT).
Let g ∈ L2(R). Then {MaTbg}a,b∈R = {g(t − b)e2πita}a,b∈R is a
continuous frame for H := L2(R), where the space we integrate
over is X := R2, equipped with the Lebesgue measure. In fact, it
is a tight frame with A = B = ‖g‖2

2.
This may be shown by defining

Vg f (b,a) :=

∫
R

f (t)g(t − b)e−2πitadt = 〈f (t),g(t − b)e2πita〉L2

=⇒|Vg f (b,a)|2 = |〈f (t),g(t − b)e2πita〉|2.

It thus suffices to verify that ‖Vg f (b,a)‖L2(R2) = ‖g‖2‖f‖2



The first example of a continuous frame is the short-time Fourier
transform (STFT).
Let g ∈ L2(R). Then {MaTbg}a,b∈R = {g(t − b)e2πita}a,b∈R is a
continuous frame for H := L2(R), where the space we integrate
over is X := R2, equipped with the Lebesgue measure. In fact, it
is a tight frame with A = B = ‖g‖2

2.
This may be shown by defining

Vg f (b,a) :=

∫
R

f (t)g(t − b)e−2πitadt = 〈f (t),g(t − b)e2πita〉L2

=⇒|Vg f (b,a)|2 = |〈f (t),g(t − b)e2πita〉|2.

It thus suffices to verify that ‖Vg f (b,a)‖L2(R2) = ‖g‖2‖f‖2



The first example of a continuous frame is the short-time Fourier
transform (STFT).
Let g ∈ L2(R). Then {MaTbg}a,b∈R = {g(t − b)e2πita}a,b∈R is a
continuous frame for H := L2(R), where the space we integrate
over is X := R2, equipped with the Lebesgue measure. In fact, it
is a tight frame with A = B = ‖g‖2

2.
This may be shown by defining

Vg f (b,a) :=

∫
R

f (t)g(t − b)e−2πitadt = 〈f (t),g(t − b)e2πita〉L2

=⇒|Vg f (b,a)|2 = |〈f (t),g(t − b)e2πita〉|2.

It thus suffices to verify that ‖Vg f (b,a)‖L2(R2) = ‖g‖2‖f‖2



The short-time Fourier transform is an important object in
time-frequency analysis.

We will investigate the link between the STFT and co-orbit
spaces later, by exhibiting the modulation spaces as a class of
co-orbit spaces.
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Suppose ψ ∈ L2(R) is such that:

∫
R

|ψ̂(γ)|2

|γ|
dγ <∞.

We say such a ψ is admissible.

In this case, define:

ψa,b(x) := (TbDaψ)(x) =
1√
|a|
ψ(

x − b
a

), a 6= 0.

Then for such an admissible ψ, {ψa,b}a,b∈R,a 6=0 is a continuous
frame for H := L2(R), where the space we integrate over is
X := (R \ {0})× R, with measure dµ = 1

a2 da db, where da db is
the Lebesgue measure on (R \ {0})× R.
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The operator Wψ : L2(R)× X → R defined as:

Wψ(f )(a,b) := 〈f , ψa,b〉

is the continuous wavelet transform of f with respect to ψ.
Even better than being a continuous frame, the continuous
wavelet transform admits a precise reconstruction formula, the
so-called Calderón Reproducing Formula:

f =
1

Cψ

∫
X

Wψ(f )(a,b)ψa,b 1
a2 da db,

where Cψ is a constant depending only on ψ. Hence,
{ψa,b}a,b∈R,a 6=0 is a tight frame with bounds A = B = Cψ.
Normalizing ψ appropriately, we may force Cψ = 1. Thus, the
continuous wavelet transform is a Parseval tight frame.
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The reproducing formula for the CWT is wonderful, as it lets us
decompose a function according to the transform, then piece it
back together.

This is the goal of much of harmonic analysis: to find useful
representations of functions which emphasize certain aspects
i.e. frequency, scale, time-frequency.
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While these abstract formulas are beautiful, efficient computation
demands a discretization paradigm.

The theory of discrete frames is well-understood and frequently
used in computations. The natural connection between discrete
and continuous frames leads us to
The Discretization Problem: Is there a way to sample the
indexing space X of a continuous frame and acquire a discrete
frame? With similar bounds?
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A first approach might involve trying to sample uniformly, as in
Shannon sampling.

This fails for a basic wavelet example indexed by R, so a general
approach must be non-uniform.

In 2005, Fornasier and Rauhut used the theory of co-orbit
spaces to attack the discretization problem.
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Co-orbit spaces were introduced by Feichtinger and Gröchenig in
the late 1980’s in order to acquire an atomic decomposition of
function spaces.
Their original paper studied Banach spaces invariant under the
action of certain integrable group representations, and deduced
decomposition results by working with these representations.
The theory was applied to continuous frames by examining
representations induced by the action of the frame.
To begin, we define a few operators formed from a given
continuous frame. These are generalizations from the theory of
discrete frames.
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Let {ψx}x∈X be a continuous frame for H Hilbert with respect to
(X , µ).
The associated frame operator is

S : H → H, Sf :=

∫
X
〈f , ψx〉ψxdµ(x).

