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A finite (µ, S)-frame variety consists of the real or complex matrices F =

[f1 · · · fN ] with frame operator FF ∗ = S, and which also satisfyies ‖fi‖ = µi for

all i = 1, . . . , N . Here, S is a fixed Hermitian positive definite matrix and µ =

[µ1 · · ·µN ] is a fixed list of lengths. These spaces generalize the well-known spaces

of finite unit-norm tight frames. We explore the local geometry of these spaces and

develop geometric optimization algorithms based on the resulting insights.

We study the local geometric structure of the (µ, S)-frame varieties by view-

ing them as intersections of generalized tori (the length constraints) with distorted

Stiefel manifolds (the frame operator constraint). Exploiting this perspective, we

characterize the nonsingular points of these varieties by determining where this

intersection is transversal in a Hilbert-Schmidt sphere. A corollary of this charac-

terization is a characterization of the tangent spaces of (µ, S)-frame varieties, which

is in turn leveraged to validate explicit local coordinate systems. Explict bases for

the tangent spaces are also constructed.



Geometric optimization over a (µ, S)-frame variety is performed by combining

knowledge of the tangent spaces with geometric optimization of the frame operator

distance over a product of spheres. Given a differentiable objective function, we

project the full gradient onto the tangent space and then minimize the frame op-

erator distance to obtain an approximate gradient descent algorithm. To partially

validate this procedure, we demonstrate that the induced flow converges locally. Us-

ing Sherman-Morrision type formulas, we also describe a technique for constructing

points on these varieties that can be used to initialize the optimization procedure.

Finally, we apply the approximate gradient descent procedure to numerically con-

struct equiangular tight frames, Grassmannian frames, and Welch bound equality

sequences with low mutual coherence.
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Chapter 1

Introduction

1.1 Background

Frames were originally introduced by Duffin and Schaeffer to generalize Fourier

expansions [22], and general frames [50] furnish practitoners with expansion formulas

akin to orthonormal expansions. Daubechies, Grossmann, and Meyer [16] renewed

interest in infinite dimensional frames by exhibiting classes of frames with tractable

reconstruction formulas. There is now a multitude of well-studied frames that have

been constructed with various applications in mind; Gabor frames, wavelets [17, 18],

curvelets [11], shearlets [31], and Fourier frames constitute a partial list of popular

infinite dimensional frames. More recently, structured finite frames have become

popular because of their applications in wireless telecommunications [42, 48], sigma-

delta quantization [5, 7, 6, 4], coding theory [13, 24, 37], and sparse reconstruction

[20, 33, 44].

The fundamental structural condition of interest for many of these applications

is tightness. Finite tight frames satisfy FF ∗ = cId×d, which is equivalent to the

reconstruction formula

x = c
∑
i∈[N ]

〈x, fi〉 fi (1.1.1)

for all x ∈ Ed, and where c > 0 is fixed. The simple reconstruction formula provided
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by tightness motivated the work in [16], and is valuable for signal processing appli-

cations. Moreover, the least squares solution to Fx = b is exactly c−1F ∗b when F

is a tight frame. Geometrically, it is well known that the spaces of tight frames are

essentially the Stiefel manifolds, and Stiefel manifolds are well studied objects: a

cell structure can be imposed to calculate homology and the cohomology ring, the

tangent bundles are well understood, and local parameterizations are easily obtain-

able. Because of these local parameterizations, it is relatively easy to design tight

frames for specific applications (see [1]).

Beyond tighness, there are several other structural conditions that are useful

for applications. Other structured tight frames of interest are finite unit norm tight

frames (FUNTFs), generalized Welch bound equality (WBE) sequences, equiangular

tight frames, and Grassmannian frames.

Before this work, knowledge conerning the structure of the spaces of FUNTFs

has only been superficial. By imposing the additional constraints ‖fi‖ = 1 for all the

columns of tight frame F , a complicated structure emerges. The work of Benedetto

and Fickus [3] was the first to develop a characterization of FUNTFs in an elegant

and intuitive manner. They characterized the FUNTFs as the minimizers of the

frame potential over a product of unit spheres, which reflected the characteristic

equidistribution exhibited by FUNTFs. Later, Dykema et al. [23] demonstrated

that certain spaces of FUNTFs are manifolds and calculated the dimension of these

manifolds.

Generalized WBE sequences are tight frames that satisfy ‖fi‖ = µi for some

positive sequence µ1, . . . , µN . These sequences arise in wireless telecommunications,
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where each fi is the signature code of a user with average power µi. Constructions

of these frames has been considered by numerous authors [29, 46, 19, 40], and

existence of such sequences is characterized by a majorization condition (see [14]).

The manifold structure of these varieties was first explored in [40], which generalized

results from [23] and also developed construction techniques.

Equiangular tight frames are FUNTFs for which | 〈fi, fj〉 | is constant for all

i 6= j, and Grassmannian frames are FUNTFs which minimize the mutual coherence,

max
i 6=j
| 〈fi, fj〉 |.

Theorem 4.1 of Donoho et al. [21] established a general connection between dic-

tionaries with low mutual coherence and successful sparse reconstruction via basis

pursuit [15]. The existence of equiangular tight frames has been considered in a

number of settings [8, 41, 43], and they were characterized as minimizers of the

4th-order frame potential by Oktay [34]. Grassmannian frames exist by a simple

compactness argument, but constructing Grassmannian frames is a very difficult

problem. Strohmer and Heath demonstrated that explicit constructions can be car-

ried out in certain cases in [42]. However, general constructions have not been found

and the geometry of Grassmannian frames is also completely unknown.

1.2 Summary of results

We study the geometry of algebraic varieties of (µ, S)-frames, and show that

their local geometry is tractable. That is, their nonsingular points can be character-

ized, expressions for the tangent spaces at nonsingular points can be written down,
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and explicit local parameterizations can be constructed. Moreover, we exploit the

explicit form of the tangent spaces to develop an efficient, approximate gradient

descent procedure over finite (µ, S)-frame varieties.

In Chapter 2, we consider a general (µ, S)-frame variety as the intersection of

generalized torus with a warped Stiefel manifold, and we characterize the points at

which this intersection is transversal in the ambient Hilbert-Schmidt sphere (Theo-

rem 2.1.4). These points are exactly the nonorthodecomposable (µ, S)-frames. We

then characterize the tangent space at a nonsingular point as the intersection of the

point’s tangent spaces on the generalized torus and warped Stiefel manifold, and

utilize this characterization to construct an explicit basis for the tangent space.

Chapter 3 focuses on the construction of explicit, locally well-defined analytic

coordinate patches around nonsingular points on a (µ, S)-frame variety. Chapter 3

begins with an example which motivates the general construction of such parame-

terizations. While the example demonstrates that coordinates can be constructed

formally, it does not ensure that the coordinates are locally well-defined. By proving

the hypotheses of the Real-Analytic Inverse Function Theorem (Theorems 3.2.6 and

3.3.1), we demonstrate that the coordinates are well-defined. The chapter concludes

with the full explicit derivations of the coordinate systems for both the real and

complex case. These parameterizations are a technical manifestation of the intu-

ition that one can choose a basis from a (µ, S)-frame, and articulate (in a small

neighborhood) the remaining vectors on their respective spheres while the basis

reacts to ensure that the frame retains the same frame operator.

We develop and apply a geomeric optimization procedure in Chapter 4. This
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procedure is powered by efficient, geometric coordinate descent and gradient descent

(explored by Casazza and Fickus [12] in the FUNTF case) algorithms for minimiz-

ing the distance of XX∗ from a target frame operator in the Hilbert-Schmidt norm,

or the frame operator distance (FOD). For both the geometric coordinate descent

and geometric gradient descent algorithms, we derive simple, explicit expressions

for step sizes in order to acquire efficient implementations. By projecting gradients

of an objective function directly onto the tangent space of a (µ, S)-frame variety, we

are able to leverage efficient minimization of the FOD to obtain first-order approx-

imations to geodesics at regular points of the (µ, S)-frame variety. Based on the

bases constructed in Chapter 2, we describe iterative and direct methods for com-

puting these projections. We also address the issue of constructing starting points

for initializing our optimization procedure using techniques from [40].The chapter

concludes with two applications: numerical construction of Grassmannian frames

and construction of WBE sequences with low mutual coherence. The natural objec-

tive function for these applications is the 2pth-order frame potential because it is an

approximation of the mutual coherence. We empirically show that minimizing the

2pth-order frame potential yields frames with low mutual coherence. These numeri-

cally constructed frames are ideal candidates for applications in coding theory and

sparse reconstruction.

Code for the Matlab package Framelab is provided in the Appendix. This

package implements all of the numerical procedures detailed in Chapter 4, and is

freely available at the the author’s webpage.
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1.3 Notation

Let Ed = R
d or Cd denote real or complex d-dimensional space endowed with

the (symmetric or Hermitian) inner product 〈·, ·〉. For any vector or matrix, we

let ‖ · ‖2 denote the sum of squared absolute-values of the entries. In the case

of a matrix, this is the square of the Fröbenius or Hilbert-Schmidt norm. Let

SEd(c) = {x ∈ Ed : ‖x‖ = c} denote the sphere of radius c > 0, let [n] = {1, . . . , n}

denote the n-set.

The set of all m by n matrices is denoted Mm×n(E), and we let X∗ denote

the conjugate transpose of X ∈ Mm×n(E). Note that the transpose XT = X∗ if

E = R. We shall often employ the notation xTy and x∗y in place of 〈x, y〉. Given an

X ∈Mm×n(E), an A ⊂ [m], and a B ⊂ [n], we let

XA×B =


xa1b1 · · · xa1b|B|

...
. . .

...

xa|A|b1 · · · xa|A|b|B|

 (1.3.1)

denote the |A| by |B| matrix obtained by deleting the rows of X with indices not

in A, and then deleting the columns with indices not in B. Here, we have used |A|

and |B| to denote the cardinality of A and B respectively. We also let XB denote

the matrix obtained by deleting the columns of X that are not in B. For a square

matrix, S ∈ Md×d(E), we let tr(S) denote the trace of S, and we use diag(S) ∈ Ed

to signify the matrix obtained by setting the off-diagonal entries of S equal to zero.

We use 1N to denote a column vector with N unit entries. A finite frame for Ed is

a collection of vectors (which shall be referred to interchangeably with the matrix
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F = [f1 . . . fN ] ∈Md×N(E)) satisfying

A‖x‖2 ≤
∑
n∈[N ]

|〈x, fn〉|2 ≤ B‖x‖2 for all x ∈ Ed (1.3.2)

for some constants 0 < A ≤ B < ∞. If such constants exist, then we let A and B

denote the sharpest constants satisfying (1.3.2). If ‖fn‖ = 1 for all n ∈ [N ], then

the frame is called unit-norm. If A = B, the frame is called a tight frame. If F is a

finite unit-norm tight frame, we say that F is a FUNTF for brevity.

Now, F is called the synthesis operator of the frame and F ∗ is the analysis

operator. The matrices S = FF ∗ and F ∗F are the frame operator and Grammian

of F .

For a sequence of strictly positive numbers, µ ∈ RN
+ , we let

TEd(µ) =
∏
i∈[N ]

SEd(µi) = {F = [f1 . . . fN ] ∈Md×N(E) : ‖fi‖ = µi for all i ∈ [N ]}

denote the generalized torus with radii µ. Given a Hermitian (or, symmetric) pos-

itive definite (HPD, or SPD) operator S ∈ Md×d(E), let
√
S denote its canonical

square root, and let

√
S · StEd(N) = {

√
SF ∈Md×N(E) : FF

∗ = Id×d} (1.3.3)

denote the
√
S-transformed Stiefel manifold, where Id×d denotes the d by d identity

matrix. If c = tr(S)1/2 = ‖µ‖2, then it is straightforward to check that TEd(µ) and

√
S · StEd(N) are both submanifolds of the Hilbert-Schmidt sphere of radius c,

SEd×N (c) =

F ∈Md×N(E) : ‖F‖HS =

√∑
i∈[d]

∑
j∈[N ]

|fij|2 = c

 . (1.3.4)

Let N ≥ d. Given a µ ∈ RN
+ , and a d by d HPD operator S, the (µ, S)-frames are

FE(µ, S) = TEd(µ) ∩
√
S · StEd(N). (1.3.5)
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That is F ∈ FE(µ, S) if and only if F belongs to the generalized torus with radii µ

when viewed as a collection of columns, and F is a transformation of an orthonormal

system when viewed as a collection of rows. As frames, they are the frames with

frame operator S, and with member lengths given by µ.

For any C1 function ϕ : Ed×N → R, and any smooth embedded manifold

M ↪→ E
d×N , we let

∇M
x ϕ (1.3.6)

denote the gradient of ϕ at x alongM. Note that this is the orthogonal projection

of the full gradient ∇xϕ onto the tangent space TxM ⊂ E
d×N . We use expM

x :

TxM→M to denote the the exponentiation map.

1.4 Preliminaries

Our general reference for matrix analysis is Horn and Johnson [26], and the

general reference for differential geometry is Spivak [39].

If ∑
n∈[N ]

µ2
n =

∑
n∈[d]

λn(S),

Theorem 2.1 of [14] essentially states that FE(µ, S) is not empty if and only if

max
I⊂[N ]
|I|=k

∑
n∈I

µ2
n ≤

∑
n∈[k]

λn(S) holds for all k ∈ [d], (1.4.1)

where λ1(S) ≥ λ2(S) ≥ · · · ≥ λd(S) > 0 are the eigenvalues of S. In general, we

shall say that µ ∈ RN
+ and HPD S ∈Md×d(E) satisfy the “usual conditions” if

N ≥ d,
∑
i∈[N ]

µ2
i =

∑
i∈[d]

λi = c, and (1.4.1) all hold true. (1.4.2)
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We shall often invoke the usual conditions to avoid vacuous assertions.

The Grammian stores all of the correlation information in the frame, and it

can be shown that the frame operator satisfies

x =
∑
n∈[N ]

〈
x, S−1fn

〉
fn for all x ∈ Ed. (1.4.3)

For a FUNTF, the frame operator is S = N
d
Id×d and (1.4.3) reduces to the simple

form

x =
d

N

∑
n∈[N ]

〈x, fn〉 fn for all x ∈ Ed. (1.4.4)

1.4.1 Dimension calculations

By counting the defining constraints, it is not difficult to see that

dim(TEd(µ)) =


(d− 1)N if E = R

(2d− 1)N if E = C

(1.4.5)

and

dim(SEd×N (c)) =


dN − 1 if E = R

2dN − 1 if E = C

(1.4.6)

when both are viewed as real manifolds. The dimension of the Stiefel manifold as a

real manifold is (see [27])

dim(
√
S · StEd(N)) =


∑

n∈[d](N − n) if E = R∑
n∈[d](2N − 2n+ 1) if E = C

(1.4.7)

since StRd(N) ∼= O(N)/O(N − d) and StCd(N) ∼= U(N)/U(N − d). Here, O(k) and

U(k) are the orthogonal and unitary groups respectively, and the Implicit Function
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Theorem can be used to show that

dim(O(k)) = dim({A ∈Mk×k(R) : AA
T = Ik×k}) =

∑
n∈[k−1]

n (1.4.8)

dim(U(k)) = dim({A ∈Mk×k(E) : AA
∗ = Ik×k}) (1.4.9)

=
∑

n∈[k−1]

n+
∑
n∈[k]

n =
∑
n∈[k]

(2n− 1). (1.4.10)
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Chapter 2

Nonsingular points and tangent spaces of (µ, S)-frame varieties

2.1 The intersection of TEd(µ) and
√
S · StEd(N) in SEd×N (c)

We shall now state and prove when (µ, S)-frame varieties are locally the

transversal intersection of TEd(µ) and
√
S · StEd(N) in SEd×N (c). Our reference

for transversal intersection is [9]. For µ and S satisfying the usual conditions, fix

F = [f1 · · · fN ] ∈ F(µ, S). It is not difficult to see that the tangent spaces of TEd(µ)

and
√
S · StEd(N) at F satisfy

TFTEd(µ) = {X ∈Md×N(E) : Re 〈xn, fn〉 = 0 for all n ∈ [N ]}, (2.1.1)

and

TF
√
S · StEd(N) = {X ∈Md×N(E) : X = FZ for some Z = −Z∗} (2.1.2)

respectively. This last equality follows from the fact that the Lie algebra of SU(N)

(SO(N)) is the space of skew-Hermitian (skew symmetric) matrices and that SU(N)

(SO(N)) has a transitive right-action on the connected components of
√
S ·StEd(N)

given by F 7→ FU . In addition, we have that

TFSEd×N (c) =

X = [x1 · · ·xN ] ∈Md×N(E) :
N∑

n∈[N ]

Re 〈xn, fn〉 = 0

 . (2.1.3)

As shall become overwhelmingly apparent, the regularity of FE(µ, S) at F is in-

timately connected to the structure of the nonzero entries in the Gram operator,
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F ∗F . The full Gram operator is cumbersome to deal with, so we replace it by a

simple combinatorial object that captures the structure of the nonzero entries.

Definition 2.1.1. The correlation network of a frame F with N elements is the

undirected graph γ(F ) = (V,E), where V = [N ] and (i, j) ∈ E if and only if 〈fi, fj〉

is nonzero.

Remark 2.1.2. Intuitively, an edge (i, j) is in the correlation network of F if the

elements fi and fj are correlated.

Example 1. For the F defined in Section 2.4,

[〈fi, fj〉](i,j)∈[3]2 = F TF =


1

√
2/2 0

√
2/2 1 1/2

0 1/2 1

 .

We conclude that γ(F ) = ({1, 2, 3}, {(1, 2), (2, 3)}), since f1, f3 is the only orthogo-

nal (uncorrelated) pair.

We shall also need to recall Definition 4.8 of [23].

Definition 2.1.3. A frame F is said to be orthodecomposable if it can be split into

two nontrival subcollections, F1 and F2 satisfying F ∗
1F2 = 0. That is, span F1 and

span F2 are nontrivial orthogonal subspaces.

The orthodecomposable frames are generally where complications arise in the

analysis of the local structure. For example, the orthodecomposable finite unit-norm

frames are the points on the product of spheres that are critical points of the frame

force [3], but which do not necessarily minimize the frame potential [12].
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We can now state the main theorem of this section, which relates regularity

of FE(µ, S) at F with the correlation network γ(F ) and the orthodecomposability

of F .

Theorem 2.1.4. Let µ ∈ RN
+ and HPD S ∈ Md×d(E) satisfy the usual conditions,

set c = ‖µ‖2, and suppose F ∈ FE(µ, S). Then the following are equivalent:

(i) TFTEd(µ) + TF
√
S · StEd(N) = TFSEd×N (c);

(ii) For all A ∈ TFSEd×N (c), there is a skew-Hermitian Z = [zij] which is a solution

to the system

Re 〈fi, ai〉 = Re
∑
j∈[N ]

zji 〈fi, fj〉 for all i ∈ [N ]; (2.1.4)

(iii) F is not orthodecomposable;

(iv) γ(F ) is connected.

Proof. The equivalence of (iii) and (iv) is trivial. In this proof, we first demonstrate

the equivalence of (i) and (ii), then show that (ii) implies (iii), and conclude with

proving that (iv) implies (ii).

First we show (i)⇔(ii). Suppose A = Y + FZ, where A = [a1 · · · aN ] ∈

TFSEd×N (c), Y = [y1 · · · yN ] ∈ TFTEd(µ), and skew-Hermitian Z = [zij]. Then

ai = yi +
∑
j∈[N ]

zjifj for all i ∈ [N ],

and hence

〈fi, ai〉 = 〈fi, yi〉+
∑
j∈[N ]

zji 〈fi, fj〉 for all i ∈ [N ].
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Taking the real part of this and invoking 2.1.1, we have

Re 〈fi, ai〉 = Re
∑
j∈[N ]

zji 〈fi, fj〉 for all i ∈ [N ].

Thus, it is clear that (i)⇒(ii). On the other hand, for any A ∈ TFSEd×N (c), (ii)

supplies us with a Z satisfying (2.1.4) and we can set Y = A − FZ ∈ TFTEd(µ) to

acquire A = Y + FZ. This observation finalizes the equivalence of (i) and (ii).

