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Overview 

•  Problem statement 
•  Image representation concepts 
•  Image compression basics 
•  Sparsity is the key, l0-minimization, OMP 
•  Image compression revisited 
•  Imagery metrics 
•  Solving our problem: deterministic sampling masks 

and compressed sensing 
•  Solving our problem: results 
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Problem statement 
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Image: Satellite Imaging Corporation 
http://www.satimagingcorp.com 

Antigua 



Problem statement 

JPEG, JPEG 2000 

Sampling Compression 

Representation 
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Image representation concepts[1] 
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Image representation concepts[1] 

Pixel = I[n1,n2] = intensity, brightness, at [n1,n2] 

n1 

n2 
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0 ≤ n1 < N1, 0 ≤ n2 < N2 

An image is… 



Image representation concepts[1] 

I[n1,n2]     {0, … , 2B-1}, or 

I[n1,n2]     {-2B-1, … , 2B-1-1}, where 

I[n1,n2] = round(2B J[n1,n2]) and 
J[n1,n2]     [0,1) or [-½, ½) 

B is the depth of the image 
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Image representation concepts[1] 
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Image compression[1] 

512 x 512 x 8 x 3 = 6,291,456 bits 
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Image compression[1] 

JPEG, JPEG 2000 
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Image compression[1] 

1)  Partitioning of the image I in sub-images 
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[1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,!
Standards and Practice, Kluwer Academic Publishers, 2001. 



Image compression[1] 

1)  Partitioning of the image I in sub-images 
2)  Transform sub-images to exploit 

correlations within them 
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[1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,!
Standards and Practice, Kluwer Academic Publishers, 2001. 



Image compression[1] 

1)  Partitioning of the image I in sub-images 
2)  Transform sub-images to exploit 

correlations within them 
3)  Quantize and encode 
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[1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,!
Standards and Practice, Kluwer Academic Publishers, 2001. 



Image compression 
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Sparsity is the key 

Cn u rd ths? 

vs 

Can you read this? 
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Sparsity is the key 
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Sparsity 

The l0 “norm”: 

  ||x||0 = # {k : xk ≠ 0} 
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l0-minimization ~ sparse solution 

 (P0):   minx ||x||0  subject to  ||Ax - b||2 = 0 
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l0-minimization ~ sparse solution 

 (P0
ε):   minx ||x||0  subject to  ||Ax - b||2 < ε 
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l0-minimization ~ sparse solution 

 (P0
ε):   minx ||x||0  subject to  ||Ax - b||2 < ε 

Solving (P0 
ε) is NP-hard![2] 

Is there any hope? 
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[2] B. K. Natarajan, Sparse approximate solutions to linear systems,"
SIAM Journal on Computing, 24 (1995), pp. 227-234. 



Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: [3] 

20 
[3] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of!
equations to sparse modeling of signals and images, SIAM Review, 51 (2009), pp. 34–81."



Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: 
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Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: 
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Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: 
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Image compression 
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T = Tε = OMP(A, - ,ε),  T’ = A 



We need a matrix A 

DCT DCT2 
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We need a matrix A 
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We need a matrix A 
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A = (c3(   ) c3(   ) c3(   ) … c3(   ))  



Compressing a test image 
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c3() = b 

 = c3
-1(b’) 

x0 = T b = OMP(A, b ,ε) 

b’ = T’ x0 = A x0 

Image 



Compressing a test image 
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 ~  ?  || b - b’ ||2 < ε 

But what does that mean visually? 
How many bits were used? 



Imagery metrics 

Peak Signal-to-Noise Ratio (PSNR), measured in dB: 

PSNR(X,Y) = 20 log10(MAXB / √MSE), 

with MAXB = 2B-1, and MSE = ∑i,j [X(i,j) - Y(i,j)]2 /nm. 
In our case, n = m = 512, and B = 8, i.e. MAXB = 255. 
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Imagery metrics 

Structural Similarity (SSIM), and Mean Structural 
Similarity(MSSIM) indices: [4] 
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[4] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment: from error!
visibility to structural similarity, IEEE Transactions on Image Processing,"
vol.13, no.4 pp. 600- 612, April 2004. 



Imagery metrics 

The normalized sparse bit-rate is 

nsbr(I,A,ε) = ∑ ||xj||0/N1N2, 

where image I is of size N1 by N2. 

32 



Compression results 

ε  = 32       d = 4, average error per pixel for 8 x 8 blocks 
PSNR = 36.6427 dB, MSSIM = 0.9767, nsbr = 0.3904 bpp 
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Original Compressed SSIM 
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Back to our original problem 
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k = 40 (62.5%) 



Compressed sensing and sampling 
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minx ||x||0  subject to  ||PA x – c ||2 < ε 

P in Rk x n, A in Rn x m, and c in Rk 



Deterministic sampling masks 
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If d = 4, then use ε = d         
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Deterministic sampling masks 
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||A’ x’ – c ||2 < ε, with x’ = OMP(A’,c,ε), and x’ in Rm  



Deterministic sampling masks 
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||A’ x’ – c ||2 < ε, with x’ = OMP(A’,c,ε), and x’ in Rm  

 = c3
-1(A x’ ) 



Results 
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k = 40 (62.5%) 
d = 4 

Luminance SSIM 

Original Masked Reconstruction 

Luminance: 
PSNR = 21.2002 dB 
MSSIM = 0.7577 

CB: 
PSNR = 39.7391 dB 
MSSIM = 0.9357 
CR: 
PSNR = 39.4362 dB 
MSSIM = 0.9345 



Results 
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k = 40 (62.5%) 
d = 4 

PSNR = 21.2002 PSNR = 39.7391 PSNR = 39.4362 



Results 
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k = 40 (62.5%) 
d = 4 

Deterministic sampling masks 
~ In-painting? 

Original detail Masked detail Reconstruction detail 



Thank you! 
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