Define two operators V ,W : H → L2(X , µ) associated to {ψx}x∈X
as follows:

Vf (x) := 〈f , ψx〉,

Wf (x) := 〈f ,S−1ψx〉 = V (S−1f )(x).

Here, V generalizes the notion of the analysis operator from
discrete frame theory, which gives the coefficients of a discrete
frame reconstruction. In the context of the short-time Fourier
transform, V is Vg ; for the continuous wavelet transform, V is
Wψ.
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The definition of co-orbit spaces will involve a suitable Banach
algebra of kernels. We make two definitions:
The Banach algebra of kernels A1 is defined as the set

{K : X × X → C |K is measurable, ‖K‖A1 <∞},

with norm

‖K‖A1 = max{‖
∫

X
|K (x , y)|dµ(y)‖L∞

x
, ‖

∫
X
|K (x , y)|dµ(x)‖L∞

y
}.

Multiplication of kernels is given by:

K1 ◦ K2(x , y) :=

∫
X

K1(x , z)K2(z, y)dµ(z).
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Furthermore, we require the particular kernel
R(x , y) := 〈ψy ,S−1ψx〉 be contained in A1.
Kernels act on functions by integration:

K (F )(x) :=

∫
X

F (y)K (x , y)dµ(y)

For an appropriate weight function m, we define the Banach
algebra of kernels Am as:

Am := {K : X × X → C |K ◦m ∈ A1}.
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Our co-orbit spaces will be defined with reference not just to a
continuous frame, but to a particular space of functions Y .
We require two properties for our space Y . First, it must be
Banach with norm ‖ · ‖Y satisfying a solidity condition: if F is
µ-measurable and G ∈ Y is such that |F (x)| ≤ |G(x)| µ-almost
everywhere, then F ∈ Y and ‖F‖Y ≤ ‖G‖Y .
Second, there must exist an appropriate weight function m such
that Am(Y ) ⊂ Y and:

∀ K ∈ Am,F ∈ Y , ‖K (F )‖Y ≤ ‖K‖Am‖F‖Y .

Such a function space Y is said to be admissible.
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We now define a space of vectors whose image under W are
integrable with respect to a given weight function. Our co-orbit
spaces will ultimately be defined as a closed subset of the
conjugate dual of these spaces.

K 1
v := {f ∈ H|Wf ∈ L1

v}, ‖f‖K 1
v

:= ‖Wf‖L1
v
.

Here v is an appropriately chosen weight function.
It is not difficult to see ψy ∈ K 1

v . This allows us to extend the
transform V to the conjugate-dual (K 1

v )† via:

Vf (x) = 〈f , ψx〉 := f (ψx ), f ∈ (K 1
v )†.
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Suppose Y is an admissible space of functions. The co-orbit of Y
with respect to the continuous frame {ψx}x∈X is:

CoY := {f ∈ (K 1
v )† |Vf ∈ Y},

A similar definition using W instead of V exists; for clarity and
brevity, this presentation will focus on CoY
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Theorem

Suppose R(Y ) ⊂ L∞1/v . Then:

1) CoY is Banach with respect to the norm ‖ · ‖CoY .
2) A function F ∈ Y is of the form F = Vf for some f ∈ CoY if and
only if F = R(F ).
3) The map V : CoY → Y establishes an isometric isomorphism
between CoY and the closed subspace R(Y ) ⊂ Y.



We now identify certain co-orbit spaces, revealing them to be
quite familiar objects.

CoL∞1/v = (K 1
v )†.

CoL2 = H. This is of particular interest, since our original Hilbert
space is a co-orbit space for a very natural space of functions,
namely L2.
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More interesting is how the modulation spaces appear in co-orbit
space theory. Indeed, if we take as our continuous frame the
short time Fourier transform, it follows from little more than
definitions that Mp,q

vs = CoLp,q
vs , where vs(z) := (1 + |z|)s, a

polynomial weight.

Again, despite its abstract formulation, many familiar spaces can
be exhibited as co-orbit spaces CoY for certain continuous
frames and function spaces Y .

Slightly more esoteric examples include certain Besov spaces
and Triebel-Lizorkin spaces.
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Why co-orbit spaces? It gives us a way to discretize.

Shorty, we will see a theorem that gives conditions under which a
sampling of {ψx}x∈X is a Banach frame for CoY . In general,
CoY need not be Hilbert.

Fortunately, CoL2 = H, so we can simply take Y = L2 to use the
theorem to get a discretization result in the spirit of the original
discretization problem.
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The theorem is based on a covering of the indexing space X . If
the covering is fine enough, we can take a representative from
each covering set and acquire a discrete frame.
A family U = {Ui}i∈I of subsets of X is called a (discrete)
admissible covering of X if:

1) Each Ui has compact closure and has non-∅ interior.
2) X =

⋃
i Ui .