We now show that (ii)⇒(iii) by demonstrating the contrapositive. If F is

orthodecomposable, then FP = [F1 F2] for some permutation matrix P , and for

some nontrivial F1 and F2 with F ∗
1F2 = 0. Set

A = [A1 A2] = [tr(F ∗
1F1)

−1F1 − tr(F ∗
2F2)

−1F2],

and note that Re tr(P ∗F ∗A) = 0, so A ∈ TFPSEd×N (c). We have that

1 = tr(F T
1 A1) =

∑
fi∈F1

〈fi, ai〉 ,

and thus (2.1.4) fails for A because of the necessary condition

∑
fi∈F1

Re 〈fi, ai〉 =
∑
fi∈F1

Re
∑
j∈[N ]

zji 〈fi, fj〉

=
∑
fi∈F1

Re
∑
fj∈F1

zji 〈fi, fj〉

= Re
∑
fi∈F1

∑
fj∈F1

zji 〈fi, fj〉 (2.1.5)

= 0.

This last equality holds since (2.1.5) is the real part of the Hilbert-Schmidt product

between a Hermitian matrix (F1F
∗
1 ) and a skew-Hermitian matrix (Z).

We now establish (iv)⇒(ii). Since γ(F ) is connected, we can extract a rooted

spanning tree T0 = (V0, E0) with E0 = [N ], where we denote the root as i∗. We now
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construct a nested sequence of trees T0 ⊃ T1 ⊃ . . . ⊃ TK = ({i∗}, ∅) by inductively

pruning extruding leaves of the tree at each step. More formally, we define the

sequence of trees Tn = (Vn, En) for n ≥ 1 inductively by setting Vn = Vn−1 \ ∂Tn−1

and En = En−1 \ ∂Tn−1, where ∂Tn−1 and ∂Tn−1 denote the leaves and pendant

edges of Tn−1 respectively. Note that only finitely many Tn are nontrivial since G

is finite, and we let TK = ({i∗}, ∅) denote the last nontrivial tree obtained in this

process.

We now have the structure necessary to construct a Z solving (2.1.4) for a

fixed A. Let A be given, and set zji = −z∗ij = 0 if (i, j) 6∈ E0. For each i ∈ ∂T0,

there is exactly one parent j = j(i) of i. By definition, we have that
〈
fi, fj(i)

〉
6= 0,

and so we set zj(i),i = −z∗i,j(i) = 〈fi, ai〉 /
〈
fi, fj(i)

〉
. This solves (2.1.4) for all i ∈ ∂T0.

Applying this strategy inductively, we must solve (2.1.4) for all i ∈ ∂Tn, which

reduces to

Re 〈fi, ai〉 = Re
∑

j∈Adji

zji 〈fi, fj〉 = Re zj(i),i
〈
fi, fj(i)

〉
+Re

∑
j∈Chdi

zji 〈fi, fj〉 ,

where Adji consists of all the vertices adjacent to i in T0 and Chdi consists of all

the children of i. By induction, zji is known for all j ∈ Chdi and we may set

zj(i),i =
〈fi, ai〉 −

∑
j∈Chdi

zji 〈fi, fj〉〈
fi, fj(i)

〉 .

This process continues until n = K. At this stage, all zij are fixed and we compute

Re
∑
i∈[N ]

zi,i∗ 〈fi∗ , fi〉 = −Re
∑

i∈Chdi∗

z∗i∗,i 〈fi∗ , fi〉

= −Re
∑

i∈Chdi∗

(〈fi, ai〉 −∑j∈Chdi
zj,i 〈fi, fj〉

〈fi, fi∗〉

)∗

〈fi∗ , fi〉 .
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Now note that Chdi∗ = VK−1 \ {i∗} = ∂TK−1, so

Re
∑
i∈[N ]

zi,i∗ 〈fi∗ , fi〉 = −Re
∑

i∈VK−1\{i∗}

〈fi, ai〉+Re
∑

i∈∂TK−1

∑
j∈Chdi

zji 〈fi, fj〉

= −Re
∑

i∈VK−1\{i∗}

〈fi, ai〉

−Re
∑

i∈∂TK−1

∑
j∈Chdi

〈fj, aj〉 −
∑

k∈Chdj

zkj 〈fj, fk〉

= −Re
∑

i∈VK−2\{i∗}

〈fi, ai〉+Re
∑

i∈∂TK−2

∑
j∈Chdi

zji 〈fi, fj〉 .

Inductively expanding and contracting this sum, we obtain

Re
∑
i∈[N ]

zi,i∗ 〈fi∗ , fi〉 = −Re
∑

i∈V1\{i∗}

〈fi, ai〉+Re
∑
i∈∂T1

∑
j∈Chdi

zji 〈fi, fj〉

= −Re
∑

i∈V1\{i∗}

〈fi, ai〉 − Re
∑
i∈∂T1

∑
j∈Chdi

(
〈fj, aj〉
〈fj, fi〉

)∗

〈fi, fj〉

= −Re
∑

i∈[N ]\{i∗}

〈fi, ai〉

= Re 〈fi∗ , ai∗〉

since Re tr(F ∗A) = Re
∑

i∈[N ] 〈fi, ai〉 = 0. Thus, the constructed Z solves (2.1.4),

(iv)⇒(ii), and the proof is complete.

2.2 The tangent space at a nonsingular point of FE(µ, S)

In the event that the sum

TFTEd(µ) + TF
√
S · StEd(N) = {x+ y : x ∈ TFTEd(µ), y ∈ TF

√
S · StEd(N)}

equals TFSEd×N (c), we have the following short exact sequence:

0→ TFTEd(µ)∩TF
√
S·StEd(N) −→ TFTEd(µ)⊕TF

√
S·StEd(N) −→ TFSEd×N (c)→ 0,
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where the second arrow is the map X 7→ (X,−X) and the third arrow is the map

(X, Y ) 7→ X + Y . This implies

dim(TFTEd(µ) ∩ TF
√
S · StEd(N))− dim(TFTEd(µ)⊕ TF

√
S · StEd(N))

+dim(TFSEd×N (c)) = 0,

which in turn implies

dim(TFTEd(µ) ∩ TF
√
S · StEd(N)) = dim(TFTEd(µ)) + dim(TF

√
S · StEd(N))

− dim(TFSEd×N (c)). (2.2.1)

Corollary 2.2.1. Under the assumptions in Theorem 2.1.4, and assuming that

F ∈ FE(µ, S) is not orthodecomposable, we have

TFFE(µ, S) = TFTEd(µ) ∩ TF
√
S · StEd(N) (2.2.2)

= {X = FZ ∈Md×N(E) : Z = −Z∗ ∈MN×N(E),Re diag(F
∗X) = 0}

and

dim(TFFE(µ, S)) =


(d− 1)N +

∑
n∈[d]

(N − n)− (dN − 1) if E = R

(2d− 1)N +
∑
n∈[d]

(2N − 2n+ 1)− (2dN − 1) if E = C

(2.2.3)

as a vector space over R.

Proof. Note that the dimension of a manifold equals the dimension of the tangent

space at any point on the manifold. Now, the “⊂” direction of (2.2.2) is clear since

FE(µ, S) is contained in both TEd(µ) and
√
S · StEd(N). On the other hand, F

not orthodecomposable is equivalent to (i) of Theorem 2.1.4, which combines with

(2.2.1) to imply
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dim(FE(µ, S) ∩ B) = dim(TEd(µ)) + dim(
√
S · StEd(N))− dim(SEd×N (c))

= dim(TFTEd(µ)) + dim(TF
√
S · StEd(N))− dim(TFSEd×N (c))

= dim(TFTEd(µ) ∩ TF
√
S · StEd(N)).

for some open ball B ⊂Md×N(E). Thus, TFFE(µ, S) and TFTEd(µ)∩TF
√
S ·StEd(N)

have the same dimension and we may conclude their equality. Moreover, combining

(1.4.5), (1.4.6), and (1.4.7) with (2.2.1) yields (2.2.3).

It should be noted that this dimension calculation is a generalization of the one

encountered in [23] and equivalent to the one performed in [40].

2.3 Explicit bases for TFFE(µ, S)

In order to construct an explicit basis for TFFE(µ, S), we must first extract a

non-orthodecomposable basis for Ed. The next proposition demonstrates that this

is possible at the nonsingular points.

Proposition 2.3.1. Suppose µ and S satisfy the usual conditions. Then F =

[f1 · · · fN ] ∈ FE(µ, S) is not orthodecomposable if and only if there is a d-set A ⊂ [N ]

such that FA is a non-orthodecomposable basis for Ed

Proof. First suppose that F contains a non-orthodecomposable basis. Since this

basis cannot be split into nontrivial mutually orthogonal collections, any splitting

of F into two mutually orthogonal sets must be trivial. Thus, F is not orthodecom-

posable.

18



If F is not orthodecomposable, then we build A inductively beginning with

A = {i} for any i ∈ [N ]. Suppose we have added indices to A so that FA is not

orthodecomposable and also linearly independent. If FA is a basis for Ed, then we

stop. Otherwise, there is an index j such that FA∪{j} is not orthodecomposable and

linearly dependent (if not, then FA and F[N ]\A is a nontrivial splitting of F into

mutually orthogonal collections). Once |A| = d, this process ceases and FA is a

non-orthodecomposable basis.

We shall now describe the process for constructing a basis for TFFE(µ, S). Let

A be the set of indices from Proposition 2.3.1. Since γ(F ) restricted to the indices

in A is connected by Theorem 2.1.4 let T ⊂ γ(F ) be a rooted spanning tree on A.

Let T0 be the graph containing just the root of T and inductively define Tk+1 to

be the subtree of T containing all of the children of Tk. Since T is finite, we let n

denote the first k such that Tk = T , and we shall use νk to denote the vertices in

Tn−k+1 but not in Tn−k for all k ∈ [n]. For each i ∈ A that is not the root, there is

a smallest k such that i is a vertex in Tk, and we let ρ(i) be the unique parent of i

in Tk.

The basis that we shall construct is most neatly defined as a union of two

disjoint collections indexed by the sets

Λ1 =


([N ] \ A)× [d− 1] if E = R

([N ] \ A)× [2d− 1] if E = C

and

Λ2 = {(i, j, 0) ∈ A× A× {0} : i < j and (i, j) 6∈ E(T )}
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if E = R, and

Λ2 = {(i, j, ε) ∈ A× A× {0, 1} : i < j and (i, j) 6∈ E(T ), or i = j and ε = 1}

if E = C. We now proceed to describe the procedure for constructing members

indexed by Λ1.

For each i ∈ [N ]\A, we fix an orthonormal basis {y(i)j }j∈[2δE,Cd−1]
of TfiSEd(µi),

where δE,C = 1 if E = C and equals zero otherwise. For every α = (i, j) ∈ Λ1, we

shall construct an N by N skew-symmetric (or skew-Hermitian) Zα = [zαkl] so that

V α = FZα is a member of the basis that we seek to construct.

First, we fix the ith column and row of Zα:

Zα
A×{i} = −(Zα

{i}×A)
∗ = F−1

A y
(i)
j (2.3.1)

and

Zα
([N ]\A)×{i} = −(Zα

{i}×([N ]\A))
∗ = 0. (2.3.2)

For all k ∈ [N ] \ A with k 6= i, we set

Zα
[N ]×{k} = −(Zα

{k}×[N ])
∗ = 0. (2.3.3)

All that remains is to fix Zα
A×A, and we first set zαkl = −(zαlk)∗ = 0 for all k < l such

that (k, l) ∈ A× A is not an edge in T . For each k ∈ νm, we inductively define

zαρ(k),k = −(zαk,ρ(k))∗ = −

Re
∑

l∈[N ]\{k,ρ(k)}

〈fl, fk〉 zlk

 /
〈
fρ(k), fk

〉
(2.3.4)

as m ∈ [n] increases. At each step of this induction, the sum is well defined because

the values of zαkl have all been fixed by the previous step. Also,
〈
fk, fρ(k)

〉
6= 0 since
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(k, ρ(k)) or (ρ(k), k) is an edge in T ⊂ γ(F ). We conclude our construction of Zα

by ensuring that it has zero diagonal.

Proposition 2.3.2. With Zα the skew-symmetric (skew-Hermitian) matrix con-

structed above, V α = FZα satisfies

(i) the ith column of V α is y
(i)
j ;

(ii) for all k ∈ [N ] \ (A ∪ {i}), the kth column of V α is 0;

(iii) V α ∈ TFFE(µ, S).

Proof. Because of (2.3.1) and (2.3.2), we have that the ith column of V α = FZα is

FZα
[N ]×{i} = FAZ

α
A×{i} + F[N ]\AZ

α
([N ]\A)×{i} (2.3.5)

= FAF
−1
A y

(i)
j + F[N ]\A0 (2.3.6)

= y
(i)
j . (2.3.7)

This shows that (i) holds. Our choice in (2.3.3) ensure that V α satisfies property

(ii), and we now proceed to demonstrate that (iii) holds.

Since γ(F ) is connected, Corollary 2.2.1 implies that

TFFE(µ, S) = TF
√
S · StEd(N) ∩ TFTEd(µ). (2.3.8)

Clearly,

V α = FZα ∈ TF
√
S · StEd(N){X = FZ ∈Md×N(E) : Z = −Z∗},

so (2.3.8) implies that we only need to show

V α = [vα1 · · · vαN ] ∈ TFTEd(µ). (2.3.9)
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For k = i, we have that vαi = yij ∈ TfiSEd(µi) and hence

Re 〈vαk , fk〉 = Re
〈
y
(i)
j , fi

〉
= 0.

If k ∈ [N ] \ A and k 6= i, then vαk = 0 and

Re 〈vαk , fk〉 = 0.

For each m ∈ [n], and each k ∈ νm we have

Re 〈vαk , fk〉 = Re

〈 ∑
l∈[N ]\{k}

flz
α
lk, fk

〉
= Re

∑
l∈[N ]\{k}

〈fl, fk〉 zαlk (2.3.10)

= Re
〈
fρ(k), fk

〉
zαρ(k),k +Re

∑
l∈[N ]\{k,ρ(k)}

〈fl, fk〉 zαlk (2.3.11)

= −Re
∑

l∈[N ]\{k,ρ(k)}

〈fl, fk〉 zαlk +Re
∑

l∈[N ]\{k,ρ(k)}

〈fl, fk〉 zαlk(2.3.12)

= 0 (2.3.13)

by (2.3.4). Finally, if k is the root of T , then

Re 〈vαk , fk〉 = 0

since we have verified that Re 〈vαl , fl〉 = 0 for l ∈ [N ] \ {k} and Zα skew-Hermitian

(orthogonal to F ∗F Hermitian) implies

∑
k∈[N ]

Re 〈vαk , fk〉 = Re
∑
k∈[N ]

∑
l∈[N ]

zαlk 〈fk, fl〉
∗ = Re 〈Zα, F ∗F 〉 = 0

For each α = (i, j, ε) ∈ Λ2, we now construct a skew-symmetric(Hermitian)

matrix Zα so that W α = FZα is a member of the second collection. For this

collection, we immediately set

zαkl = −(zαlk)∗ = 0
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for all (k, l) 6∈ A× A, and all (k, l, ε) ∈ Λ2 \ {α} with k < l. We set

zαij = −(zαij)∗ =
√
−1ε, (2.3.14)

and inductively define

zαρ(k),k = −(zαk,ρ(k))∗ = −

Re
∑

l∈[N ]\{k,ρ(k)}

〈fl, fk〉 zlk

 /
〈
fρ(k), fk

〉
(2.3.15)

for k ∈ νm as m ∈ [n] increases. At this point, all zαkl have been defined except for

diagonal elements, and the undefined diagonal elements are now set to zero. The

proof of the following proposition follows from an argument similar to the one used

to prove Proposition 2.3.2.

Proposition 2.3.3. With Zα the skew-symmetric (skew-Hermitian) matrix con-

structed above, W α = FZα satisfies

(i) for all k ∈ [N ] \ A, the kth column of W α is 0;

(ii) Wα ∈ TFFE(µ, S).

We conclude this subsection by verifying that {V α}α∈Λ1 ∪ {Wα}α∈Λ2 is a basis for

the tangent space.

Proposition 2.3.4. Under the assumptions of this subsection, Ω = {V α}α∈Λ1 ∪

{W α}α∈Λ2 is a basis for TFFE(µ, S).

Proof. We know that each member of Ω is in TFFE(µ, S) by Propositions 2.3.2 and

2.3.3. Since the number of elements in Ω coincides with the dimension of TFFE(µ, S),

if Ω is a linearly independent collection, then it is a basis. We now show that Ω is

a linearly independent collection.
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Suppose

∑
α∈Λ1

aαV
α +

∑
α∈Λ2

bαW
α = 0, (2.3.16)

where {aα}α∈Λ1 ∪ {bα}α∈Λ2 ∈ R. For each i ∈ [N ] \ A, this means that

∑
α∈Λ1

aαv
α
i +

∑
α∈Λ2

bαw
α
i = 0.

Part (i) and (ii) of Proposition 2.3.2 and part (i) of Proposition 2.3.3 then imply

that ∑
j∈[2δE,Cd−1]

a(i,j)y
(i)
j = 0.

Since the y(i)j were chosen to be orthonormal, they are linearly independent and we

conclude that a(i,j) = 0 for all j ∈ [2δE,Cd− 1]. Since i was arbitrary, aα = 0 for all

α ∈ Λ1 and (2.3.16) reduces to

∑
α∈Λ2

bαW
α = 0.

This in turn reduces to ∑
α∈Λ2

bαFAZ
α
A×A = 0.

by part (i) of Proposition 2.3.3. By our choice of A, FA is invertible, and this

equation becomes ∑
α∈Λ2

bαZ
α
A×A = 0.

By construction, {Z(i,j,ε)
A×A }ε∈{0,1} are the only Zα in this collection that have zαij 6= 0

if i < j. This implies that

b(i,j,0)Z
(i,j,0) + b(i,j,1)Z

(i,j,1) = 0.
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Since z
(i,j,0)
ij is real and z

(i,j,1)
ij is purely imaginary, we conclude that b(i,j,ε) = 0

for ε = 0, 1. Since i and j were arbitrary, and b(i,i,1) = 0 for all i ∈ A follows

similarly, we conclude that bα = 0 for all α ∈ Λ2. This concludes the proof of linear

independence.
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Chapter 3

Explicit analytic coordinate systems on FE(µ, S)

3.1 A motivating example

As we briefly mentioned in the introduction, the (µ, S)-frame varieties should

consist of frames that locally split into a collection that one can freely articulate,

and a basis. The motion of the basis compensates for the motion of the collection

that can be freely articulated, but the complication that arises is that the basis

contributes to the degrees of freedom. This does not occur in R
2, and this is one

reason why (µ, S)-frame varieties are easily characterized if d = 2 and E = R (see

Theorem 3.3 of [3]). For d > 2, things quickly become more complicated.

In this example, we demonstrate how coordinates can be obtained for a space

of bases in R
3 with fixed lengths and a fixed frame operator. This is the simplest

nontrivial case, but our approach requires a decent amount of effort. The benefit is

that the approach of this example works in general, with minor modifications.

We consider the case E = R, N = d = 3, µ = [1 1 1]T ,

F =


1
√
2/2 0

0
√
2/2

√
2/2

0 0
√
2/2

 , and S = FF T =


3/2 1/2 0

1/2 1 1/2

0 1/2 1/2

 .

Application of Corollary 2.2.1 shows that

dim(FR(µ, S)) = 1
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as a real algebraic variety. Consequently, we seek formal parameterizations of

FR(µ, S) with the form

F (t) =


x1(t) y1(t) z1(t)

x2(t) y2(t) z2(t)

t y3(t) z3(t)

 , F (0) = F.

The constraints are diag(F T (t)F (t)) = [1 1 1]T and

F (t)F (t)T = S ⇐⇒ F (t)TS−1F (t) = F (t)T


1 −1 1

−1 3 −3

1 −3 5

F (t) = I3×3.

We proceed inductively through the columns of F (t). The constraints that only

involve the first column are the normality condition and the condition imposed by

S11 = 1,

x21 + x22 + t2 = 1

x21 + 3x22 + 5t2 − 2x1x2 + 2x1t− 6x2t = 1.

Viewing these two multinomials as polynomials in x2 with coefficients in x1 and t,

we have

x22 + (x21 + t2 − 1) = 0

3x22 + (−2x1 − 6t)x2 + (x21 + 5t2 + 2x1t− 1) = 0.

