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Problem statement
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Problem statement

JPEG, JPEG 2000

Sampling < > Compression

AN
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Image representation concepts
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Image representation concepts

I[n,,n,]

O0<n; <N, 0<n,<N,
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Image representation concepts

I[n,,n,] = pixel

n,
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Image representation concepts

9/24/13

I[n,,n,] ~ intensity, brightness

1n,,n,
1n;.n,

1n;,n,|

at [nlanz]
e {0, ...,2B-1}, or
e {-2B-1 ..., 2811}, where
=round(28 I'[n,,n,]) and

['[n;,n,] € [0,1) or [-Y2, ¥2)
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Image representation concepts
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Image compression

512 x 512 x 8 x 3 = 6,291,456 bits
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Image compression

JPEG, JPEG 2000
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Image compression

1) Partitioning of the image | in sub-images
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Image compression

1) Partitioning of the image | in sub-images
2) Transform sub-images to exploit
correlations within them
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Image compression

1) Partitioning of the image | in sub-images

2) Transform sub-images to exploit
correlations within them

3) Quantize and encode
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Image compression

Storage/
Transmission

B
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Sparsity is the key

Cn u rd ths?
VS

Can you read this?
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Sparsity is the key
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Sparsity

The [, "norm”™:

[Ixllo = # 1k - X, # 0}
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l,-minimization ~ sparse solution

(Po): min, ||x]|, subjectto ||Ax-bl|,=0

9/24/13 Sampling in image representation 19
and compression



l,-minimization ~ sparse solution

(Pof): ming ||x||, subjectto ||Ax -Db||, <e
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l,-minimization ~ sparse solution

(Pof): ming ||x||, subjectto ||Ax -Db||, <e

Solving (P, ¢) is NP-hard!
Is there any hope?
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:

Task: Approximate the solution of (£) : min, x|/, subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the threshold €.

Initialization: Initialize £ = (), and set
e The initial solution x" = 0.
e The initial residual r’ = b — Ax” = b.
e The initial solution support 8" = Support{x"} = 0.
Main Iteration: Increment & by 1 and perform the following steps:

e Sweep: Compute the errors €(j) = min,, za; — r*'|3 for all j using the
optimal choice z; = aTr*~!/|a;||3.

e Update Support: Find a minimizer j, of €(j): ¥j ¢ 8**, €(jo) < €(j), and
update 8% = 81U {j,}.

¢ Update Provisional Solution: Compute x*, the minimizer of ||Ax — b||3
subject to Support{x} = S*.

e Update Residual: Compute r* = b — Ax*.
e Stopping Rule: If ||r*||; < €, stop. Otherwise, apply another iteration.

Output: The proposed solution is x* obtained after k iterations. 29



Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:

b -
? o
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:

b
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Image compression

Storage/
Transmission

B

I
>

T=T,.=0OMP(A, - ,¢), T
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We need a matrix A
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We need a matrix A

2 3 4 1 2 3 4
1
1 A A l 1 1 =2 3= 4 {2}
c // / Ca )
! 2 Cz 2 57 6" 77 8 o 9
— = — T g/1o'/11/1l2 :
’ ’ /S { J
13=>14" 15—>16 15
Yy VY ¢ \/ \/ T“ 16
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Compressing a test image

Storage/
Transmission

b

)=b X, =T, b=0MP(A, b ,¢)
= c, (b)) b'=T x,=AX,
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Compressing a test image

O~E? ||b-b|,<¢

But what does that mean visually?
How many bits were used?
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Imagery metrics

Peak Signal-to-Noise Ratio (PSNR), measured in dB:
PSNR(X,Y) = 20 log,,(MAXg / YMSE),

with MAXg = 2B-1, and MSE = Z,-,j [X(i)) - Y(i,)]? Inm.
In our case, n=m =512, and B = 8, i.e. MAXg = 255.
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Imagery metrics

Structural Similarity (SSIM), and Mean Structural
Similarity(MSSIM) indices:

(2 pg py +C1 ) (2 Ozy + Co )
(nz +py +Ch) (07 + 02 + Co)

SSIM(x,y) =

M
MSSIM(X,Y) = ZSSIM »Y;)
71=1
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Imagery metrics

The normalized sparse bit-rate is
nsbr(/,A,e) = 3 [|x]|o/NsN,

where image / is of size N, by N.,.

9/24/13 Sampling in image representation
and compression

34



Imagery metrics: test images

Barbara

Stream
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Imagery metrics: bpp vs €
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Imagery metrics: bpp vs €
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Imagery metrics: bpp vs €
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Imagery metrics: bpp vs €
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Imagery metrics: bpp vs PSNR

Nommalized bit-rate vs PSNR
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Imagery metrics: bpp vs MSSIM

Nommalized bit-rate vs MS S I
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Imagery metrics: PSNR vs MSSIM

PSNR vs MSSIM
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Compression results

Original Compressed

e=32,c=4
PSNR = 36.5220 dB, MSSIM = 0.9104, nsbr = 0.1609 bpp
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Back to our original problem

k = 40 (62.5%) k = 32 (50%)
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Compressed sensing and sampling

min, ||x||, subjectto [[PAXx—-c ||, <€

Pin Rkxn  Ain R"xm gnd ¢ in R
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Deterministic sampling masks
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Deterministic sampling masks

|JA’ X —c ||, < g, with X’ = OMP(A’,c,g), and X’ in R™
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Deterministic sampling masks

|JA’ X —c ||, < g, with X’ = OMP(A’,c,g), and X’ in R™

X =cy ' (AX)
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k=40,c=4 Results

PSNR = 21.1575 PSNR = 39.7019 PSNR = 39.4193

B
%




Results

k=40 c=4 Deterministic sampling masks
~ Inpainting?

9/24/13 Sampling in image representation 51
and compression



Results

PSNR = 29.8081 dB
MSSIM = 0.7461
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total variation
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Thank you!
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