3) ∃N > 0 such that supj∈I{i ∈ I|Ui ∩ Uj 6= ∅} ≤ N <∞.

We say such an admissible covering is moderate if in addition:

4) ∃D > 0 such that µ(Ui ) ≥ D for all i ∈ I.
5) ∃C̃ > 0 such that µ(Ui ) ≤ C̃µ(Uj ) for all i , j such that
Ui ∩ Uj 6= ∅.
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A frame {ψx}x∈X is said to possess property D[δ,m] if there
exists a moderate admissible covering U = Uδ = {Ui}i∈I such
that the kernel oscU defined by:

oscU (x , y) := sup
z∈Qy

|〈S−1ψx , ψy − ψz〉| = sup
z∈Qy

|R(x , y)− R(x , z)|,

where Qy :=
⋃
{i|y∈Ui} Ui , satisfies ‖oscU‖Am < δ.

Intuitively, D[δ,m] gives a way to measure how “localized” we can
make a discretely-indexed subset of our continuous frame.
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We are now in a position to state how to achieve the
discretization of certain continuous frames. This will involve
discretizing a co-orbit space, which is in general only a Banach
space. Consequently, we must define a notion of frame for
Banach spaces, one that doesn’t make use of an inner product.

A family {hi}i∈I ⊂ B∗ is a Banach frame for (B, ‖ · ‖B) Banach if
there is a BK-space (B[, ‖ · ‖B[) and a bounded linear
reconstruction operator Ω : B[ → B such that:

1) If f ∈ B, then (hi (f ))i ∈ B[ and there exist constants
0 < C1,C2 <∞ such that:

C1‖f‖B ≤ ‖(hi (f ))i∈I‖B[ ≤ C2‖f‖B.

2) For all f ∈ B, we have Ω(hi (f ))i∈I = f .
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We see that this definition preserves the idea of a “stable
reconstruction” of f ∈ B, without requiring an inner product.
Indeed, in a Hilbert space, we use the inner product to determine
the coefficients in a frame expansion, while in the definition of
Banach frame, we resort to a general reconstruction operator Ω.

The fact that such an operator hasn’t an explicit formulation in
terms of the hi is a loss from shifting to the more general Banach
space setting.



We see that this definition preserves the idea of a “stable
reconstruction” of f ∈ B, without requiring an inner product.
Indeed, in a Hilbert space, we use the inner product to determine
the coefficients in a frame expansion, while in the definition of
Banach frame, we resort to a general reconstruction operator Ω.

The fact that such an operator hasn’t an explicit formulation in
terms of the hi is a loss from shifting to the more general Banach
space setting.



Theorem

Assume m is an admissible weight. Suppose the frame {ψx}x∈X
satisfies property D[δ,m] for some δ > 0 such that:

δ(‖R‖Am + max{Cm,U‖R‖Am , ‖R‖Am + δ}) ≤ 1.

Let Uδ = {Ui}i∈I denote the corresponding moderate admissible
covering of X . Here, Cm,U is such that supx,y∈Ui

m(x , y) ≤ Cm,U .
Choose points (xi )i∈I such that xi ∈ Ui . If (Y , ‖ · ‖Y ) is an admissible
Banach space, then {ψxi}i∈I ⊂ K1

v is a Banach frame for CoY with
corresponding BK-space Y [.



A brief sketch of the proof is as follows:
We begin by defining a discretized version of the integral
operator associated to the kernel R(x , y) = 〈ψy ,S−1ψx〉. More
precisely, there exists a partition of unity associated to a
moderate admissible covering Uδ = {Ui}i∈I , call it {φi}i∈I .
Given points xi ∈ Ui , we define the operator:

UφF (x) :=
∑
i∈I

ciF (xi )R(x , xi ),

where we define ci =
∫

X φi (x)dµ(x). Note that if Uφ is “close
enough” in norm to the operator R on R(Y ), then by classical
functional analysis, Uφ is invertible on R(Y ), since R restricted to
R(Y ) is the identity map.
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Now, since Vf ∈ R(Y ) if f ∈ CoY and R(x , xi ) = V (S−1ψxi )(x),
we have:

Vf = U−1
φ UφVf

= U−1
φ (

∑
i∈I

(ciV (f )(xi )V (S−1ψxi ))

=
∑
i∈I

〈f , ψxi 〉U
−1
φ (ciV (S−1ψxi )).

This implies we can reconstruct an arbitrary f ∈ CoY in terms of
the coefficients 〈f , ψxi 〉.
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Co-orbit spaces are great. But this approach has serious
drawbacks, especially for applications.

How fine of a covering is sufficient?

This approach is extremely non-uniform, making it difficult to
implement.

One idea is to derive probabilistic bounds on whether a certain
covering will induce a discrete frame, based on a measurement
of the fineness of the cover.
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