To perform elimination on this system, we need to invoke the following proposition

(which is a simple application of Gaussian elimination):
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Proposition 3.1.1. Suppose αi, βi ∈ R for i = 0, 1, 2 and α2, β2 6= 0. The quadratics

p = α2ξ
2 + α1ξ + α0 and q = β2ξ

2 + β1ξ + β0 have a mutual zero if and only if the

Bézout determinant (see [36]) satisfies

Bz(p, q) = (α2β1 − α1β2)(α1β0 − α0β1)− (α2 beta0 − α0β2)
2 = 0. (3.1.1)

Applying this propostion to the last two quadratics, we can eliminate x2 to obtain

0 = [(1)(−2x1 − 6t)− 0(3)][0(x21 + 5t2 + 2x1t− 1)− (x21 + t2 − 1)(−2x1 − 6t)]

−[(1)(x21 + 5t2 + 2x1t− 1)− (3)(x21 + t2 − 1)]2

= 8x41 + 16tx31 + (36t2 − 12)x21 + (32t3 − 16t)x1 + (40t4 − 28t2 + 4).

Solving for x1 in terms of t (using a computer algebra package!), we obtain the four

possible solutions:

x1(t) = ±
√
1− 2t2,−t± 1

2

√
−6t2 + 2

The condition x1(0) = 1 leaves us with just one possible solution:

x1(t) =
√
1− 2t2

and we readily verify that this implies x2(t) = t. Having solved for the first column,

we consider the contraints that have not been satisfied, but which only depend on

the first and second columns:

y21 + y22 + y23 = 1

y21 + 3y22 + 5y23 − 2y1y2 + 2y1y3 − 6y2y3 = 1

xTS−1y =
√
1− 2t2y1 −

√
1− 2t2y2 + (

√
1− 2t2 + 2t)y3 = 0 (3.1.2)
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Locally, we know that x1(t) 6= 0, so we may solve the third equation for y1 to obtain

y1 = y2 − (1 + 2t/
√
1− 2t2)y3.

This allows us to elimnate y1 from the first two equations, and we may view these

new equations as quadratics in y2 with coefficients in y3 and t:

2y22 + [(−2− 4t/
√
1− 2t2)y3]y2 + [(2 + 4t/

√
1− 2t2 + 4t2/(1− 2t2))y23 − 1] = 0

2y22 + [−4y3]y2 + [(4 + 4t2/(1− 2t2))y23 − 1] = 0

We now solve for y3 in terms of t so that the Bézout determinant of this system

vanishes, and we obtain only three solutions,

y3(t) = 0,±1

2

√
2− 4t2.

Since y3(0) = 0, we are left with the solution y3(t) = 0. Substitution into (3.1.2)

immediately implies that y1(t) = y2(t) for all t, so we must conclude that y1(t) =

y2(t) =
√
2/2 for all t.

We now solve for the final column, z. Noting that conditions on y are also

imposed upon z, we see that

z3(t) = 0,±1

2

√
2− 4t2.

However, z3(0) =
√
2/2, so we have that z3(t) = 1

2

√
2− 4t2. A similar line of

reasoning reveals that

z2(t) = ±
√
2/2,±1

2

√
2− 4t2.

Invoking the orthogonality condition,

yTS−1z =
√
2z2 −

√
2z3 = 0
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we may eliminate the constant solutions, and z2(0) =
√
2/2 leaves us with z2(t) =

1
2

√
2− 4t2. Using the spherical condition z21 + z22 + z23 = 1 and the orthogonality

condition xTS−1z = 0, we obtain z1(t) = −
√
2t. Thus, the final solution is

F (t) =


√
1− 2t2

√
2/2 −

√
2t

t
√
2/2 1

2

√
2− 4t2

t 0 1
2

√
2− 4t2

 .

This parameterization is relatively simple because the first and third columns form

an orthonormal basis of span{x(0), z(0)} for all t. If we had observed this at the

beginning of the example, the parameterizations would follow very quickly. However,

a generic frame does not contain an orthonormal basis and the approach of this

example is generically effective.

3.2 Existence of structured, local coordinate systems on FR(µ, S)

In this section, we demonstrate the existence of structured, locally well-defined

charts around a generic F ∈ FR(µ, S). An essential ingredient for the existence

proofs of this section is the extraction of a “good” basis B from F . After B is

extracted, we can shuffle/rotate FR(µ, S) on the Hilbert-Schmidt sphere so that

an orthogonal projection onto a relatively simple subspace of Md×N(R) has the

transformed version of F as a regular point of the orthogonal projection (that is,

the Jacobian applied to the respective tangent spaces is onto).
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3.2.1 The case N = d

If N = d, then Corollary 2.2.1 tells us that the intrinsic dimension of a generic,

nonempty FR(µ, S) is

dim(FR(µ, S)) = (d− 1)d+
∑
n∈[d]

(d− n)− (d2 − 1)

= d2 − d+
∑

n∈[d−1]

n− d2 + 1

= −d+ 1 +
∑

n∈[d−1]

n

=
∑

n∈[d−2]

n,

which leads us to search for local coordinates around F ∈ FR(µ, S) that depend

solely upon the entries below the subdiagonal. Ultimately, this is not what holds

generally, but the partial result that we obtain is more easily digested than the

general result.

First, we establish some notation. Let

∆R = {L ∈Md×d(R) : lij = 0 if i ≤ j + 1}

denote the space of lower triangular matrices with zeros on the diagonal and subdi-

agonal, and note that

dim(∆R) =
∑

n∈[d−2]

n

since there are d− 2 free variables in the first column, d− 3 in the second column,

and so forth. Our goal is to show the existence of a local parameterization with a
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form analogous to

Φ(L) = Φ





0 0 · · · 0 0 0 0

0 0 · · · 0 0 0 0

l31 0 · · · 0 0 0 0

l41 l42 · · · 0 0 0 0

...
...

. . .
...

...
...

...

ld−1,1 ld−1,2 · · · ld−1,d−3 0 0 0

ld1 ld2 · · · ld,d−3 ld,d−2 0 0





=



φ11(L) φ12(L) · · · φ1,d−3(L) φ1,d−2(L) φ1,d−1(L) φ1d(L)

φ21(L) φ22(L) · · · φ2,d−3(L) φ2,d−2(L) φ2,d−1(L) φ2d(L)

l31 φ32(L) · · · φ3,d−3(L) φ3,d−2(L) φ3,d−1(L) φ3d(L)

l41 l42 · · · φ4,d−3(L) φ4,d−2(L) φ4,d−1(L) φ4d(L)

...
...

. . .
...

...
...

...

ld−1,1 ld−1,2 · · · ld−1,d−3 φd−1,d−2(L) φd−1,d−1(L) φd−1,d(L)

ld1 ld2 · · · ld,d−3 ld,d−2 φd,d−1(L) φdd(L)


= [φ1(L) φ2(L) · · ·φd(L)],

where Φ : N → FR(µ, S) with N ⊂ ∆R a neighborhood of 0. We now state a partial

result whose proof we shall use as a scaffolding for the more general results to come.

For the following proposition, recall that a Hamiltonian path in a graph is a chain

that visits each vertex exactly once.

Proposition 3.2.1. Let µ ∈ Rd
+, suppose S ∈Md×d(R) is SPD, and assume that µ

and S satisfy the usual conditions. If γ(F ) of F ∈ FR(µ, S) contains a Hamiltonian
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path, then there is an orthogonal matrix Q ∈ O(d) and a d by d permutation matrix

P such that the orthogonal projection

π : TQTFPTFR(Pµ,QTSQ)→ ∆R

is injective.

We then obtain the following corollary due to the Real-Analytic Inverse Func-

tion Theorem (see [30]) coupled with a counting argument.

Corollary 3.2.2. If the conditions of Theorem 3.2.1 are satisfied, then there is a

unique, locally well-defined, real-analytic inverse of π, Φ : ∆R → FR(Pµ,QTSQ).

Remark 3.2.3. For Φ given above, QΦ(L)P is a parameterization about F ∈

FR(µ, S).

proof of Proposition 3.2.1. First, note that F is not orthodecomposable since ex-

istence of a Hamiltonian path implies that γ(F ) is connected. Moreover, for any

orthogonal Q and any permutation matrix P , we have that

(QTFP T )T (QTFP T ) = PF TQQTFP T = PF TFP T ,

and hence γ(QTFP T ) is obtained by permuting the nodes of γ(F ). Consequently,

QTFP T ∈ FR(Pµ,QTSQ) is not orthodecomposable.

Now, we construct P and Q. Fix a terminal vertex of the Hamiltonian path,

i1, and let ik denote the kth ancestor of i1 in the Hamiltonian path. The map

ik 7→ k is then a permutation of [d], and we let P be the matrix realization of this

permutation acting on rows. Let Q denote the unique (since FP T is of full rank)

orthogonal matrix obtained from the QR-decomposition of FP T .
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We shall now work exclusively with the nonorthodecomposable, upper trian-

gular matrix R = QTFP T , noting that G = RTR has nonzero entries along the

subdiagonal by our choice of P . Also, set ν = Pµ and S ′ = QTSQ. Let {ei}i∈[d]

denote the standard orthonormal basis, and set Ek = span{ei}i∈[k]. It is trivial to

establish that each Ek is an invariant subspace of R−1, and we shall use this fact

momentarily.

Suppose π(X) = 0, where X = [x1 · · ·xd] ∈ TRF(ν, S ′),

TRF(ν, S ′) = {X = RZ ∈Md×d(R) : Z = −ZT and diag(GZ) = 0},

and note that xk = Rzk ∈ Ek+1 for each k < d because π(X) = 0. In particular, we

have that x1 ∈ E2.

Now, z1 ∈ E⊥
1 since it is the first column in a skew symmetric matrix. Ad-

ditionally, z1 = R−1x1 and hence z1 ∈ E2 since E2 is an invariant subspace of

R−1. Combining these two facts, we have that z1 = z21e2. Now, the condition

diag(GZ) = 0 implies

0 = eT1GZe1 = z21e
T
1Ge2 = z21g12

By construction, g12 6= 0, and we have that z1 = 0 and x1 = Rz1 = 0.

Proceeding inductively, suppose that the first k ≤ d − 2 columns of X are

zero. By invertibility of R, we must have that the first k columns of Z are also zero

and hence zk+1 ∈ E⊥
k+1. Since xk+1 ∈ Ek+2, it follows that zk+1 = R−1xk+1 ∈ Ek+2.

Consequently, zk+1 = zk+2,k+1ek+2 and

0 = eTk+1GZek+1 = zk+2,k+1e
T
k+1Gek+2 = zk+2,k+1gk+1,k+2

34



implies zk+1 = 0 since gk+1,k+2 6= 0 by construction. Thus, xk+1 = Rzk+1 = 0.

By induction, the first d − 1 columns of X are zero and hence the first d − 1

columns of Z are also zero. Since Z is skew symmetric, we conclude that Z = 0 and

X = RZ = 0. Thus, π is injective and the proof is complete.

Remark 3.2.4. If d > 3, then we are not ensured the existence of a Hamiltonian

path in the correlation network of a nonsingular point in FE(µ, S). On the other

hand, an argument in the spirit of this proposition also carries through if the corre-

lation network contains a vertex which shares an edge with every other vertex, but

if d > 4, then we are not ensured the existence of such a vertex or a Hamiltonian

path in the correlation network of a nonsingular point in FE(µ, S).

Moreover, shuffling around ∆R and finding a clever choice of Q and P cannot

extend this argument since any connected graph can be a correlation network. This

means that, in general, application of the inductive argument ends on a column zk

of Z for which the information in xk is insufficient to annihilate all but one entry of

zk.

The key to extending the previous proposition is to see the application of Q as the

action of

Q∗ = [QQ · · · Q] ∈
∏
i∈[d]

O(d) = Od(d)

on TEd(Pµ), which is denoted Q∗ ? X. Thus, to generalize the proposition, we

exploit the fact that TEd(Pµ) is a homogeneous space for Od(d). For a general

Q = [Q1 · · ·Qd] ∈ Od(d),

Q ? X = [Q1x1 · · ·Qdxd]
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and we then have that

Q∗ ? X = [Qx1 · · ·Qxd] = QX.

We shall also use QT to denote [QT
1 · · ·QT

d ]. From this vantage point, the central

argument of the preceding proposition can be applied almost verbatim to obtain the

general result.

Theorem 3.2.5. Let µ ∈ Rd
+, suppose S ∈ Md×d(R) is SPD, assume that µ and S

satisfy the usual conditions, and suppose that γ(F ) is connected for F ∈ FR(µ, S).

Then there is a Q ∈ Od(d) and a d by d permutation matrix P such that the

orthogonal projection

π : QT ? TFPTFR(Pµ, S)→ ∆R

is injective.

Proof. We first construct P while performing some bookkeeping that shall prove

useful later in the proof. Let T be a spanning tree in the correlation network of

F (which exists because γ(F ) is connected). Inductively choose ik+1 to be a leaf

of Tk+1, where Tk+1 = Tk \ {ik} and T1 = T . After extracting this sequence, for

k ≤ d−1, set αk = l, where il is the only vertex sharing an edge with ik in Tk. Note

that k < αk. The sequence {ik}k∈[d] induces the permutation ik 7→ k, and P is the

matrix realization of this permutation acting on column entries. By construction,

we have that the (k, αk)
th entry of PF TFP T is nonzero for all k ∈ [d]. Without loss

of generality, we replace FP T with F , Pµ with µ, and PF TFP T with G for the

remainder of the proof.
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Now, we construct Q. For k ≤ d, set Pk = Id×d if k + 1 = αk or if k = d;

otherwise, let Pk = P T
k be the matrix realization of the transposition (k + 1 αk)

acting on row entries. Let QkRk = FP T
k denote the QR-factorization of FP T

k . We

set Q = [Q1, . . . , Qd]. Let {ei}i∈[d] be the standard orthonormal basis in R
d, set

Ek = span{ei}i∈[k], and note that El is an invariant subspace of R−1
k for all k, l ∈ [d].

Since F is a nonsingular point of FR(µ, S), TFFR(µ, S) is well-defined and

QT ? TFFR(µ, S) = {X = QT ? (FZ) ∈Md×d(R) : Z = −ZT , diag(GZ) = 0}.

By setting wk = Pkzk, we have that

QT ? (FZ) = [QT
1 Fz1 · · ·QT

dFzd] = [R1P1z1 · · ·RdPdzd] = [R1w1 · · ·Rdwd].

Also note that zk, wk ∈ span{ek}⊥ because Z is skew symmetric.

Suppose π(X) = 0 for X = [x1 · · ·xd] ∈ QT ? TFFR(µ, S). Then xk ∈ Ek+1

for k ∈ [d − 1], and hence wk = R−1
k xk ∈ Ek+1 for all k ∈ [d − 1]. Since w1 ∈ E⊥

1 ,

we have that w1 = zα1,1e2 and z1 = P1w1 = zα1,1eα1 . The constraint diag(GZ) = 0

then implies

0 = eT1GZe1 = zα1,1e
T
1Geα1 = zα1,1g1,α1 .

We conclude that z1 = 0 since g1,α1 6= 0, and thus x1 = R1P1z1 = 0. Proceeding

inductively, if the first k ≤ d − 2 columns of X are zero, then the first k columns

of Z are zero, and hence wk+1, zk+1 ∈ E⊥
k+1 by skew-symmetry of Z. Since xk+1 ∈

Ek+2, wk+1 = R−1
k+1xk+1 ∈ Ek+2, and then wk+1 = zαk+1,k+1ek+2. Thus, zk+1 =

zαk+1,k+1eαk+1
and

0 = eTk+1GZek+1 = zαk+1,k+1e
T
k+1Geαk+1

= zαk+1,k+1gk+1,αk+1
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implies zk+1 = 0 since gk+1,αk+1
6= 0 by construction. We conclude that xk+1 =

Rk+1Pk+1zk+1 = 0.

Following this induction up to k + 1 = d − 1, we have that the first d − 1

columns of X are zero. This implies that the first d− 1 columns of Z are zero, and

hence Z = 0 by skew-symmetry. Thus, X = 0 and π is injective.

3.2.2 The case N > d

We begin by noting that the dimension of a generic FR(µ, S),

dim(FR(µ, S)) = (d− 1)N +
∑
i∈[d]

(N − i)− (Nd− 1)

= (d− 1)(N − d) +
∑

i∈[d−2]

i

follows from (2.2.3). This quantity leads us to suspect that we can obtain a param-

eterization of the form Φ(Θ, L) = [Γ(Θ)B(Θ, L)], where L ∈ ∆R,

Θ ∈ ΩR = {X ∈Md×(N−d)(R) : x1i = 0,∀i ∈ [N − d]},

Γ(Θ) =



φ11(θ1) φ11(θ2) · · · φ1,N−d(θN−d)

θ21 θ22 · · · θ2,N−d

...
...

. . .
...

θd1 θd2 · · · θd,N−d


,

and where B(Θ, L) has the form


φ1,N−d+1(Θ, L) φ1,N−d+2(Θ, L) · · · φ1,N−3(Θ, L) φ1,N−2(Θ, L) φ1,N−1(Θ, L) φ1N (Θ, L)

φ2,N−d+1(Θ, L) φ2,N−d+2(Θ, L) · · · φ2,N−3(Θ, L) φ2,N−2(Θ, L) φ2,N−1(Θ, L) φ2N (Θ, L)

l31 φ3,N−d+2(Θ, L) · · · φ3,N−3(Θ, L) φ3,N−2(Θ, L) φ3,N−1(Θ, L) φ3N (Θ, L)

l41 l42 · · · φ4,N−3(Θ, L) φ4,N−2(Θ, L) φ4,N−1(Θ, L) φ4N (Θ, L)

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

.

.

.

.

.

.

ld−1,1 ld−1,2 · · · ld−1,d−3 φd−1,N−2(Θ, L) φd−1,N−1(Θ, L) φd−1,N (Θ, L)

ld1 ld2 · · · ld,d−3 ld,d−2 φd,N−1(Θ, L) φdN (Θ, L)



.
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Note that Γ(Θ) and B(Θ, L) are (N − d) by d and d by d arrays, respectively. Our

suspicion is now justified by the main theorem of this subsection.

Theorem 3.2.6. Let µ ∈ R
N
+ and SPD S ∈ Md×d(R) satisfy the usual conditions,

and suppose that γ(F ) is connected for a fixed F ∈ FR(µ, S). Then there is a

Q ∈ ON(d) and an N×N permutation matrix P such that the orthogonal projection

π : QT ? TFPTFR(Pµ, S)→ ΩR ⊕∆R

is injective.

Proof. We shall first show that it is possible to extract a basis of Rd, B, from

F such that γ(B) is connected. To verify this fact, we begin with any vector,

fi1 in F . Proceeding inductively, suppose the first n − 1 ≤ d − 1 vectors have

been chosen so that they are linearly independent and have a connected correlation

network. If there is no fin 6∈ span{fik}k∈[n−1] with 〈fik , fin〉 6= 0 for some k ∈

[n − 1], then F = F1 ∪ F2 where F1 = {fi ∈ F : fi ∈ span{fik}k∈[n−1]} 6= ∅ and

F2 = {fi ∈ F : fi ∈ span{fik}⊥k∈[n−1]} 6= ∅. Thus, F is orthodecomposable under this

assumption, which contradicts the fact that γ(F ) connected. Thus, there is an fin 6∈

span{fik}k∈[n−1] with 〈fik , fin〉 6= 0. These properties of fin imply that {fik}k∈[n] is

a linearly independent set with a connected correlation network. Thus, induction

supplies us with a basis B = {fik}k∈[d] ⊂ F that has a connected correlation network.

With B in hand, we can construct P . Let T be a spanning tree in the correla-

tion network of B. Inductively choose ikn to be a leaf of Tn, where Tn = Tn−1\{ikn−1}

and T1 = T . After extracting this sequence, for n ≤ d−1, set αN−d+n = N −d+m,

where ikm is the only vertex sharing an edge with ikn in Tn. Note that N − d+ n <

39



αN−d+n. Let σ be any permutation of [N ] satisfying ikn 7→ N − d + n, and set P

the matrix realization of this permutation acting on column entries. By construc-

tion, we have that the (N − d + n, αN−d+n)
th entry of PF TFP T is nonzero for all

n ∈ [d]. Without loss of generality, we replace FP T with F = [ΓB], Pµ with µ, and

PF TFP T with G for the remainder of the proof. Note that our new B is a basis.

