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Problem statement

Image: Satellite Imaging Corporation
http://www.satimagingcorp.com
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Problem statement

JPEG, JPEG 2000

Sampling < > Compression
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Representation



Image representation concepts:



Image representation concepts:

An 1mage 1s...

Pixel = I[n,,n,| = intensity, brightness, at [n,,n,]

n,

0<n; <N, 0<n,<N,




Image representation concepts:

[[n,n,] € {0, ..., 2B-1}, or
[[n,n,] e {-2B-1, ..., 2B-1-1}, where

I[n,,n,] = round(2B J[n,,n,]) and
J[n;,n,] € [0,1) or [-Y4, 72)

B 1s the depth of the image



Image representation concepts:




Image compression;,

312 X512 x 8 X3 =6,291,456 bits



Image compression;,

JPEG, JPEG 2000



Image compression;,

1) Partitioning of the image | in sub-images

[1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,
Standards and Practice, Kluwer Academic Publishers, 2001. 10



Image compression;,

1) Partitioning of the image | in sub-images
2) Transform sub-images to exploit
correlations within them

[1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,
Standards and Practice, Kluwer Academic Publishers, 2001. 11



Image compression;,

1) Partitioning of the image | in sub-images

2) Transform sub-images to exploit
correlations within them

3) Quantize and encode

[1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,
Standards and Practice, Kluwer Academic Publishers, 2001. 12



Image compression

Storage/
ransmission
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Sparsity is the key

Cn urd ths?
VS

Can you read this?
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Sparsity is the key

A X X - b
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Sparsity

The [, "norm”™:

[Ixllo = # 1k : X, # 0}
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l,-minimization ~ sparse solution

(Po): min, ||x||, subjectto ||Ax - b]|,=0
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l,-minimization ~ sparse solution

(P,5): min, ||x||, subjectto ||Ax - b]|, < ¢
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l,-minimization ~ sparse solution

(P,5): min, ||x||, subjectto ||Ax - b]|, < ¢

Solving (P, ¢) is NP-hard!i
Is there any hope?

[2] B. K. Natarajan, Sparse approximate solutions to linear systems,
SIAM Journal on Computing, 24 (1995), pp. 227-234.
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm: [3]

Task: Approximate the solution of (F%,) : min, x||, subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the threshold .

Initialization: Initialize & = 0, and set
e The initial solution x" =
e The initial residual r’ = b — Ax" = b.
e The initial solution support 8" = Support{x"} = 0.
Main Iteration: Increment & by 1 and perform the following steps:

e Sweep: Compute the errors €(j) = min,, za; — r*'|3 for all j using the
optimal choice z; = aTr*~!/| a;||3.

e Update Support: Find a minimizer j, of €(7): ¥j ¢ S**, €(jo) < €(j), and
update S* = 81 U {4,}.

¢ Update Provisional Solution: Compute x*, the minimizer of ||Ax — b]|3
subject to Support{x} = S*.

e Update Residual: Compute r* = b — Ax".
¢ Stopping Rule: If ||r*||; < €, stop. Otherwise, apply another iteration.
Output: The proposed solution is x* obtained after k iterations.

[3] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of

equations to sparse modeling of signals and images, SIAM Review, 51 (2009), pp. 3481 .20



Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:

o
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:

b
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Image compression
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We need a matrix A

SEEEEEEE
MHMHH_HE
= ES E=1 B
= = =1 =0 e [
B o Y e I 1 [
i ) ) )
= P N O 0 N 500
0 ()0 I T

DCT2

DCT

25



We need a matrix A

Yy vyvyy
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We need a matrix A

A = (C3(

) C3(H) C3(ad) - 03@))
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Compressing a test image

cy(0) = b X, =T b = OMP(A, b ,¢)

=c, (b)) b’ =T x,=AX,
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Compressing a test image

O~®E? ||b-b|,<¢

But what does that mean visually?
How many bits were used?
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Imagery metrics

Peak Signal-to-Noise Ratio (PSNR), measured in dB:
PSNR(X,Y) = 20 log,,(MAXg / VMSE),

with MAX; = 2B-1, and MSE = Z,-,j [X(i)) - Y(i,)]? Inm.
In our case, n=m =512, and B = 8, i.e. MAXg = 255.
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Imagery metrics

Structural Similarity (SSIM), and Mean Structural
Similarity(MSSIM) indices: [4]

(2 pta oy T C1) (2 Oy + )

SSIM(x,y) = : _‘
(%) (2 + ;1.3 +C1) (02 + 0‘.5 + ()
| M
MSSIM(X,Y) = — ) " SSIM(x;,y;)
M

[4] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment: from error
visibility to structural similarity, IEEE Transactions on Image Processing,
vol.13, no.4 pp. 600- 612, April 2004. 31



Imagery metrics

The normalized sparse bit-rate is
nsbr(l,A,e) = 3 [|x]|o/NsN,,

where image / is of size N, by N,.
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Compression results
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Original Compressed

£ = 32 < d =4, average error per pixel for 8 x 8 blocks
PSNR = 36.6427 dB, MSSIM = 0.9767, nsbr = 0.3904 bpp
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Back to our original problem

k = 40 (62.5%)
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Compressed sensing and sampling

min, ||x||, subjectto ||PAx—c|[,<¢€

Pin Rkxn Ain R"*XmM and ¢ in RX
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Deterministic sampling masks
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Deterministic sampling masks

JA' X' —c ||, <€, with x’ = OMP(A’,c,g), and X’ in R™
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Deterministic sampling masks

JA' X' —c ||, <€, with x’ = OMP(A’,c,g), and X’ in R™

X =cy ' (AX)
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Results

Original Masked Reconstruction
Luminance: Cg:
— 0 PSNR =21.2002dB  PSNR =39.7391 dB
k =40 (62.5%) MSSIM = 0.7577 MSSIM = 0.9357
d=4 Ce:

PSNR = 39.4362 dB
MSSIM = 0.9345
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k = 40 (62.5%)

Results G=4

PSNR = 21.2002 PSNR = 39.7391 PSNR = 39.4362
o \\é} JEERE T




Results

Original detail Masked detail Reconstruction detail

Kk = 40 (62.5%) Determ.ini.s.tic sampling masks
d=4 ~ In-painting?
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Thank you!
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