Now, we construct Q. For k ∈ [N − d], let Qk ∈ SO(d) be the unique rotation

taking µke1 7→ fk that fixes span{fk, e1}⊥. For k ∈ [N − d+1, N − 1], set Pk = Id×d

if k + 1 = αk; otherwise, let Pk = P T
k be the matrix realization of the transposition

(k+1 αk) acting on row entries. If k = N , set Pk = Id×d. For each k ∈ [N−d+1, N ],

let QkRk = BP T
k denote the QR-factorization of BP T

k . We set Q = [Q1, . . . , QN ].

Let {ei}i∈[d] be the standard orthonormal basis in R
d, set Ek = span{ei}i∈[k], and

note that El is an invariant subspace of R−1
k for all k, l ∈ [d].

Since F is a nonsingular point of FR(µ, S), TFFR(µ, S) is well-defined and

QT ? TFFR(µ, S) = {X = QT ? (FZ) ∈Md×N(R) : Z = −ZT , diag(GZ) = 0}.

For any X ∈ QT ? TFF(µ, S) and any W = −W T with FW = 0, note that X =

Q ? (FZ) = Q ? (F (Z +W )). Thus, we may always alter Z by such a W without

changing X. Moreover, FW = 0 implies GW = 0, and hence the diagonal of

G(Z +W ) remains zero.

Suppose π(X) = 0 for X = [x1 · · ·xN ] = QT ? (FZ) ∈ QT ? TFF(µ, S). For

each k ∈ [N − d], this implies that xk = cke1 = QT
kFzk, and thus

ck
µk

fk = ckQke1 = Fzk.
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However,

0 = eTkGZek = fT
k Fzk =

ck
µk

fT
k fk = ckµk

implies xk = 0 since µk 6= 0. Moreover, Fzk = 0 if k ∈ [N − d]. We now claim that

Z can be chosen to have the form

Z =

 0[N−d]×[N−d] 0[N−d]×[N−d+1,N ]

0[N−d+1,N ]×[N−d] Z[N−d+1,N ]×[N−d+1,N ]

 . (3.2.1)

without loss of generality. To show this, suppose

Z =

 Z[N−d]×[N−d] Z[N−d]×[N−d+1,N ]

Z[N−d+1,N ]×[N−d] Z[N−d+1,N ]×[N−d+1,N ]

 ,
set

W =

 Z[N−d]×[N−d] Z[N−d]×[N−d+1,N ]

Z[N−d+1,N ]×[N−d] −B−1ΓZ[N−d]×[N−d]Γ
TB−T

 ,
and note that ΓZ[N−d]×[N−d]+BZ[N−d+1,N ]×[N−d] = 0 since the first N−d rows of FZ

are zero. Since B is invertible, we have that Z[N−d+1,N ]×[N−d] = −B−1ΓZ[N−d]×[N−d].

Consequently,

(FW )[d]×[N−d+1,N ] = ΓZ[N−d]×[N−d+1,N ] −B(B−1ΓZ[N−d]×[N−d]Γ
TB−T )

= ΓZ[N−d]×[N−d+1,N ] − ΓZ[N−d]×[N−d]Γ
TB−T

= ΓZ[N−d]×[N−d+1,N ] + ΓZT
[N−d+1,N ]×[N−d]

= ΓZ[N−d]×[N−d+1,N ] − ΓZ[N−d]×[N−d+1,N ]

= 0,

and hence both blocks of FW vanish. Thus, we may replace Z with Z −W (which

has the form of (3.2.1)) since FW = 0 and W = −W T .

41



Finally, applying the concluding argument in the proof of Theorem 3.2.5 (now

adapted to the correlation structure of B) demonstrates that Z[N−d+1,N ]×[N−d+1,N ] =

0. This is possible because of our initial choice of permutation, which required the

connectivity of the correlation network of B. We conclude that X = 0, and hence

π is injective.

Corollary 3.2.7. If the conditions of Theorem 3.2.6 are satisfied, then there is

a unique, locally well-defined, real-analytic inverse of π, Φ : ΩR ⊕ ∆R → QT ?

FR(Pµ, S).

Remark 3.2.8. If Φ is as in the above corollary, then (Q ?Φ(Θ, L))P is a parame-

terization around F ∈ FR(µ, S).

3.3 Existence of structured, local coordinate systems on FC(µ, S)

The complex case and the real case are very similar, but there is right action

of the N -torus on a given F ∈ FE(µ, S) that embeds an N -torus into FE(µ, S). This

action is accomplished by taking the product

F ·D(ϑ),
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where ϑ ∈ R
N and D(ϑ) is a diagonal matrix with diag(D(ϑ)) = [eiϑ1 · · · eiϑN ]T .

This is also apparent in the following dimension calculation:

dim(FC(µ, S) = (2d− 1)N +
∑
i∈[d]

(2N − 2i+ 1)− (2Nd− 1)

=
∑
i∈[d]

(N − i) +
∑
i∈[d]

(N − i+ 1)− (N − 1)

=
∑
i∈[2,d]

(N − i) +
∑
i∈[d]

(N − i+ 1)

=
∑
i∈[2,d]

(N − d) + (d− i) +
∑
i∈[d]

(N − d) + (d− i+ 1)

= (d− 1)(N − d) +
∑
i∈[2,d]

(d− i) + d(N − d) +
∑
i∈[d]

(d− i+ 1)

= (2d− 1)(N − d) +
∑

i∈[d−2]

i+
∑
i∈[d]

i

= N + (2d− 2)(N − d) +
∑

i∈[d−2]

i+
∑

i∈[d−1]

i (3.3.1)

Note that (3.3.1) collapses to d+
∑

i∈[d−2] i+
∑

i∈[d−1] i if N = d. Now, the leading

term, N , reflects the embedding of the N -torus. Since the degrees of freedom arising

from these phase changes are easily parameterized, we first determine how to remove

them from consideration.

As in the real case, we shall define a structured subspace that only supports

the coordinates. Let

ΩC = {X ∈Md×(N−d)(C) : x1i = 0 for all i ∈ [N − d]},

∆C = {X ∈Md×d(C) : xij = 0 if i ≤ j + 1},

and

Σβ = {X ∈Md×d(C) : xij = 0 if i 6= j + 1 and Re(xi+1,iβi) = 0,∀i ∈ [d− 1]},
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where β ∈ Cd−1 has nonzero entries. We shall view ΩC, ∆C , and Σβ as vector spaces

over R, and a simple counting argument shows that that

ΩC ⊕ (∆C + Σβ) = {[X Y ] ∈Md×N(C) : X ∈ ΩC and Y ∈ ∆C + Σβ}

has dimension exactly N less than (3.3.1) as a vector space over R. Lastly, we let

Πd×N = {X ∈Md×N(C) : Im(x1i) = 0∀i ∈ [N − d]; Im(xi,N−d+i) = 0,∀i ∈ [d]}.

Theorem 3.3.1. Let µ ∈ RN
+ and HPD S ∈ Md×d(C) satisfy the usual conditions,

and suppose γ(F ) is connected for a given F ∈ FC(µ, S). Then there is a Q ∈ UN(d),

an N ×N permutation matrix P , and a β ∈ Cd−1 with nonzero entries such that

(i) Q∗ ? (FP ∗) ∈ Πd×N ;

(ii) Q∗ ? FC(Pµ, S) intersects Πd×N transversally at Q∗ ? (FP ∗)

(iii) TQ∗?(FP ∗)Q
∗ ? FC(Pµ, S) ∩ Πd×N is the real subspace

{Q∗ ? (FP ∗Z) ∈Md×N(C) : Z = −Z∗,Re diag(PF ∗FP ∗Z) = diag(Z) = 0},

which we denote T̃F ;

(iv) and the orthogonal projection

π : T̃F → ΩC ⊕ (∆C + Σβ)

is injective.

Proof. The construction of P proceeds exactly as in Theorem 3.2.6. What is different

is that we now keep track of the values βi = f∗
N−d+ifN−d+αi

6= 0. First, we construct

an index set I = {ik}k∈[d] ⊂ [N ] such that
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(a) the columns of F with indices in I form a basis of Cd with a connected corre-

lation network;

(b) and for each k ∈ [d− 1], there is an αk (k < αk ∈ [d]) such that f ∗
ik
fiαk
6= 0.

Using the process in Theorem 3.2.6, we can construct I satisfying (a). By considering

a spanning tree for the correlation network of this basis, and inductively removing

it’s leaves, we can reorder I to satisfy (b) as well (this induction is detailed in the

proof of the previous theorem). P is then chosen so that ik 7→ N − d+ k, Without

loss of generality, we assume that P is the identity for the remainder of the proof

by replacing FP ∗ with F = [Γ B]. Here, B ∈ Md×d(C) is the basis that we have

extracted.

The construction of Q ∈
∏

i∈[N ] U(d) also mimics the construction contained

in the proof of Theorem 3.2.6. Again, for k ∈ [N − d], we choose Qk ∈ SU(d)

to be the unique unitary matrix which leaves span{fk, e1}⊥ undisturbed and which

sends fk to µke1. For k ∈ [N − d + 1, N − 1], let Pk be the matrix realization of

the transposition (k − N + d + 1 αk−N+d) if k − N + d + 1 < αk−N+d. Otherwise,

Pk = Id×d and PN = Id×d. We then choose Qk corresponding to the unique QR-

factorization QkRk = BPk such that the diagonal of Rk consists of positive real

entries. Finally, we choose QN as in the unique QR-factorization QNRN = B, and

we set Q = [Q1 · · ·QN ]. Clearly, we have constructed Q so that (i) is satisfied.

We now show that (ii) and (iii) hold. Let X ∈Md×N(C), and set Z to be the
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N ×N diagonal matrix with kth diagonal entry

zkk =


iIm(x1k)/µk k ∈ [N − d]

iIm(xk−N+d,k)/r
(k)
k−N+d,k−N+d k ∈ [N − d+ 1, N ]

,

where r
(k)
ij is the ijth entry of Rk. Then Z = −Z∗, Re diag(F ∗FZ) = 0, X −Q∗ ?

(FZ) ∈ Πd×N , and it follows that TFQ
∗ ? FC(µ, S) + Πd×N = Md×N(C). Moreover,

based upon the construction of Z it is easy to deduce that any Z = −Z∗ with

nonzero diagonal yields a Q∗ ? (FZ) that is not contained in Πd×N . Since the purely

diagonal Z = −Z∗ also give rise to an N -dimensional subspace, the equivalence in

(iii) holds.

Finally, we demonstrate that (iv) holds. Note that, for any X ∈ T̃F and any

W = −W ∗ with FW = 0, note that X = Q∗ ? (FZ) = Q∗ ? (F (Z +W )). Thus, we

may always alter Z by such a W without changing X.

Suppose π(X) = 0 for A = [X Y ] = [x1 ·xN−d y1 · · · yd] ∈ Q∗ ? (FZ) ∈ T̃F . For

each k ∈ [N − d], this implies that xk = cke1 = Q∗
kFzk for some real ck, and thus

ck
µk

fk = ckQke1 = Fzk.

However,

0 = Re(e∗kGZek = f∗
kFzk) = Re

ck
µk

f∗
kfk = Re(ckµk) = ckµk

implies xk = 0 since µk 6= 0. Moreover, Fzk = 0 if k ∈ [N − d]. We now claim that

Z can be chosen to satisfy

Z =

 0[N−d]×[N−d] 0[N−d]×[N−d+1,N ]

0[N−d+1,N ]×[N−d] Z̃


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without loss of generality. Subsitution of conjugate transposition with transposition

in the argument used Theorem 3.2.6 substantiates this claim.

Finally, we apply a modified version of the usual induction argument to the

remaining columns of A, Y . We have that π̃(Y ) = 0 for the orthogonal projection

π̃ : TQ̃∗?BQ̃
∗ ? FC(µ̃, BB∗) ∩ Πd×d → ∆C + Σβ,

where Q̃ and µ̃ are the last d entries of Q and µ. Additionally, Y = Q∗ ? (BZ̃) with

Z̃ = −Z̃∗, Re diag(B∗BZ̃) = 0, and diag(Z) = 0.

Let {ei}i∈[d] denote the standard orthonormal basis for Cd, and set Ek =

span
C
{ei}i∈[k]. We have that y1 = Q∗

1Bz1 = R1P1z1 = R1w1. Since z1 ∈ E⊥
1 and

R−1
1 is triangular with positive diagonal entries, w1 ∈ span{e2}. Furthermore,

0 = Im(y21β1) = Im(r
(1)
22 w21β1)

implies Im(w21β1) = 0 since r
(1)
22 is positive and real. It follows that z1 = zα1,1eα1

with Im(zα1,1β1) = 0. The final condition

0 = Re(e∗1B
∗BZe1) = Re(zα1,1f

∗
N−d+1fN−d+α1) = Re(zα1,1β1)

forces zα1,1β1 = 0, and thus zα1,1 = 0 since β1 6= 0. Consequently, z1 = y1 = 0. We

may now proceed with the usual induction argument, noting that the augmentation

of the projection by Σβ forces the complex version of zαk,kβk = 0. This proves (iv),

finishing the proof.

Corollary 3.3.2. If the conditions of Theorem 3.2.6 are satisfied, then there is

a unique, locally well-defined, real-analytic inverse of π, Φ : ΩC ⊕ (∆C + Σβ) →

Q∗ ? FC(Pµ, S) ∩ Πd×N .
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Remark 3.3.3. If Φ is as in the above corollary, then (Q ? Φ(Θ, L))PD(ϑ) is a

parameterization around F ∈ FC(µ, S).

3.4 Explicit construction of the coordinate systems on FR(µ, S)

In this section, we construct explict local inversions of the π in Theorem 3.2.6.

The first N − d columns of the inverse, Φ, are easily determined, and the last d

columns can be solved inductively. Solving each of the final d columns can be

reduced to a quartic, which means that coordinate systems on FR(µ, S) are solvable

by radicals.

The intuition behind the coordinate systems is that (locally) N−d members of

the frame may be freely articulated in their respective spheres while the remaining

d members adjust to compensate for these articulations. The remaining d members

can also be articulated, but their subframe operator is determined by the position

of the free N − d members.

3.4.1 Parameterizing the intersection of two ellipsoids

Given SPD A,B ∈ Md×d(R), we shall exhibit formal parametermizations of

the system  y

l


T

A

 y

l

 = 1,

 y

l


T

B

 y

l

 = 1,
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where y = [y1 y2]
T and l = [l3 · · · ld]T . These equations expand to

a11y
2
1 + a22y

2
2 + 2a12y1y2 + 2lTa1y1 + 2lTa2y2 + lTA′l − 1 = 0

b11y
2
1 + b22y

2
2 + 2b12y1y2 + 2lT b1y1 + 2lT b2y2 + lTB′l − 1 = 0,

where

A =


a11 a12 aT1

a12 a22 aT2

a1 a2 A′

 , and B =


b11 b12 bT1

b12 b22 bT2

b1 b2 B′

 .

When these equations are viewed as quadratics in y2, we have

a22y
2
2 + (2a12y1 + 2lTa2)y2 + (a11y

2
1 + 2lTa1y1 + lTA′l − 1) = 0

b22y
2
2 + (2b12y1 + 2lT b2)y2 + (b11y

2
1 + 2lT b1y1 + lTB′l − 1) = 0

This system has a solution if and only if the Bézout determinant vanishes. That is,

0 = [a22(2b12y1 + 2lT b2)− (2a12y1 + 2lTa2)b22]

×[(2a12y1 + 2lTa2)(b11y
2
1 + 2lT b1y1 + lTB′l − 1)

−(a11y21 + 2lTa1y1 + lTA′l − 1)(2b12y1 + 2lT b2)]

−[a22(b11y21 + 2lT b1y1 + lTB′l − 1)− (a11y
2
1 + 2lTa1y1 + lTA′l − 1)b22]

2.

This expands to a quartic in y1, which has four formal roots. Each formal root pro-

vides us with a solution to y in the original quadratic system, and we let ρε(l, A,B)

denote the formal solutions, where ε ∈ {0, 1}2. Thus, we obtain formal coordinates

for the intersection of two ellipsoids, ρε(l, A,B)

l

 .
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3.4.2 Elimination for two quadratic constraints and a linear system

We seek solutions to the system
x

y

l



T

A


x

y

l

 = 1,


x

y

l



T

B


x

y

l

 = 1,

and

C


x

y

l

 =

[
C[k−1]2 C[k−1]×[k,k+1] C[k−1]×[k+2,d]

]

x

y

l

 = 0.

If C[k−1]2 is invertible, then x = −C−1
[k−1]2C[k−1]×[k,k+1]y−C−1

[k−1]2C[k−1]×[k+2,d]l. In this

case, we may eliminate x from the quadratics to obtain y

l


T

Ã(A,C)

 y

l

 = 1,

 y

l


T

B̃(B,C)

 y

l

 = 1.

For a fixed l, there are four formal solutions for y, ρε(l, Ã(A,C), B̃(B,C)). Thus,

we have formal coordinates of the form

ψε(l, A,B,C) =


−C−1

[k−1]2C[k−1]×[k,k+1] −C−1
[k−1]2C[k−1]×[k+2,d]

I2×2 02×(d−k−1)

0(d−k−1)×2 I(d−k−1)×(d−k−1)



×

 ρε(l, Ã(A,C), B̃(B,C)))

l

 .
If k = d− 1, we have

ψ′
ε(A,B,C) =

 −C−1
[d−2]2C[d−2]×[d−1,d]

I2×2

 ρε(l, Ã(A,C), B̃(B,C))).
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3.4.3 Coordinates for FR(µ, S)

Suppose µ ∈ RN
+ and S ∈ Md×d(R) satisfy the usual constraints, and suppose

F ∈ FR(µ, S) is a nonsingular point. Given the Q = [Q[N−d] Q[N−d+1,N ]] ∈ ON(d)

and the N × N permutation matrix P ensured by Theorem 3.2.6, we construct

explicit coordinates about

QT ? (FP T ) ∈ QT ? FR(Pµ, S).

This coordinate system has the form Φ(Θ, L) = [Γ(Θ)B(Θ, L)], where (Θ, L) ∈ ΩR⊕

∆R, Γ(Θ) ∈Md×(N−d)(R), and B(Θ, L) ∈Md×d(R). For any such Φ, (Q ?Φ(Θ, L))P

is a coordinate system about F ∈ FR(µ, S).

First, we shall describe the procedure for determining the coordinate functions.

Afterwards, we shall demonstrate that this process produces a valid coordinate

system that is well-defined in a suitable neighborhood.

We begin by defining Γ(Θ) = [φ1(θ1) · · ·φN−d(θN−d)], where ν = Pµ and

φk(θk) =


√
ν2k − ‖θk‖22

θk

 , for all k ∈ [N − d].

We then set B(Θ) = (S − (Q[N−d]Γ(Θ))(Q[N−d]Γ(Θ))T )−1, and search for solutions

to the system

φT
i (Θ, L)φi(Θ, L) = ν2i

φT
i (Θ, L)Q

T
i B(Θ)Qjφj(Θ, L) = δij,

for all i, j ∈ [N−d+1, N ], and where δij is the Kronecker delta. As foreshadowed by

the existence proofs, we shall construct solutions in an inductive, column-by-column
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manner. First we set

φε1
N−d+1(Θ, L) =

 ρε1(l1, ν
−2
N−d+1Id×d, Q

T
N−d+1B(Θ)QN−d+1)

l1

 ,
and then we set

φ
εk−N+d

k (Θ, L) = ψεk−N+d
(lk−N+d, ν

−2
k Id×d, Q

T
kB(Θ)Qk,

(Q[N−d+1,k−1] ? Φ(Θ, L)[N−d+1,k−1])
TB(Θ))

inductively for all k ∈ [N − d+ 2, N − 2]. For the final two columns, we set

φ
εd−1

N−1 = ψ′
εd−1

(ν−2
N−1Id×d, Q

T
N−1B(Θ)QN−1,

(Q[N−d+1,N−2] ? Φ(Θ, L)[N−d+1,N−2])
TB(Θ))

φεd
N = ψ′

εd
(ν−2

N Id×d, Q
T
NB(Θ)QN , (Q[N−d+1,N−2] ? Φ(Θ, L)[N−d+1,N−2])

TB(Θ)),

where ψ′
ε are defined at the end of the preceding section. Now that we have a several

formal solutions, we proceed to demonstrate that exactly one of these solutions is

the local inverse of π.

Theorem 3.4.1. Suppose µ, S, and F are given and satisfy the usual conditions.

Then there is a unique ε = (ε1, . . . , εd) ∈ ({0, 1}2)d such that

(i) Φε(0, 0) = QT ? (FP T );

(ii) Φε(Θ, L) = [φ1(θ1) · · ·φN−d(θN−d) φ
ε1
N−d+1(Θ, L) · · ·φ

εd
N (Θ, L)] is well-defined

in a neighborhood of [0[N−d]0[N−d+1,N ]] ∈ ΩR ⊕∆R;

(iii) and Φε is a chart on QT ? FR(Pµ, S).
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Proof. First, we note that we can (locally) carry out the inductive process described

in this section. For the first N − d columns, we only require that B(Θ) exists. By

continuity of the functions in consideration, and since B(0) is invertible, this can be

ensured locally. Now, inductively set

C(k) = [C
(k)

[k−1]2(Θ, L) C
(k)
[k−1]×[d−k+1]]

= (Q[N−d+1,k−1] ? Φ(Θ, L)[N−d+1,k−1])
TB(Θ))

for all k ∈ [N−d+2, N−1]. There is a neighborhoood of [0[N−d]0[N−d+1,N ]] ∈ ΩR⊕∆R

where C
(k)

[k−1]2(Θ, L) is invertible for each k ∈ [N − d+ 2, N − 1] since the first k− 1

columns of

(Q[N−d+1,k−1] ? Φ(0, 0)[N−d+1,k−1])
T

form a square upper triangular matrix with strictly positive entries on the diagonal.

Since B(Θ) is also locally invertible around Θ, the claim follows. Since inveriblity of

C
(k)

[k−1]2(Θ, L) is the only hypothesis required to do the elimination of Section 5.1.2,

we conclude that the inductive process (locally) produces all possible solutions to

the system of constraints.

Now, each ε defines a branch of the inverse of the orthogonal projection

π : QT ? FR(Pµ, S)→ ΩR ⊕∆R,

and since F̃ = QT ? (FP T ) ∈ QT ? FR(Pµ, S) solves π(F̃ ) = 0, there is at least

one ε satisfying (i). Now, F̃ is a regular point of π, so there is a neighborhood

N of [0[N−d] 0[N−d+1,N ]] ∈ ΩR ⊕ ∆R such that π−1 is well-defined, real-valued, and

analytic by the Real-Analytic Inverse Function Theorem. For each [Θ L] ∈ N ,
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there is an ε such that π−1([Θ L]) = Φε(Θ, L) since the {Φε(Θ, L)}ε∈({0,1})d form

an exhaustive list of the possible solutions to the inversion at that point. If there

are two ε satisfying (i), there must be a neighborhood in N such that they disagree

since they have distinct analytic expansions (or else we may apply the multivariable

Open Mapping Theorem to obtain equality). Using this fact in an induction process

gives us that there is exactly one ε satisfying (i) such that Φε agrees with π−1 in

some subneighborhood of N . By the Open Mapping Theorem, this implies Φε =

π−1 everywhere in N . Now, restricting N to satisfy the requirements of the first

paragraph, we have that both (ii) and (iii) hold.

3.5 Explicit construction of the coordinate systems on FC(µ, S)

3.5.1 The intersection of two complex ellipsoids

Given HPD A,B ∈Md×d(C) and β ∈ C with β 6= 0, we shall construct formal

parametermizations of the system y

l


∗

A

 y

l

 = 1,

 y

l


∗

B

 y

l

 = 1,

where

y =

 y1

y2β̃ + iλβ̃

 ∈ C2
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with y1, y2, λ ∈ R, β̃ = β∗/|β|, and l = [l3 · · · ld]T ∈ Cd−2. These equations expand

to

a11y
2
1 + a22y

2
2 + 2Re(a12β̃

∗)y1y2 + 2Re(l∗a1 − iλa12β̃∗)y1

+2Re(l∗a2β̃)y2 + a22λ
2 + l∗A′l − 1 = 0

b11y
2
1 + b22y

2
2 + 2Re(b12β̃

∗)y1y2 + 2Re(l∗b1 − iλb12β̃∗)y1

+2Re(l∗b2β̃)y2 + b22λ
2 + l∗B′l − 1 = 0

where

A =


a11 a12 a∗1

a∗12 a22 a∗2

a1 a2 A′

 , and B =


b11 b12 b∗1

b∗12 b22 b∗2

b1 b2 B′

 .

When these equations are viewed as quadratics in y2, we have

a22y
2
2 + 2Re[a12β̃

∗y1 + l∗a2β̃]y2

+[a11y
2
1 + 2Re(l∗a1 − iλa12β̃∗)y1 + (a22λ

2 + l∗A′l − 1)] = 0

b22y
2
2 + 2Re[b12β̃

∗y1 + l∗b2β̃]y2

+[b11y
2
1 + 2Re(l∗b1 − iλb12β̃∗)y1 + (b22λ

2 + l∗B′l − 1)] = 0.

One can see that these expressions soon become unwieldy, so we introduce the

auxilary functions pk(z1, λ, l, A,B) and qk(z1, λ, l, A,B) for k = 0, 1, 2 which replace

the coefficients of the previous polynomials. We then work with the replacement

system

p2z
2
2 + p1z2 + p0 = 0

q2z
2
2 + q1z2 + q0 = 0
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This system has a solution if and only if the Bézout determinant vanishes. That is,

[p2q1 − p1q1][p1q0 − p0q1]− [p2q0 − p0q2]2 = 0.

This expands to a quartic in y1 with real coefficients dependent upon λ, l, A, and

B. This quartic yields four formal roots in terms of the coefficient functions. Each

formal root provides us with a solution to y in the original quadratic system, and

we let ρε(λ, l, A,B) denote the formal solutions, where ε ∈ {0, 1}2. Thus, we obtain

formal coordinates for the intersection of two ellipsoids, ρε(λ, l, A,B)

l

 .
3.5.2 Elimination for two quadratic constraints and a linear system

For HPD A,B and β 6= 0, we seek solutions to the system
x

y

l



∗

A


x

y

l

 = 1,


x

y

l



∗

B


x

y

l

 = 1,

and

C


x

y

l

 =

[
C[k−1]2 C[k−1]×[k,k+1] C[k−1]×[k+2,d]

]

x

y

l

 = 0,

where x ∈ Ck−1,

y =

 y1

y2β̃ + iλβ̃

 ∈ C2
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with y1, y2, λ ∈ R, β̃ = β∗/|β|, and l ∈ C
d−k+1. If C[k−1]2 is invertible, then x =

−C−1
[k−1]2C[k−1]×[k,k+1]y−C−1

[k−1]2C[k−1]×[k+2,d]l. In this case, we may eliminate x from

the quadratics to obtain y

l


∗

Ã(A,C)

 y

l

 = 1,

 y

l


∗

B̃(B,C)

 y

l

 = 1.

For a fixed l, there are four formal solutions for y,

ρε(λ, l, Ã(A,C), B̃(B,C)).

Thus, we have formal coordinates of the form

ψε(λ, l, A,B,C) =


−C−1

[k−1]2C[k−1]×[k,k+1] −C−1
[k−1]2C[k−1]×[k+2,d]

I2×2 02×(d−k−1)

0(d−k−1)×2 I(d−k−1)×(d−k−1)



×

 ρε(λ, l, Ã(A,C), B̃(B,C))

l

 .
If k = d− 1, we have

ψ′
ε(λ,A,B,C) =

 −C−1
[d−2]2C[d−2]×[d−1,d]

I2×2

 ρε(λ, Ã(A,C), B̃(B,C)),

and if k = d we have

ψ′
ε(A,B,C) =

 −C−1
[d−1]2C[d−1]×{d}

1


/ −C−1

[d−1]2C[d−1]×{d}

1


∗

A

 −C−1
[d−1]2C[d−1]×{d}

1


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3.5.3 Coordinates for FC(µ, S)

Suppose µ ∈ RN
+ and S ∈ Md×d(C) satisfy the usual constraints, and suppose

F ∈ FC(µ, S) is a nonsingular point. Given the Q = [Q[N−d] Q[N−d+1,N ]] ∈ UN(d),

the N ×N permutation matrix P , and the sequence β ∈ Cd−1 ensured by Theorem

3.3.1, we construct explicit coordinates about

Q∗ ? (FP ∗) ∈ Q∗ ? FC(Pµ, S) ∩ Πd×N .

This coordinate system has the form Φ(Θ, L) = [Γ(Θ) B(Θ, L)], where (Θ, L) ∈

ΩC ⊕ (∆C + Σβ), Γ(Θ) ∈ Md×(N−d)(C), and B(Θ, L) ∈ Md×d(C). For any such Φ,

(Q ? Φ(Θ, L))PD(ϑ) is a coordinate system about F ∈ FC(µ, S).

First, we shall describe the procedure for determining the coordinate functions.

Afterwards, we shall demonstrate that this process produces a valid coordinate

system that is well-defined in a suitable neighborhood.

We begin by defining Γ(Θ) = [φ1(θ1) · · ·φN−d(θ(N−d))], where

φk(θk) =


√
ν2k − ‖θk‖22

θk

 for all k ∈ [N − d],

and ν = Pµ. We then set B(Θ) = (S − (Q[N−d]Γ(Θ))(Q[N−d]Γ(Θ))∗)−1, and search

for solutions to the system

φ∗
i (Θ, L)φi(Θ, L) = ν2i

φ∗
i (Θ, L)Q

∗
iB(Θ)Qjφj(Θ, L) = δij,
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for all i, j ∈ [N − d+ 1, N ]. We now set

φε1
N−d+1(Θ, L) =

 ρε1(λ1, l1, ν
−2
N−d+1Id×d, Q

∗
N−d+1B(Θ)QN−d+1)

l1

 ,
and then we set Ck(Θ, L) = (Q[N−d+1,k−1] ? Φ(Θ, L)[N−d+1,k−1])

∗B(Θ) and

φ
εk−N+d

k (Θ, L) = ψεk−N+d
(λk−N+d, lk−N+d, ν

−2
k Id×d, Q

∗
kB(Θ)Qk, Ck(Θ, L))

inductively for all k ∈ [N − d+ 2, N − 2]. For the final two columns, we set

φ
εd−1

N−1 = ψ′
εd−1

(λd−1, ν
−2
N−1Id×d, Q

∗
N−1B(Θ)QN−1, CN−1(Θ, L))

φεd
N = ψ′

εd
(ν−2

N Id×d, Q
∗
NB(Θ)QN , CN−1(Θ, L))

Now, we have just constructed several formal coordinate systems. The main theorem

of this section demonstrates that exactly one of these formal solutions is actually

the local inverse of π.

Theorem 3.5.1. Suppose µ, S, and F are given and satisfy the usual conditions.

Then there is a unique ε = (ε1, . . . , εd) ∈ ({0, 1}2)d such that

(i) Φε(0, 0) = Q∗ ? (FP ∗);

(ii) Φε(Θ, L) = [φ1(θ1) · · ·φN−d(θN−d) φ
ε1
N−d+1(Θ, L) · · ·φ

εd
N (Θ, L)] is well-defined

in a neighborhood of [0[N−d]0[N−d+1,N ]] ∈ ΩC ⊕ (∆C + Σβ);

(iii) and Φε is a chart on Q∗ ? FC(Pµ, S) ∩ Πd×N .

Proof. This argument of this proof is essentially the same as the argument of The-

orem 3.4.1. First, we note that we can (locally) carry out the inductive process
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described in this section. For the first N − d columns, we only require that B(Θ)

exists. By continuity of the functions in consideration, and since B(0) is invertible,

this can be ensured locally. Now, inductively set

C(k) = [C
(k)

[k−1]2(Θ, L) C
(k)
[k−1]×[d−k+1]] = (Q[N−d+1,k−1] ? Φ(Θ, L)[N−d+1,k−1])

∗B(Θ)

for all k ∈ [N − d + 2, N − 1]. There is a neighborhoood of [0[N−d] 0[N−d+1,N ]] ∈

ΩC ⊕ (∆C + Σβ) where C
(k)

[k−1]2(Θ, L) is invertible for each k ∈ [N − d + 2, N − 1]

since the first k − 1 columns of

(Q[N−d+1,k−1] ? Φ(0, 0)[N−d+1,k−1])
∗

form a square upper triangular matrix with strictly positive entries on the diagonal.

Since B(Θ) is also locally invertible around Θ, the claim follows. Since inveriblity of

C
(k)

[k−1]2(Θ, L) is the only hypothesis required to do the elimination of Section 5.2.2,

we conclude that the inductive process (locally) produces all possible solutions to

the system of constraints.

Each ε defines a branch of the inverse of the orthogonal projection

π : Q∗ ? FC(Pµ, S) ∩ Πd×N → ΩC ⊕ (∆C + Σβ),

and since F̃ = Q∗ ? (FP ∗) ∈ Q∗ ? FC(Pµ, S) ∩ Πd×N solves π(F̃ ) = 0, there is at

least one ε satisfying (i). Now, F̃ is a regular point of π, so there is a neighborhood

N of [0[N−d] 0[N−d+1,N ]] ∈ ΩC⊕ (∆C+Σβ) such that π−1 is well-defined, real-valued,

and analytic by the Real-Analytic Inverse Function Theorem. For each [Θ L] ∈ N ,

there is an ε such that π−1([Θ L]) = Φε(Θ, L) since the {Φε(Θ, L)}ε∈({0,1})d form

an exhaustive list of the possible solutions to the inversion at that point. If there
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are two ε satisfying (i), there must be a neighborhood in N such that they disagree

since they have distinct analytic expansions (or else we may apply the multivariable

Open Mapping Theorem to obtain equality). Using this fact in an induction process

gives us that there is exactly one ε satisfying (i) such that Φε agrees with π−1 in

some subneighborhood of N . By the Open Mapping Theorem, this implies Φε =

π−1 everywhere in N . Now, restricting N to satisfy the requirements of the first

paragraph, we have that both (ii) and (iii) hold.
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Chapter 4

Optimization

In this chapter, we develop machinery for performing approximate gradient

descent over FE(µ, S). The two main tools that make this efficient and plausible are

1. fast geometric minimization of the frame operator distance (FOD);

2. methods for projecting onto tangent spaces of FE(µ, S).

After developing this machinery, we describe the full algorithm in detail and demon-

strate its convergence.

4.1 Minimization of the frame operator distance (FOD)

We shall consider the program

minimize ‖S − FF ∗‖ subject to F ∈ TEd(µ). (4.1.1)

where µ ∈ R
N
+ and S ∈ Md×d(E). In addition, we require that µ and S satisfy

the usual conditions. It then follows that the minimum in (4.1.1) is zero and that

this minimum is attained exactly when FF ∗ = S. We conclude that FE(µ, S) is

completely characterized as the space of solutions to (4.1.1).
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4.1.1 Relationship with the frame potential

Suppose S = N
d
Id×d and µ = 1N . Armed with the knowledge that F ∈ TEd(µ)

implies tr(FF ∗) = N , we have

‖S − FF ∗‖2 = ‖N
d
Id×d‖2 − 2Re

〈
N

d
Id×d, FF

∗
〉
+ ‖FF ∗‖2 (4.1.2)

=
N2

d
− 2

N2

d
+

N∑
i=1

N∑
j=1

| 〈fi, fj〉 |2 (4.1.3)

=
N∑
i=1

N∑
j=1

| 〈fi, fj〉 |2 −
N2

d
. (4.1.4)

The summation term is Benedetto and Fickus’s frame potential, so (4.1.1) is equiv-

alent to minimizing the frame potential. An important consequence of this relation-

ship is demonstrated by the following theorem.

Theorem 4.1.1 (Benedetto, Fickus). For a given d and N with d ≤ N , consider

the frame potential

FP : TEd(1N)→ [0,∞); {fi}i∈[N ] 7→
∑
i∈[N ]

∑
j∈[N ]

|〈fi, fj〉|2 . (4.1.5)

Then

a. Every local minimizer of the frame potential is also a global minimizer.

b. If N ≤ d, the minimum value of the frame potential is N and the minimizers

are precsiely the orthonormal sequences in E
d.

c. If N ≥ d, the minimum value of the frame potential is N2/d and the minimiz-

ers are precisely the FUNTFs for Ed.
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Thus, in this particular instance, the minima of the frame operator distance satisfy

FF ∗ = N
d
Id×d. Having such a characterization is highly desirable from a numerical

perspective, and generalizing Benedetto and Fickus’s result to the case of (µ, S)-

frames would provide a beneficial theoretical guarantee for the frame operator dis-

tance. Generalizing this result to (4.1.1) is nontrival, but there are several heuristic

reasons that lead one to believe that this is true in general. We shall not take up

this problem in this paper, but we look forward to settling it later.

Conjecture 4.1.2. Suppose N ≥ d. If d by d HPD S and µ ∈ RN
+ satisfy the usual

conditions, then local minimizers of (4.1.1) are also global minimizers in the generic

case.

It should also be noted that (4.1.1) can be generalized to the fusion frame case, but

we shall not delve into this matter presently.

4.1.2 Relationship with the Rayleigh Quotient

By singling out one fn in F (the nth column), we obtain

‖S − FF ∗‖2 = ‖S −
N∑
i=1

fif
∗
i ‖2 = ‖S −

∑
i6=n

fif
∗
i − fnf∗

n‖2

= ‖S −
∑
i6=n

fif
∗
i ‖2 − 2Re

〈
S −

∑
i6=n

fif
∗
i , fnf

∗
n

〉
+ ‖fnf ∗

n‖2

= ‖S −
∑
i6=n

fif
∗
i ‖2 − 2f ∗

n(S −
∑
i6=n

fif
∗
i )fn + ‖fn‖4. (4.1.6)

If only fn is varied in its sphere, the only active term is −2f ∗
n(S −

∑
i6=n fif

∗
i )fn.

This term is essentially a Rayleigh quotient, which is minimal when fn is a “top”

eigenvector of S −
∑

i 6=n fif
∗
i .
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If we allowed fn to vary in Ed, the gradient of this term would be

−4(S −
∑
i6=n

fif
∗
i )fn (4.1.7)

and projection onto TfnS(µn) yields

−4(S −
∑
i6=n

fif
∗
i )fn + 4

[
f∗
n(S −

∑
i6=n

fif
∗
i )fn

]
fn/‖fn‖2. (4.1.8)

The full gradient matrix of the FOD over TE(µ) at F is then G = [g1 · · · gN ], where gn

is given by (4.1.8). For the FUNTF case, Casazza and Fickus [12] have demonstrated

that a gradient descent can be performed using this G, and they also determine a

reasonable step size for each update. This full gradient descent requires a full update

of the gradient at each step. In the next section, we shall see that the columnwise

gradient descent updates can be computed explicitly using nothing more than the

quadratic formula, so updating the gradient requires few operations.

4.1.3 Gradient descent update of −2f ∗Af over a sphere

We now derive the gradient descent update to R(f) = −2f∗Af for A a d by

d HPD matrix and ‖f‖ fixed. This update was alluded to by Arias, Edelman, and

Smith in [2]. The gradient is g̃ = −4Af + 4(f ∗Af)f/‖f‖2, so we perform a line

search along the geodesic

γ(t) =
√
1− t2f + tg, t ∈ [−1, 1], (4.1.9)
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where g = ‖f‖g̃/‖g̃‖. The composition then expands into

(R ◦ γ)(t) = −2(
√
1− t2f + tg)∗A(

√
1− t2f + tg) (4.1.10)

= −2(1− t2)f∗Af − 4t
√
1− t2Ref ∗Ag − 2t2g∗Ag (4.1.11)

= 2(f ∗Af − g∗Ag)t2 − 4t
√
1− t2Ref∗Ag − 2f ∗Af (4.1.12)

Taking a derivative, we have

(R ◦ γ)′(t) = 4(f ∗Af − g∗Ag)t− 4((1− 2t2)/
√
1− t2)Ref∗Ag (4.1.13)

and setting this expression equal to zero eventually reduces to

t4 − t2 + (Ref∗Ag)2/[(f∗Af − g∗Ag)2 + 4(Ref ∗Ag)2] = 0. (4.1.14)

The solutions to this quadratic in t2 are

t = ±

√√√√1

2
± 1

2

√
(f ∗Af − g∗Ag)2

(f ∗Af − g∗Ag)2 + 4(Ref∗Ag)2
, (4.1.15)

and it is easy to deduce that the solution which minimizes R ◦ γ is

tmin = −

√√√√1

2
− 1

2

√
(f ∗Af − g∗Ag)2

(f ∗Af − g∗Ag)2 + 4(Ref∗Ag)2
(4.1.16)

4.1.4 Sequential, columnwise minimization of the FOD

Implementation of a columnwise gradient descent scheme is now straightfor-

ward:

1. choose n such that the norm of (4.1.8) is maximal;

2. update fn with
√

1− t2minfn + tmingn;

3. and repeat.

We have the following pseudocode:
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Algorithm 1 minFOD initialized with F ∈ TE(µ), E, µ, d× d HPD S, tolerance ε

while ‖S − FF ∗‖ > ε do

n← argmaxn∈[N ] ‖(S − FF ∗)fn − [f ∗
n(S − FF ∗)fn]fn/‖fn‖2‖

g ← [(S − FF ∗)fn − [f∗
n(S − FF ∗)fn]fn/µ

2
n

g ← µng/‖g‖

t← −
√

1
2
− 1

2

√
(f∗

nAfn−g∗Ag)2

(f∗
nAfn−g∗Ag)2+4(Ref∗

nAg)2

fn ←
√
1− t2fn + tg

end while

4.1.5 A step size for the full gradient descent

The coordinate descent method detailed above is fast, but can result in very

abrupt transitions. Consequently, the coordinate descent method can deliver an

initial F to a member of FE(µ, S) that deviates dramatically from the member we

would obtain by moving F along the gradient flow. We shall often require smoother

transitions since our optimization method over FE(µ, S) requires that we compute

accurate minimizers of the FOD for the perturbed members of FE(µ, S). To this

end, we derive a step size for the full gradient descent in the spirit of Casazza and

Fickus [12].

Note that geodesics along TEd(µ) starting at F = [f1 · · · fN ] have columns of

the form

fi(t) = cos(ωit)fi + sin(ωit)gi, (4.1.17)

where Re 〈fi, gi〉 = 0 and ‖gi‖ = ‖fi‖. Thus,

ḟi(t) = ωi [− sin(ωit)fi + cos(ωit)gi] (4.1.18)
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and f̈i(t) = −ω2
i fi(t).

Theorem 4.1.3. Let F ∈ TEd(µ) for some µ ∈ RN
+ , set

γn = −
[
S − FF ∗ − f∗

i (S − FF ∗)fi
µ2
i

Id×d

]
fi

and ωi = ‖γi‖/µi for i ∈ [N ], and set gi = γi/ωi if ωi 6= 0 and gi = 0 otherwise.

Suppose further that µ and S satisfy the usual conditions. Then, for all t ∈ R, we

have

‖S − F (t)F (t)∗‖2 ≤ ‖S − FF ∗‖2 − 4‖Γ‖2t+ At2, (4.1.19)

where

A =

2(λ1(S)− λd(S)) + 4
∑
i∈[N ]

µ2
i

 ‖Γ‖2, (4.1.20)

and Γ = [γ1 · · · γN ].

Proof. For a C2 function, we have

ϕ(t) ≤ ϕ(0) + ϕ̇(0)t+
1

2
max
s∈R
|ϕ̈(s)|t2

by Taylor’s theorem. It is immediately clear that the constant term is ‖S − FF ∗‖

for our ϕ(t) = ‖S − F (t)F (t)∗‖2. Moreover,

ϕ̇(0) = 2Re

〈∑
i∈[N ]

ωi(gif
∗
i + fig

∗
i ), S − FF ∗

〉
(4.1.21)

= 4
∑
i∈[N ]

ωiRe g
∗
i (S − FF ∗)fi = 4

∑
i∈[N ]

ωiRe g
∗
i γi (4.1.22)

= 4
∑
i∈[N ]

γ∗i γi = 4‖Γ‖2. (4.1.23)

68



For the second order term, we compute (while suppressing many evaluations at t)

ϕ̈(t) = 2Re

〈∑
i∈[N ]

f̈if
∗
i + fif̈

∗
i + 2ḟiḟ

∗
i , S − F (t)F (t)∗

〉
+ 2‖

∑
i∈[N ]

ḟif
∗
i + fiḟ

∗
i ‖2(4.1.24)

= 4Re

〈∑
i∈[N ]

ḟiḟ
∗
i − ω2

i fifi, S − F (t)F (t)∗
〉

(4.1.25)

+4

∥∥∥∥∥∥
∑
i∈[N ]

ḟif
∗
i

∥∥∥∥∥∥
2

+ 4Re

〈∑
i∈[N ]

ḟif
∗
i ,
∑
i∈[N ]

fiḟ
∗
i

〉
(4.1.26)

The term in (4.1.25) becomes

4(
∑
i∈[N ]

ḟ ∗
i Sḟi − ω2

i f
∗
i Sfi)− 4

∑
i∈[N ]

∑
j∈[N ]

|ḟ ∗
i fj|2 + 4

〈∑
i∈[N ]

ω2
i fif

∗
i ,
∑
i∈[N ]

fif
∗
i

〉

which is bounded by

4(λ1(S)− λd(S))
∑
i∈[N ]

µ2
iω

2
i + 4(

∑
i∈[N ]

µ2
i )
∑
i∈[N ]

µ2
iω

2
i − 4

∑
i∈[N ]

∑
j∈[N ]

|ḟ∗
i fj|2 (4.1.27)

since λd(S)‖x‖2 ≤ x∗Sx ≤ λd(S)‖x‖2 for all x ∈ Ed, and〈∑
i∈[N ]

ω2
i fif

∗
i ,
∑
i∈[N ]

fif
∗
i

〉
≤
∑
i∈[N ]

ω2
i ‖fif ∗

i ‖‖
∑
j∈[N ]

fjf
∗
j ‖ ≤

∑
i∈[N ]

ω2
i µ

2
i

∑
j∈[N ]

µ2
j

by Cauchy-Schwarz. By three more applications of Cauchy-Schwarz, we also have

that (4.1.26) is bounded by

4
∑
i∈[N ]

∑
j∈[N ]

|ḟ ∗
i fj|2 + 4(

∑
i∈[N ]

µ2
i )
∑
i∈[N ]

µ2
iω

2
i . (4.1.28)

Combining (4.1.27) and (4.1.28), and dividing by 2, we arrive at the expression for

A, and the proof is complete.

Note that minimum of the quadratic inequality in this theorem occurs at

t =
1

λ1(S)− λd(S) + 2
∑

i∈[N ] µ
2
i

, (4.1.29)

and we may use this as our step size for the full gradient descent.
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4.1.6 Complexity and convergence of the minFOD algorithm

Each iteration of this algorithm requires the computation of (S−FF ∗)F , which

is a parallel O(dN2) operation. The update of S − FF ∗ requires O(d2) multiplica-

tions. The remaining operations are negligible, so the computational complexity of

minFOD is O(dN2 + d2) per iteration.

Newton-like Rayleigh quotient iterations exhibit cubic convergence [35], but

at each stage we are only performing one iteration of a linearly convergent gradient

descent. Nevertheless, each step of this procedure is ensured to lower the FOD as

long as the gradient is nonzero because of the decoupling evident in (4.1.6). Thus, it

is certain that minFOD converges to a critical point. The convergence rate of general

block coordinate descent is still an open problem, but there are partial results in

the literature [32, 47]. However, we can be certain that the iteration converges to a

critical point. If Conjecture 4.1.2 holds, then the only stable critical points are the

global minimizers.

Preliminary empirical results indicate that this method often converges linearly

and that the procedure converges to a global minimizer in the generic case. Figure 1

illustrates a typical convergence profile obtained from minFOD. The solid lines are

for geometric coordinate descent, and the dashed lines come from the full geometric

gradient descent. The left plot illustrates the convergence of the FOD to zero, and

the right illustrates the linear convergence of iterates. Note that the full geometric

gradient descent converges more slowly, but its convergence profile is smoother.
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Figure 4.1: Convergence of minFOD to a FUNTF of 5 elements in R3.

4.2 Optimization over FE(µ, S)

4.2.1 Projection of search directions onto TFFE(µ, S)

For this entire section, F is assumed to be a regular point of FE(µ, S) and

hence TFFE(µ, S) is well-defined.

While the orthogonal projection onto TFFE(µ, S) is complicated, the orthog-

onal projection onto TFTEd(µ) is simple:

P (X) = X − F Re diag(F ∗X) diag(F ∗F )−1 (4.2.1)

The orthogonal projection onto TF
√
S · StEd(N) is more complicated, but is quite

simple in at least one notable case.

Proposition 4.2.1. Suppose S = cId×d for c > 0, and fix F ∈ FE(µ, S). Then,

Q(X) = X − 1

2
(FX∗ +XF ∗)S−1F (4.2.2)
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is the orthogonal projection onto TF
√
S · StEd(N).

Proof. We have that

Q2(X) = Q(X)− 1

2
(FQ(X)∗ +Q(X)F ∗)S−1F

= Q(X)− 1

2
[FX∗ +XF ∗

−1

2
FF ∗S−1(FX∗ +XF ∗)− 1

2
(FX∗ +XF ∗)S−1FF ∗]S−1F

= Q(X)

since FF ∗ = S. Thus, Q2 = Q and the following calculation shows that QT = Q

(we are viewing the tangent space as a real vector space):

Re 〈Q(X), Y 〉 = Re 〈X, Y 〉 − 1

2
Re
〈
(FX∗ +XF ∗)S−1F, Y

〉
= Re 〈X, Y 〉 − 1

2
Re tr(FX∗S−1FY ∗)− 1

2
Re tr(XF ∗S−1FY ∗)

= Re 〈X, Y 〉 −

1

2c
Re

N∑
i=1

N∑
j=1

〈fi, xj〉 〈fi, yj〉 −
1

2
Re tr(XF ∗S−1FY ∗)

= Re 〈X, Y 〉 −

1

2c
Re

N∑
i=1

N∑
j=1

〈xj, fi〉 〈yj, fi〉 −
1

2
Re tr(XF ∗S−1FY ∗)

= Re 〈X, Y 〉 − 1

2c
Re tr(XF ∗Y F ∗)− 1

2
Re tr(XF ∗S−1FY ∗)

= Re

〈
X,Y − 1

2
(FY ∗ + Y F ∗)S−1F

〉
= Re 〈X,Q(Y )〉
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If S is not a multiple of the identity, the orthogonality of the right hand side of

(4.2.2) fails. In this case, we may construct Q by forming an orthonormal basis of

TF
√
S · StEd(N) = {X ∈Md×N(E) : X = FZ, Z = −Z∗}. (4.2.3)

To construct this orthonormal basis, we simply apply the Gram-Schmidt procedure

to the basis defined in Proposition 4.2.2.

Proposition 4.2.2. Let S be a d by d HPD matrix, and suppose F ∈
√
S · StEd(N)

for d ≤ N . Fix A ⊂ [N ] so that FA is a basis. For bookkeeping purposes, define

Λ1 = (A× ([N ] \ A)) ∪ {(i, j) ∈ A× A : i < j} and Λ2 = Λ1 ∪ {(i, i) ∈ A× A}.

Then

{Vij = F (1ij − 1ji) : (i, j) ∈ Λ1} (4.2.4)

is a basis of TF
√
S · StRd(N) (assuming S and F are real valued) and

{Vij}(i,j)∈Λ1 ∪ {Wij =
√
−1 · F (1ij + 1ji) : (i, j) ∈ Λ2} (4.2.5)

is a basis of TF
√
S · StCd(N).

Proof. Note that the Vij have the form FZ with Z skew-symmetric (and skew-

Hermitian), and that the Wij have the same form but with Z skew-Hermitian.

Thus, these collections belong to the respective tangent spaces.

We shall now show that {Vij}(i,j)∈Λ1 and {Wij}(i,j)∈Λ2 are linearly independent

sets in their respective spaces. Suppose that

∑
(i,j)∈Λ1

aijVij +
∑

(i,j)∈Λ2

bijWij = 0 (4.2.6)
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with the aij and bij real-valued. Breaking this into the real and imaginary compo-

nents, we have

∑
(i,j)∈Λ1

aijVij = 0 and
∑

(i,j)∈Λ2

bijWij = 0. (4.2.7)

Since the kth column of Vij is zero for all j 6= k, the contributions to the kth column

in this sum only come from {Vik}i∈A. However, the kth columns of {Vik}i∈A come

from the columns of FA and are thus linearly independent. We conclude that aik = 0

for i ∈ A. Since k was arbitrary, aij = 0 for all (i, j) ∈ Λ1. Similarly, bij = 0 for all

(i, j) ∈ Λ2. A counting argument now finishes the proof.

Applying the Gram-Schmidt process to this basis, we obtain an orthonormal basis

{Ui}i∈Λ for TF
√
S · StEd(N). Then

Q(X) =
∑
i∈Λ

(Re 〈X,Ui〉)Ui

is the orthogonal projection from Md×N(E) to TF
√
S · StEd(N).

In order to perform geometric optimization, we need to project search direc-

tions onto TFFE(µ, S). By an eigenvalue argument, it can be shown that

lim
n→∞

(QP )n = R,

where R is the orthogonal projection onto TFTEd(µ) ∩ TF
√
S · StEd(N). If the con-

ditions of the preceding theorem hold, then R is the orthogonal projection onto

TFFE(µ, S). While the convergence of this alternating projection method is only

linear, it can be implemented efficiently.

Under certain circumstances (such as when F ∈ FE(µ, S) is close to be-

ing singular) it is more efficient to directly compute the orthogonal projection
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R : Md×N(E) → TFFE(µ, S). In this case, we construct R by taking the basis

provided in 2.3.4, applying the Gram-Schmidt procedure to this basis, and then R

is the sum of dyadic products of the resulting orthonormal basis.

4.2.2 Description of the optimization algorithm

We now describe how the FOD minimization algorithm and the alternating

projection method can be exploited to perform an approximate gradient descent on

FE(µ, S). Let ϕ ∈ C1(Md×N(E)). We begin by describing how one iteration of the

theoretical geometric gradient descent algorithm is performed at a nonsingular point

F ∈ FE(µ, S):

1. the restricted gradient, Φ = ∇FE(µ,S)
F ϕ is computed;

2. a line search is performed on the geodesic exp
FE(µ,S)
F (−tΦ).

This first step is now easily carried out numerically with the machinery we have

developed; our alternating projection procedure allows us to compute ∇FE(µ,S)
F ϕ by

projecting the full gradient ∇Fϕ onto TFFE(µ, S). Carrying out the second step

numerically using our machinery is slightly more complicated. Instead of perform-

ing a line search on a geodesic in FE(µ, S), we perform a line search on the FOD

minimization applied along a geodesic in TEd(µ). That is, we perform the line search

on the path

minFOD(exp
T
Ed

(µ)

F (−tX), S, ε) (4.2.8)
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and the update is

F ′ = argmin
t≥0

ϕ(minFOD(exp
T
Ed

(µ)

F (−tX), S, ε)). (4.2.9)

The primary reason for exponentiating along the generalized torus is that the paths

are easy to compute and the FOD minimization is efficient. The following psue-

docode summarizes the procedure.

Algorithm 2 minFEmuS initialized with ϕ, F , E, µ, S, and ε

Φ← ∇T
Ed

F ϕ

Φ← projTFEmuS(F,E, µ, S)

while ‖Φ‖ > ε do

F ← linesearch(ϕ(minFOD(exp
T
Ed

F (−tΦ), S, ε)))

Φ← ∇T
Ed

F ϕ

Φ← projTFEmuS(F,E, µ, S)

end while

In this algorithm, projTFEmuS is a realization of one of the projection methods

detailed in Section 3.3. For our purposes, we use the golden ratio line search algo-

rithm.

4.2.3 Convergence of the approximate gradient flow

Suppose ϕ : Md×N(E) → R is our objective function and that F ∈ FE(µ, S)

is not a critical point of ϕ|FE(µ,S). Then Φ = ∇FE(µ,S)
F ϕ is nonzero and we define

the smooth curve γ(t) = exp
T
Ed

(µ)

F (tΦ) for t ∈ [0, T ]. Here, T is chosen so that γ(t)

avoids self intersection. Since γ is smooth, it is an integral curve of some vector field
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Y .

The frame operator distance to S induces a gradient flow on TEd(µ), and we

let X denote this gradient flow. Since FE(µ, S) are the global minimizers of the

frame operator distance to S on TEd(µ), X vanishes on FE(µ, S). Moreover, the

gradient flow of each scalar component of X is orthogonal to TFFE(µ, S), and hence

is orthogonal to YF . Formally, XF = 0, a brief ascension into local coordinates and

Einstein summation implies

(Y (X))F =

(
Y αdX

β

dxα
d

dxβ

)
F

= 0, (4.2.10)

and therefore

[X, Y ]F = (X(Y )− Y (X))F = 0. (4.2.11)

When we evolve the curve γ(t) along the flow X, XF = 0 implies that γ(0) =

F remains stationary and [X, Y ]F = 0 implies that tangent at γ(0) also remains

stationary. Thus, we have

∇FE(µ,S)
F ϕ = ∇FE(µ,S)

F (minFOD ◦ γ), (4.2.12)

and so ϕ is locally strictly decreasing along the curve minFOD(γ(t)). We conclude

that the optimization procedure produces a sequence Fi such that ϕ(Fi) is strictly

decreasing, and hence the procedure converges to a critical point.

While [38] indicates that geometric gradient descent converges linearly near

an isolated minimum, our line searches do not occur over geodesics. This makes the

analysis of the local convergence difficult, but empirical evidence indicates that linear
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convergence is still maintained. Figure 2 depicts the convergence profile of a sequence

ending in a numerical minimizer of the 4th-order frame potential over the space of

6-member FUNTFs in R3. The resulting frame is a numerical approximation to an

equiangular tight frame. Solid lines are for the implementation of minFEmuS with

geometric coordinate gradient descent, and dashed lines are for the implementation

with full geometric gradient descent. The left plot depicts the decay profile of fp4,

and the right plot illustrates the convergence profile. Both methods recover an

equiangular tight frame.

Figure 4.2: Hilbert-Schmidt distances from the final numerical minimum of the

4th-order frame potential on 6-member FUNTFs in R3.
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4.3 Direct construction of initial points on FE(µ, S)

Now that we have an optimization algorithm over FE(µ, S), we turn our at-

tention to the construction of starting points for initializing the optimization algo-

rithm. This section focuses on a direct, sequential method for constructing members

of FE(µ, S). We shall construct F = [f1 · · · fN ] ∈ FE(µ, S) column by column. For

low dimensional examples of this construction technique, see [40].

Let µ′ ∈ RN−1
+ denote the truncation of µ obtained by omitting the first entry.

Our first task is to characterize the set of all f ∈ Ed such that

FE(µ′, S − ff ∗) 6= ∅ (4.3.1)

since this is equivalent to failure of the construction.

4.3.1 The ellipsoidal condition for positivity of S − ff ∗

One immediate necessary condition of (4.3.1) is that S− ff ∗ must be positive

semidefinite, and the f satisfying this condition can be characterized exactly by an

ellipsoidal condition.

Proposition 4.3.1. Let S ∈ Md×d(E) be Hermitian postive semidefinite, and sup-

pose f ∈ Ed. Denote the Moore-Penrose pseudoinverse of S by S†. Then

(i) S − ff ∗ is Hermitian positive semidefinite if any only if f ∈ range(S) and

f∗S†f ≤ 1.

(ii) rank(S − ff ∗) = rank(S)− 1 if and only if f ∈ range(S) and f∗S†f = 1.
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Proof. Note that x∗(S − ff ∗)x = −| 〈x, f〉 |2 ≤ 0 for any x ∈ range(S)⊥, so f ∈

range(S) is a necessary condition, and we may assume that S has full rank without

loss of generality. Now, S−ff ∗ has at most one negative eigenvalue by the interlacing

inequalities for eigenvalues, and hence S−ff ∗ has all nonnegative eigenvalues if and

only if det(S−ff ∗) ≥ 0. Using multilinearity of the determinant and Cramer’s rule,

it is easy to deduce the Sherman-Morrison determinant formula

det(S − ff ∗) = det(S)(1− f ∗S−1f). (4.3.2)

Applying this formula and noting that det(S) > 0, we have f ∗S−1f ≤ 1 and S−ff ∗

positive semidefinite are equivalent. This proves part (i), and part (ii) follows by

noting that this case is equivalent to det(S− ff ∗) = 0 by the interlacing eigenvalue

inequalities.

Part (ii) of this proposition addresses another necessary condition: if there are

only N entries in µ, then S− ff ∗ must have rank less than N − 1. A combinatorial

proof of this result was established in [40].

4.3.2 Sufficient conditions for ensuring majorization

Having determined when S−ff ∗ is positive semidefinite, we know that (4.3.1)

holds if and only if µ′ and S− ff ∗ satisfy the usual conditions. Thus, for a given f ,

it is easy to check (4.3.1) by computing the eigenvalues of S − ff ∗ and determining

if the majorization condition holds, but this approach is highly inefficient. Instead,

we content ourselves with some easily-computed sufficient condtions. Given S, let
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Pk denote the orthogonal projetion ont the subspace spanned by the eigenvectors of

S corresponding to the k largest eigenvalues of S, and set P⊥
k = Id×d − Pk.

Theorem 4.3.2. Suppose µ and S satisfy the usual conditions, that f ∈ range(S),

and f ∗S†f ≤ 1. Then 4.3.1 holds if for each k = 1, · · · , d − 1 one of the following

holds:

(i) ‖Pkf‖2 ≤ ck;

(ii) (i) fails, but ‖Pkf‖2 > 0 and ρk ≤ λk+1(S) + ck;

(iii) (i) and (ii) both fail, but ck > 0 and

‖Pkf‖2/ck + f ∗P⊥
k [S + (ck − ρk)Id×d)]

†P⊥
k f ≤ 1. (4.3.3)

Here,

ck =
k∑

i=1

λk(S)− max
A⊂[N−1]
|A|=k

∑
i∈A

µ′
i (4.3.4)

and ρk = ‖
√
SPkf‖2/‖Pkf‖2

For a proof of this theorem, see [40]. For uniform-norm frames, (4.3.1) holds

trivially as long as the ellipsoidal condition is satisfied.

4.3.3 Sherman-Morrison formulas and efficient eigensystem updates

In order to apply the ellipsoidal condition and Theorem (4.3.2) as we choose

vectors, we need to compute (S − ff ∗)† and the eigensystem of S − ff ∗ efficiently.

To compute (S − ff ∗)† efficiently when f ∈ range(S) and f ∗S†f < 1, we apply the
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Sherman-Morrison formula:

(S − ff ∗)† = S† − S†ff ∗S†/(1− f ∗S†f)

If f ∗S†f = 1, then we must apply the formula

(S − ff ∗)† = S† − S2†ff ∗S† + S†ff ∗S2†

f ∗S2†f
+

(f ∗S3†f)S†ff ∗S†

(f∗S2†f)2
.

This formula follows very readily when one realizes that S†f is in the kernel of

S − ff ∗ in this case. Bunch et al. [10] describe an efficient numerical method for

the symmetric rank-one eigensystem update.

4.3.4 Description of an initialization algorithm

Here, we describe a procedure for constructing a frame in FE(µ, S) from an

arbitrary F = [f1 · · · fN ] ∈ TEd(µ) so that the the resulting frame, F̃ so that many

of the columns are equal to, or close to corresponding columns in F . This is accom-

plished by constructing a set of indices A ⊂ [N ] for which f̃i = fi for all i ∈ A, and

then applying a restricted minFOD to the columns with indices in [N ] \ A

First, we set A = ∅. In the first step of the algorithm, we check that conditions

of Proposition 4.3.1 and Theorem 4.3.2 hold for f1 given µ and S. If they hold, then

A = A ∪ {1} and we set S̃ = S − f1f
∗
1 . If they fail to hold, nothing is changed.

This process continues inductively through the columns. That is, at the nth step, we

check to see that the conditions hold for fn given µ and S̃, and update A = A∪{n}

and S̃ = S − fnf∗
n.

82



Algorithm 3 initFEmuS initialized with F , E µ, S, ε

A← ∅

for n ∈ [N ] do

if chkMAJ(µ, S, fn) = true then

A← A ∪ n

S ← S − fnf ∗
n

end if

end for

F[N ]\A ← minFOD(F[N ]\A,E, µ, S, ε)

4.4 Applications to Grassmannian frames and WBE sequences

4.4.1 Grassmannian frames

Grassmannian frames are FUNTFs that also are also minimizers of the off-

diagonal infinity norm of the Gram matrix. They are the solutions to the program

F = arg min
F∈FE(µ,S)

max
i6=j
| 〈fi, fj〉 |. (4.4.1)

These very special frames have been studied extensively, and have applications in

coding theory and communications [42]. Now, the objective function in (4.4.1) is not

differentiable, so we may attempt to replace with the differentiable approximation(∑
i 6=j

| 〈fi, fj〉 |p
)1/p

(4.4.2)

for p ∈ (2,∞). This quantity is the pth-order frame potential. A theoretical indica-

tion of the validity of this approximation is given by the result of Oktay [34]:
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Theorem 4.4.1. Let d < N , 1 < p < ∞, and let {xi}Ni=1 be a set of unit norm

vectors in E
d. Then,

∑
i6=j

| 〈xi, xj〉 |2p ≥ N(N − 1)

(
N − d
d(N − 1)

)p

. (4.4.3)

Furthermore, the lower bound is achieved if and only if {xi}Ni=1 is an equiangular

tight frame.

It is natural to question whether this elegant result extends to Grassmannian frames

in some form, but currently there are no theoretical guarantees that minimizers of

(4.4.2) are even close to minimizers of (4.4.1).

Figure 4.3: Maximum values of maxi6=j | 〈fi, fj〉 | for numerical minimizers of the

pth-order frame potential when p = 4, 6, 8, 10, 12.

Figure 3 summarizes the results obtained by minimizing the pth-order frame

potential over the 8-member FUNTFs in R5. Note that the range of maxi 6=j | 〈fi, fj〉 |

becomes lower as p increases, but becomes wide as p increases. The reason that
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this occurs is that the numerical accuracy of the gradient computation becomes

unstable as p increases. The graph indicates that we should fix p = 8 or 10. In

Figure 4, numerically computed minimum values of the 4th-order frame potential

are compared with the corresponding maxi6=j | 〈fi, fj〉 |. There is obviously a strong

correlation between these two quantities, and we infer that global minimizers of

(4.4.2) are nearly global minimizers of (4.4.1). It should be noted that our method

computes an equiangular tight frame whenever one exists.

It is clear from Figure 4 that numerous local minima exist for the 4th-order

frame potential. However, the figure also shows how a large percentage of these

local minima occur near the minimum value. There are no theoretical guarantees

that this is near the true minimum value, but this empirical data is compelling.

Figure 4.4: Numerical minimums of the 4th-order frame potential versus values of

maxi6=j | 〈fi, fj〉 |.
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4.4.2 WBE sequences with maximal separation

Direct algorithms for constructing Welch bound equality sequences were dis-

cussed in Tropp et al. in [45]. In the while noise, unequal norm case, a WBE

sequence is exactly a member of FE(µ, cId×d), where µ ∈ R
N
+ is the list of average

powers of each user in the uplink and c =
∑N

i=1 µi/d. In this section, we apply our

optimization framework to numerically construct WBE sequences that are also max-

imally separated. WBE sequences with maximal separation minimize interference

between users.

Assuming that µ and S satisfy the usual conditions, FE(µ, S) is non-empty

and we may seek

F = arg min
F∈FE(µ,S)

max
i6=j
| 〈fi, fj〉 |. (4.4.4)

The objective function in this minimization program is not differentiable, so we

instead seek

F = arg min
F∈FE(µ,S)

(∑
i 6=j

| 〈fi, fj〉 |4
)1/4

. (4.4.5)

As an experiment, we compute a random µ that is majorized by c1d. Here, we have

set N = 13 and d = 8. We then minimize the objective function described above

and plot these minimums versus the maximum absolute correlation of the system.

Our results from our experiment are summarized in Figure 5. Again, numerous

minima exist.
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Figure 4.5: Numerical minimums of the 4th-order frame potential versus values of

maxi6=j | 〈fi, fj〉 |.
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Chapter 5

Conclusion and future work

This work is the culmination of an eight year journey into finite frame theory,

and represents a leap forward for the problem of designing frames for applications.

Nevertheless, the gradient descent optimization procedure that we have elucidated is

relatively elementary and we would like to use the local parameterizations derived in

Chapter 3 to perform sophisticated optimization. Moreover, this research all began

as an attempt to develop an understanding of finite frames that could be exploited

to bring down the Kadison-Singer problem [28], but there is still not a clear path to

the resolution of this problem.

5.1 Beyond gradient descent optimization

In theory, the local coordinate systems derived here can be used to perform

direct optimization over FE(µ, S) without having to minimize the FOD at every

step. The reason that we have not described such a procedure is that there is

no theory that quantitatively ensures the validity of the coordinate systems. All we

know is that they are valid locally. In the future, we hope to overcome this technical

obstacle.

Problem 5.1.1. Find a computable lower bound for the radius of a ball in which

the coordinate systems from Theorems 3.4.1 and 3.5.1 are valid.
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Related to this issue is the Paulsen problem, which is currently being investi-

gated with gusto.

5.2 The Kadison-Singer problem

The original formulation of this problem is in the language of C∗-algebras.

Kadison-Singer Problem 5.2.1. Does every pure state on an atomic maximal,

abelian self-adjoint subalgebra of B(H) extend uniquely to a pure state on B(H)?

Nik Weaver introduced an equivalent formulation of the Kadison-Singer con-

jecture [49] that is more accessible from a frame-theoretic perspective.

Theorem 5.2.2 (Weaver). The following are equivalent:

1. The Kadison-Singer Problem has a positive solution.

2. There is some natural number r so that there exists universal constants K ≥ 4

and ε >
√
K such that the following holds: Let {fi}Ni=1 be a frame for Ed

satisfying ‖fi‖ = 1 for all i ∈ [N ] and suppose

N∑
i=1

| 〈x, fi〉 |2 ≤ K

for every unit vector x ∈ Ed. Then there exists a partition {Ij}rj=1 of [N ] such

that ∑
i∈Ij

| 〈x, fi〉 |2 ≤ K − ε

for all j ∈ [r] and all unit vectors x ∈ Ed.
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This formulation suggests that an understanding of spaces of frames may pro-

vide an avenue of attack that could bring down the Kadison-Singer problem. Un-

fortunately, the geometry that we have uncovered does not have an immediate re-

lationship with the behavior of a frame’s subsets. The primary obstacle to sovling

the Kadison-Singer problem from Weaver’s perspective is the fact that choosing a

partition that optimizes ε is most certainly an NP-hard combinatorial optimization

problem. Thus, finding some way to quantify ε is a daunting challenge.

One potential approach that seems promising, if formidable, is to determine

how well “good frames” cover spaces of frames. That is, we consider maps from

FE(µ,CId×d − ε)⊕FE(ν, CId×d + ε) −→ FE(µ⊕ ν, 2CId×d)

of the form

(F1, F2) 7→ [F1 F2].

Here, ε is a HPD perturbation matrix. Of course, we can also consider factorizing

these maps through a permutation of the columns. One would then like to quantify

the range of ε that ensures that this system of permuted embeddings covers the

target space. Computing this quantity most likely requires an estimate of the volume

of a general FE(µ, S) variety, which is currently unavailable. As such, we leave this

as an open problem.

Problem 5.2.3. Find lower and upper bounds on the volume of FE(µ, S).
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Appendix: Framelab

This appendix contains all of the code for Framelab 1.0, a Matlab implemen-

tation of the optimization methods detailed in Chapter 4. The code listed here

includes

• minFOD.m - the implementation of the frame operator distance minimization

techniques from Section 4.1;

• projTFEmuS.m - the implementation of the orthogonal projection methods

discussed in Section 4.2.1;

• minFEmuS.m - the implementation of the approximate gradient descent pro-

cedure developed in Section 4.2;

• initFEmuS.m - the implementation of the initial construction method dis-

cussed in Section 4.3;

• chkMAJ.m - an algorithm for checking the majorization conditions.

minFOD.m

% Title: Minimization of the Frame Operator Distance (FOD)

% Author: Nate Strawn

% Description: Performs a fast, sphere by sphere minimization of the

% FOD.

% Last Revision: 8.18.2010
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% Inputs:

% F: d by N, synthesis operator, d<=N.

% mu: N by 1, list of lengths of the columns of F.

% S: d by d, the target Frame Operator.

% parameters: struct,

% .tol: numerical tolerance and threshold parameter;

% .maxITER: maximum number of iterations for the minimization;

% .type: either ’full’ or ’partial’ depending upon the descent

% type.

% Outputs:

% F: d by N, a numerical approximation to a (mu,S)-frame.

% info: struct,

% .ITER: count of the iterations;

% .hist: list of all the iterates;

% .histFOD: list of the FOD values for each iterate.

% Auxiliary variables:

% ITER: integer, number of iterations so far.

% grad: d by N, gradient of FOD^2 at F.

% gradNorms: 1 by N, column norms of grad.

% g: d by 1, the partial search direction.

% G: d by N, the full search direction.
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% maxEntry: scalar, largest value of gradNorms.

% maxIndex: integer, index of maxEntry in gradNorms.

% T: d by d, dynamic variable used to represent S-FF’.

% FOD: scalar, ||S-FF^\ast||.

% A,B: scalar, auxilary coefficients for determining the step size.

% t: scalar, the step size for the search.

function [F,info] = minFOD(F,mu,S,parameters)

if (nargin==3)

parameters.tol=1e-6;

parameters.maxITER=1000;

parameters.type=’full’;

end

% Ensure that the column norms correspond to the entries of \mu

F=F*diag(sqrt(sum(abs(F).^2)).^(-1))*diag(mu);

% Initialize the frame operator difference

T = S-F*F’;

T = (T+T’)/2;

% Calculate initial FOD to S
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FOD=norm(T,’fro’);

% Intialize the information structure

ITER=1;

if (nargout == 2)

info.hist=cell(1,parameters.maxITER);

info.histFOD=zeros(1,parameters.maxITER);

info.hist{ITER}=F;

info.histFOD(ITER)=FOD;

end

% Minimization Step

if (strcmp(parameters.type,’partial’))

while (parameters.tol<FOD && ITER<parameters.maxITER)

% Calculate the gradient of the square FOD at F

grad = -T*F;

grad = grad ...

- F*diag(real(sum(conj(F).*grad)))*diag(mu.^(-2));

gradNorms = sum(abs(grad).^2);

% Find the entry of largest gain

[maxEntry, maxIndex] = max(gradNorms);
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f=F(:,maxIndex);

g=mu(maxIndex)*grad(:,maxIndex)/sqrt(maxEntry);

T=T+f*f’;

% Compute auxilary coefficients

A = (real(f’*T*f-g’*T*g))^2;

B = 4*real(f’*T*g)^2;

% Calculate the minimizing value of t

t = -sqrt(1/2 - 1/2*sqrt(A/(A+B)));

% Update F, the frame operator difference, and the FOD

F(:,maxIndex) = sqrt(1-t^2)*f+t*g;

F(:,maxIndex) = ...

mu(maxIndex)*F(:,maxIndex)/norm(F(:,maxIndex));

T=T-F(:,maxIndex)*F(:,maxIndex)’;

FOD=norm(T,’fro’);

% Update the gradient

ITER=ITER+1;

if (nargout == 2)

info.ITER=ITER;

info.hist{info.ITER}=F;

95



info.histFOD(info.ITER)=FOD;

end

end

end

if (strcmp(parameters.type,’full’))

d=size(S,1);

% If the condition number of S is sufficiently large, the spec-

% tral gap is computed by applying a Rayleigh quotient iteration.

% Otherwise, the spectral gap is assumed to be zero. We compute

% the appropriate stepsize.

if (parameters.tol <= cond(S)-1)

t=1/(topeig(S,randn(d,1),parameters.tol)...

+topeig(-S,randn(d,1),parameters.tol)+2*sum(mu.^2));

else

t=1/(2*sum(mu.^2));

end

% Compute the modified step sizes.

t=t./mu;

while (parameters.tol<FOD && ITER<parameters.maxITER)

% Calculate the gradient of the square FOD at F
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grad = -T*F;

grad = grad ...

- F*diag(real(sum(conj(F).*grad)))*diag(mu.^(-2));

gradNorms = sqrt(sum(abs(grad).^2));

annihilated = (gradNorms < parameters.tol);

% Compute the rotation coefficients.

A = cos(gradNorms.*t);

B = sin(gradNorms.*t);

% Compute the full search direction.

G = grad*diag(mu./(gradNorms+annihilated))...

*diag(1-annihilated);

% Update F.

F=F*diag(A)-G*diag(B);

% Update T.

T = S-F*F’;

T = (T+T’)/2;

FOD=norm(T,’fro’);

% Update the gradient
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ITER=ITER+1;

if (nargout == 2)

info.ITER=ITER;

info.hist{info.ITER}=F;

info.histFOD(info.ITER)=FOD;

end

end

end

end

% Rayleigh quotient iteration for the top eigenvalue

function a=topeig(S,x,tol)

d=size(S,1);

a=(x’*S*x)/(x’*x);

A=S-a*eye(d);

residual=Inf;

while (tol <= residual && 1e-12 < rcond(A))

x=A\x;

x=x/norm(x);

temp=x’*S*x;

residual=abs(temp-a);

a=temp;

A=S-a*eye(d);
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end

end

projTFEmuS.m

% Title: (\mu,S)-frame variety tangent space projection

% Author: Nate Strawn

% Description: This function computes the projection of a matrix X

% onto the tangent space of a (\mu,S)-frame variety at a point F.

% Last Revision: 8.18.2010

% Inputs:

% X: d by N, the matrix to be projected onto T_F \F(\mu,S).

% F: d by N, the point on a warped Stiefel manifold.

% E: string, the field of interest, either ’R’ or ’C’.

% mu: 1 by N, norms of the columns of F.

% S: d by d, F*F’.

% parameters: struct,

% .tol: small tolerance parameter;

% .method: either ’iterative’ or ’direct’ depending upon the

% desired projection method.

% Outputs:
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% X: d by N, the projection of the input.

% Auxiliary variables:

% Xnew: d by N, holds the update for computing the residual.

% Q: d*N by d*N or 2*d*N by 2*d*N, projection onto tangent space of

% the warped Stiefel manifold.

% R: d*N by d*N or 2*d*N by 2*d*N, projection onto tangent space of

% the (\mu,S)-frame variety.

% V: d by d, holder for an orthonormal basis adapted to columns of

% F.

% Y: d by N, holder for basis members used to compute Q and R.

% B: struct, information concerning the ’good’ basis extracted from

% F.

% charge: N by 1, stores the values distributed on the correlation

% network by the current state of Y.

% z: scalar, update constant used to zero-out charge an entry at a

% time.

% residual: scalar, the distance between X and Xnew determines when

% the alternating projection stops.

function X=projTFEmuS(X,F,E,mu,S,parameters)

if (nargin == 5)
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parameters.tol=10^(-6);

parameters.method=’direct’;

end

[d,N]=size(F);

residual=Inf;

% Test to see how far S is from a multiple of the identity. If it is

% close to being near the identity, then we perform alternating pro-

% jections. If it is not close, then we perform the full projection.

if (strcmp(parameters.method,’iterative’)==1)

if (cond(S)-1<parameters.tol)

while (residual >= parameters.tol)

Xnew=X-(X*F’+F*X’)*F/(2*S(1,1));

Xnew=Xnew-F*diag(real(diag(F’*Xnew)))*diag(mu.^(-2));

residual=norm(X-Xnew,’fro’);

X=Xnew;

end

else

% First, we construct the projection Q.

[B,quit]=goodbasis(F,parameters.tol);

if (strcmp(quit,’failure’)==1)

error(’F is a singular point’);
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end

if (strcmp(E,’R’)==1)

% Construct Q

Q=zeros(d*N,d*N);

for i=B.A

for j=setdiff(1:N,B.A)

Y=zeros(d,N);

Y(:,j)=F(:,i);

Y(:,i)=-F(:,j);

Q=updateprojection(Q,Y,E);

end

end

for i=B.A(1:d-1)

for j=B.A(find(B.A==i)+1:d)

Y=zeros(d,N);

Y(:,j)=F(:,i);

Y(:,i)=-F(:,j);

Q=updateprojection(Q,Y,E);

end

end

% Perform alternating projections.

while (residual >= parameters.tol)
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Xnew=Q*reshape(X,d*N,1);

Xnew=reshape(Xnew,d,N);

Xnew=Xnew-F*diag(real(diag(F’*Xnew)))*diag(mu.^(-2));

residual=norm(X-Xnew,’fro’);

X=Xnew;

end

elseif (strcmp(E,’C’)==1)

Q=zeros(2*d*N,2*d*N);

for i=B.A

for j=setdiff(1:N,B.A)

Y=zeros(d,N);

Y(:,j)=F(:,i);

Y(:,i)=-F(:,j);

Q=updateprojection(Q,Y,E);

Y=zeros(d,N);

Y(:,j)=sqrt(-1)*F(:,i);

Y(:,i)=sqrt(-1)*F(:,j);

Q=updateprojection(Q,Y,E);

end

end

for i=B.A(1:d-1)

Y=zeros(d,N);

Y(:,i)=sqrt(-1)*F(:,i);
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Q=updateprojection(Q,Y,E);

for j=B.A(find(B.A==i)+1:d)

Y=zeros(d,N);

Y(:,j)=F(:,i);

Y(:,i)=-F(:,j);

Q=updateprojection(Q,Y,E);

Y=zeros(d,N);

Y(:,j)=sqrt(-1)*F(:,i);

Y(:,i)=sqrt(-1)*F(:,j);

Q=updateprojection(Q,Y,E);

end

end

Y=zeros(d,N);

Y(:,B.A(d))=sqrt(-1)*F(:,B.A(d));

Q=updateprojection(Q,Y,E);

while (residual >= parameters.tol)

Xnew=Q*[reshape(real(X),d*N,1);reshape(imag(X),d*N,1)];

Xnew=reshape(Xnew(1:d*N),d,N)...

+sqrt(-1)*reshape(Xnew(d*N+1:2*d*N),d,N);

Xnew=Xnew-F*diag(real(diag(F’*Xnew)))*diag(mu.^(-2));

residual=norm(X-Xnew,’fro’);

X=Xnew;

end
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end

end

elseif (strcmp(parameters.method,’direct’)==1)

B=goodbasis(F,parameters.tol);

B.Ac=setdiff(1:N,B.A);

B.inv=inv(F(:,B.A));

%Compute the first part of the basis

if (strcmp(E,’R’)==1)

R=zeros(d*N,d*N);

for i=B.Ac

% Compute a basis for the perp span of each f_i

temp=[1 zeros(1,d-1)]’+F(:,i)/mu(i);

temp=temp/norm(temp);

V=eye(d)-2*temp*temp’;

for j=2:d

Z=zeros(N,N);

Z(B.A,i)=B.inv*V(:,j);

Z=Z-Z’;

Y=F*Z;

charge=sum(Y(:,B.A).*F(:,B.A)’);

Y=distribute(Y,F,B,charge);

R=updateprojection(R,Y,E);
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end

end

%Construct the second part of the basis.

for i=B.A(1:d-1)

for j=B.A(find(B.A==i)+1:d)

if (B.Adj(i,j) == 0)

Y=zeros(d,N);

Y(:,i)=F(:,j);

Y(:,j)=-F(:,i);

charge=zeros(d,1);

charge(i)=F(:,i)’*F(:,j);

charge(j)=-conj(charge(i));

Y=distribute(Y,F,B,charge);

R=updateprojection(R,Y,E);

end

end

end

X=reshape(R*reshape(X,d*N,1),d,N);

elseif (strcmp(E,’C’)==1)

R=zeros(2*d*N,2*d*N);

for i=B.Ac

% Compute a basis for the perp span of each f_i
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u=[1 zeros(1,d-1)]’;

fhat=F(:,i)/mu(i);

ip=fhat(1);

temp=fhat-ip*u;

V=eye(d)+((u-conj(ip)*fhat)*temp’...

/(1-abs(ip)^2)-eye(d))*(u*u’+temp*temp’/(1-abs(ip)^2));

Y=zeros(d,N);

Y(:,i)=sqrt(-1)*F(:,i);

R=updateprojection(R,Y,E);

for j=2:d

for xi=0:1

Z=zeros(N,N);

Z(B.A,i)=(sqrt(-1)^xi)*B.inv*V(:,j);

Z=Z-Z’;

Y=F*Z;

charge=real(sum(Y(:,B.A).*conj(F(:,B.A)))’);

Y=distribute(Y,F,B,charge);

R=updateprojection(R,Y,E);

end

end

end

%Construct the second part of the basis.
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for i=B.A(1:d-1)

Y=zeros(d,N);

Y(:,i)=sqrt(-1)*F(:,i);

R=updateprojection(R,Y,E);

for j=B.A(find(B.A==i)+1:d)

if (B.Adj(i,j) == 0)

for xi=0:1

Y=zeros(d,N);

Y(:,i)=(sqrt(-1)^xi)*F(:,j);

Y(:,j)=-(sqrt(-1)^(-xi))*F(:,i);

charge=zeros(d,1);

charge(i)=real(F(:,i)*F(:,j));

charge(j)=-real(conj(charge(i)));

Y=distribute(Y,F,B,charge);

R=updateprojection(R,Y,E);

end

end

end

end

Y=zeros(d,N);

Y(:,B.A(d))=sqrt(-1)*F(:,B.A(d));

R=updateprojection(R,Y,E);
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X=[reshape(real(X),d*N,1); reshape(imag(X),d*N,1)];

X=R*X;

X=reshape(X(1:d*N),d,N)+sqrt(-1)*reshape(X(d*N+1:2*d*N),d,N);

end

end

end

% This function performs updates to a projection P given a new matrix

% P.

function P=updateprojection(P,Y,field)

[d,N]=size(Y);

if (strcmp(field,’R’)==1)

Y=reshape(Y,d*N,1);

Y=Y-P*Y;

Y=Y/norm(Y);

P=P+Y*Y’;

elseif (strcmp(field,’C’)==1)

Y=[reshape(real(Y),d*N,1);

reshape(imag(Y),d*N,1)];

Y=Y-P*Y;

Y=Y/norm(Y);

P=P+Y*Y’;

else
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error(’Field must be R or C’);

end

end

% This function completes the matrix Y so that it is in the tanget

% space of the (\mu,S)-variety at F.

function Y=distribute(Y,F,B,charge)

for k=1:B.gen

for l=B.nu{k}

leaf_index=find(B.A==l);

parent_index=find(B.A==B.alpha(leaf_index));

z=charge(leaf_index)/(F(:,parent_index)’*F(:,l));

Y(:,l)=Y(:,l)-conj(z)*F(:,parent_index);

Y(:,parent_index)=Y(:,parent_index)+z*F(:,l);

charge(parent_index)=charge(parent_index)...

+charge(leaf_index);

charge(leaf_index)=0;

end

end

end

% This function extracts the column indices of a ’good’ basis from

% the matrix F. By ’good’, we mean that the basis has a connected
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% correlation network. The function also returns pertinant informa-

% tion about the connectivity of the basis.

% Last Revision: 7.13.2010

% Inputs:

% F: d by N, a frame matrix.

% thresh: scalar, the threshold used to determine the adjacency

% matrix.

% Outputs:

% B: struct, all the info about the ’good’ basis;

% .A: 1 by d, the list of indices;

% .alpha: 1 by d, the parent of each index;

% .nu: cell, holds the different generations of the tree on

% B.A;

% .Adj: N by N, the adjacency matrix of the correlation network

% of F.

% quit: string, termination indicator.

% Auxiliary variables:

% mu: 1 by N, the vector of lengths of columns of F.

% P: d by d, the projection onto the span of the basis elements so

% far.
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function [B,quit]=goodbasis(F,thresh)

[d,N]=size(F);

% Compute the thresholded adjacency matrix

B.Adj=F’*F;

mu=sqrt(diag(B.Adj));

B.Adj=(abs(diag(mu.^(-1))*(B.Adj-diag(mu.^2))...

*diag(mu.^(-1)))>thresh);

% Attempt to extract a nonorthodecomposable basis from F

B.A=1;

P=F(:,1)*F(:,1)’/mu(1)^2;

quit=’false’;

while (strcmp(quit,’false’) == 1)

nbrs=neighbors(B.A,1:N,B.Adj);

if (size(nbrs,1)==0)

quit=’failure’;

else

[junk,best]=min(sum(abs(P*F(:,nbrs)...

*diag(mu(nbrs).^(-1)).^2)));

B.A=union(B.A,nbrs(best));

end
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if (size(B.A,2)==d)

quit=’success’;

end

end

% Having successfully extracted the indices of a basis, we turn to

% constructing connectivity structures from the correlation network.

if (strcmp(quit,’success’)==1)

%Count how many generations are in the tree rooted at 1

B.gen=0;

nbrs=1;

while (size(nbrs,2) ~= d)

nbrs=union(nbrs,neighbors(nbrs,B.A,B.Adj));

B.gen=B.gen+1;

end

% Now construct nu

B.nu=cell(1,B.gen);

nbrs=1;

B.alpha=zeros(1,d);

for i=fliplr(1:B.gen)

B.nu{i}=neighbors(nbrs,B.A,B.Adj);

for j=1:size(B.nu{i},2)
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temp=neighbors(B.nu{i}(j),B.A,B.Adj);

B.alpha(logical(B.A==B.nu{i}(j)))=temp(1);

end

nbrs=union(nbrs,B.nu{i});

end

end

end

% This function computes the neighbors of active in domain\active

% given the adjacency matrix.

function n=neighbors(active,domain,adjacencyMTX)

D=setdiff(domain,active);

[n,junk]=find(adjacencyMTX(D,active)==1);

n=unique(D(n));

end

minFEmuS.m

% Title: Minimization of an objective function over a (\mu,S)-frame

% variety

% Author: Nate Strawn

% Description: This function finds a local minimum of an objective
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% function on a (\mu,S)-frame variety.

% Last Revision: 8.18.2010

% Inputs:

% objfcn: function handle, the objective function to be minimized;

% returns a value as well as a gradient.

% F: d by N, the initial guess matrix, and the holder for the

% matrices found in resulting search, vectors are columns.

% E: string, either ’R’ or ’C’ depending upon whether real or

% complex frames are desired.

% mu: 1 by N, the lengths of the columns of F.

% S: d by d, the frame operator of F, S=F*F’.

% parameters: struct,

% .tol: tolerance used to decide termination of the

% optimization, default is 1e-6;

% .maxITER: maximum number of iterations allowed, default is

% 1000;

% .method: either ’iterative’ or ’direct’ depending upon the

% projection strategy employed, default is ’iterative’.

% Outputs:

% F: d by N, the computed matrix with vectors in the columns.

% info: struct,
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% .ITER: the current iteration;

% .hist: cell, the list of iterates;

% .histfcn: the list of values of objfcn applied to the

% iterates.

% .histres: the distances between each pair of successive

% iterates.

% Auxiliary variables:

% Y: d by N, the test matrix for the golden section line search.

% C,R: scalars, values used in the golden section search.

% residual: scalar, the distance between successive iterates.

% the search ends when this is below parameters.tol.

% value: scalar, the value of objfcn at X.

% grad: d by N, the gradient of objfcn at X.

% t: 1 by 4, array of bracket values.

% k: integer, the exponential factor for the initial bracket in the

% golden section search.

% value1,value2: scalars, the values of objfcn inside the bracket.

% tau: scalar, time elapsed for each iteration.

function [F,info]=minFEmuS(objfcn,F,E,mu,S,parameters)

if (nargin == 5)

parameters.tol=1e-9;
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parameters.maxITER=1000;

parameters.method=’direct’;

parameters.type=’full’;

end

% Bring F close to the (\mu,S)-frame variety

F=minFOD(F,mu,S,parameters);

% Initialize the information structure

if (nargout == 2)

info.histfcn=zeros(1,parameters.maxITER);

info.hist=cell(1,parameters.maxITER);

info.histres=zeros(1,parameters.maxITER);

info.ITER=1;

info.hist{info.ITER}=F;

info.histfcn(info.ITER)=objfcn(F);

end

% Initialize the residual

ITER=0;

residual.F=Inf;

residual.grad=0;

disp(sprintf(’\n ...

Iteration\t Value\t\t Residual\t Gradient\t Time’));

disp(sprintf(’====================================================...
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======================’));

while (residual.F > parameters.tol && ITER<parameters.maxITER)

% Apply the golden section search

tau=cputime;

[F,residual]=muSlinesearch(objfcn,F,E,mu,S,parameters);

tau=cputime-tau;

ITER=ITER+1;

% Store data

if (nargout == 2)

info.histres(ITER)=residual.F;

info.hist{ITER}=F;

info.histfcn(ITER)=objfcn(F);

end

% Display the iteration data

disp(sprintf(’\t%d\t %4.5f\t %4.5f\t %4.5f\t %4.5f’,...

ITER, objfcn(F), residual.F, residual.grad, tau));

end

if (nargout == 2)

info.ITER=ITER;
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end

end

function [F,residual]=muSlinesearch(objfcn,F,E,mu,S,parameters)

% Define the values for the Golden Section search

C = (3-sqrt(5))/2;

R = 1-C;

% Initialize the bracket variables

k=0;

t=parameters.tol;

% Evaluate the objective function at F

[value,grad]=objfcn(F);

% Project the gradient onto the tangent space of the (mu,S)-frame

% variety

grad=projTFEmuS(grad,F,E,mu,S,parameters);

residual.grad=norm(grad,’fro’);

% Compute the column norms of the gradient and replace the gradient

% with it’s column-ameliorated version.

gradnorms=sqrt(sum(grad.^2));
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grad=grad*diag((gradnorms.*(gradnorms >= parameters.tol)...

+(gradnorms < parameters.tol)).^(-1))*diag(mu);

% Compute the first point in the line search along the product of

% spheres geodesic.

Y=F*diag(cos(gradnorms*t))-grad*diag(sin(gradnorms*t));

% Once the point along the geodesic is computed, we use minFOD to

% bring it back to the (mu,S)-frame variety, and evaluate the object-

% ive function at this point.

Y=minFOD(Y,mu,S,parameters);

value1=objfcn(Y);

% Initialize the bracket: first consider the step at (2^0)*tol. If

% this is lower than at t=0, then consider steps inductively at

% (2^k)*tol. Once the process stops at k+1, the bracket is

% 0,tol*2^k,tol*2^(k+1). If this value is higher, then we back track

% until we get a lower value.

if (value1<value)

% If value1 is below value, we proceed to construct the initial

% bracket.

while (value1<value)

k=k+1;
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t=(2^k)*parameters.tol;

Y=F*diag(cos(gradnorms*t))-grad*diag(sin(gradnorms*t));

Y=minFOD(Y,mu,S,parameters);

% value=value1 ensures that this doesn’t go off to

% infinity

% value=value1;

value1=objfcn(Y);

end

t=[0 (2^(k-1))*parameters.tol (2^k)*parameters.tol];

% We now apply the golden section search technique.

if (abs(t(3)-t(2)) > abs(t(2)-t(1)))

t=[t(1) t(2) t(2)+C*(t(3)-t(2)) t(3)];

else

t=[t(1) t(2)-C*(t(2)-t(1)) t(2) t(3)];

end

Y=F*diag(cos(gradnorms*t(2)))-grad*diag(sin(gradnorms*t(2)));

Y=minFOD(Y,mu,S,parameters);

value1=objfcn(Y);

Y=F*diag(cos(gradnorms*t(3)))-grad*diag(sin(gradnorms*t(3)));

Y=minFOD(Y,mu,S,parameters);

value2=objfcn(Y);

k = 1;
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while (abs(t(4)-t(2)) > parameters.tol*(t(2)+t(3)) &&...

t(4)>parameters.tol^16),

if (value2<value1)

t(1) = t(2);

t(2) = t(3);

t(3) = R*t(2) + C*t(4);

value1 = value2;

Y=F*diag(cos(gradnorms*t(3)))...

-grad*diag(sin(gradnorms*t(3)));

Y=minFOD(Y,mu,S,parameters);

value2=objfcn(Y);

else

t(4) = t(3);

t(3) = t(2);

t(2) = R*t(3) + C*t(1);

value2 = value1;

Y=F*diag(cos(gradnorms*t(2)))...

-grad*diag(sin(gradnorms*t(2)));

Y=minFOD(Y,mu,S,parameters);

value1=objfcn(Y);

end

k = k+1;

end
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if (value1<value2)

Y=F*diag(cos(gradnorms*t(2)))...

-grad*diag(sin(gradnorms*t(2)));

Y=minFOD(Y,mu,S,parameters);

else

Y=F*diag(cos(gradnorms*t(3)))...

-grad*diag(sin(gradnorms*t(3)));

Y=minFOD(Y,mu,S,parameters);

end

% Compute the residual and update F

residual.F=norm(Y-F,’fro’);

F=Y;

else

% The initial point of the line search yields a point which is

% close, but which has larger value. Thus, the search ends.

residual.F=0;

F=Y;

end

end
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initFEmuS.m

% Title: Initialize (mu,S)-frame

% Author: Nate Strawn

% Description: Produces a member of a (mu,S)-frame with the goal of

% keeping many columns of F the same.

% Last Revision: 8.18.2010

% Inputs:

% F: d by N, original frame input.

% mu: 1 by d, list of vector lengths.

% S: d by d, target frame operator.

% Outputs:

% F: d by N, the (mu,S)-frame.

% Auxiliary variables:

% U: d by d, the list of eigenvectors of S.

% lambda: 1 by d, the list of eigenvalues of S.

function F=initFEmuS(F,mu,S)

N=size(mu,2);

[U,lambda]=eig(S);
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U=fliplr(U);

lambda=fliplr(diag(lambda)’);

A=[];

for i=1:N

f=U’*F(:,i);

if(chkMAJ(mu(setdiff(1:N,A)),lambda,f,find(setdiff(1:N,A)==i)))

A=setunion(A,i);

S=S-f*f’;

[U,lambda]=eig(S);

U=fliplr(U);

lambda=fliplr(diag(lambda)’);

end

end

F(:,setdiff(1:N,A))=minFOD(F(:,setdiff(1:N,A)),mu,S);

chkMAJ.m

% Title: Check majorization conditions

% Author: Nate Strawn

% Description: Either checks that majorization holds for two sequen-

% ces, or checks sufficient conditions for majorization after removal

% of a rank one operator.

% Last Revision: 8.18.2010
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% Inputs:

% mu: 1 by N, unordered list of column lengths.

% lambda: 1 by d, ascending list of eigenvalues for a target

% operator.

% f: d by 1, candidate vector to be checked

% index: integer, index of the candidate vector.

% Outputs:

% b: logical, 0 if the condition fails, 1 if the condition holds

% Auxiliary variables:

% k: integer, an index counter.

% mu_sum, lambda_sum, f_sum, sqrtSf_sum, c: scalar, holders for the

% quantities updated through the loop.

function b=chkMAJ(mu,lambda,f,index)

b=1;

d=size(lambda,2);

if (nargin == 2)

if (abs(sum(mu.^2)-sum(lambda)) > 1e-6)

b=0;

end

126



if (b==1)

mu=sort(mu.^2,’descend’);

k=1;

mu_sum=0;

lambda_sum=0;

while (b == 1 && k < d)

mu_sum=mu_sum+mu(k);

lambda_sum=lambda_sum+lambda(k);

if (mu_sum > lambda_sum)

b=0;

end

k=k+1;

end

end

else

if ((f’./lambda)*f > 1)

b=0;

end

if (b == 1)

N=size(mu,2);

mu=sort(mu([1:index-1 index+1:N]).^2,’descend’);

k=1;

mu_sum=0;
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lambda_sum=0;

f_sum=0;

sqrtSf_sum=0;

while(b == 1 && k < d)

mu_sum=mu_sum+mu(k);

lambda_sum=lambda_sum+lambda(k);

f_sum=f_sum+abs(f(k))^2;

sqrtSf_sum=sqrtSf_sum+lambda(k)*abs(f(k))^2;

c=lambda_sum-mu_sum;

if (f_sum > c)

rho=sqrtSf_sum/f_sum;

if (f_sum < 1e-9 || rho > lambda(k+1)+c)

if (c < 1e-9 ||...

f_sum/c+(f(k+1:d)’./(lambda(k+1:d)+c-rho))...

*f(k+1:d)>1)

b=0;

end

end

end

k=k+1;

end

end

end
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