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Fourier frames, goal, and a litany of names

Definition

E = {xn} ⊆ Rd,Λ ⊆ R̂d. E is a Fourier frame for L2(Λ) if

∃A,B > 0,∀F ∈ L2(Λ),

A ||F ||2L2(Λ) ≤
∑

n

| < F (γ), e−2πixn·γ > |2 ≤ B ||F ||2L2(Λ).

Goal Formulate a general theory of Fourier frames and
non-uniform sampling formulas parametrized by the space M(Rd) of
bounded Radon measures.

Motivation Beurling theory (1959-1960).

Names Riemann-Weber, Dini, G.D. Birkhoff, Paley-Wiener,
Levinson, Duffin-Schaeffer, Beurling-Malliavin, Beurling,
H.J. Landau, Jaffard, Seip, Ortega-Certà–Seip.
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Balayage

Let M(G) be the algebra of bounded Radon measures on the
LCAG G.

Balayage in potential theory was introduced by Christoffel (early
1870s) and Poincaré (1890).

Definition

(Beurling) Balayage is possible for (E,Λ) ⊆ G× Ĝ, a LCAG pair, if

∀µ ∈ M(G),∃ν ∈ M(E) such that µ̂ = ν̂ on Λ.

We write balayage (E,Λ).

The set, Λ, of group characters is the analogue of the original role of
Λ in balayage as a collection of potential theoretic kernels.

Kahane formulated balayage for the harmonic analysis of restriction
algebras.
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Spectral synthesis

Definition

(Wiener, Beurling) Closed Λ ⊆ Ĝ is a set of spectral synthesis (S-set) if
∀µ ∈ M(G),∀f ∈ Cb(G),
supp(f̂) ⊆ Λ and µ̂ = 0 on Λ =⇒

∫
G

f dµ = 0.

(∀T ∈ A′(Ĝ),∀φ ∈ A(Ĝ), supp(T ) ⊆ Λ and φ = 0 on Λ ⇒ T (φ) = 0.)

Ideal structure of L1(G) - the Nullstellensatz of harmonic analysis

T ∈ D′(R̂d), φ ∈ C∞
c (R̂d), and φ = 0 on supp(T ) ⇒ T (φ) = 0, with

same result for M(R̂d) and C0(R̂d).

S2 ⊆ R̂3 is not an S-set (L. Schwartz), and every non-discrete Ĝ has
non-S-sets (Malliavin).

Polyhedra are S-sets. The 1
3 -Cantor set is an S-set with

non-S-subsets.
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Strict multiplicity

Definition

Γ ⊆ Ĝ is a set of strict multiplicity if

∃ µ ∈ M(Γ)\{0} such that µ̌ vanishes at infinity in G.

Riemann and sets of uniqueness in the wide sense.

Menchov (1916): ∃ closed Γ ⊆ R̂/Z and µ ∈ M(Γ)\{0},
|Γ| = 0 and µ̌(n) = O((log |n|)−1/2), |n| → ∞.

20th century history to study rate of decrease: Bary (1927),
Littlewood (1936), Salem (1942, 1950), Ivašev-Mucatov (1957),
Beurling.

Assumption

∀ γ ∈ Λ and ∀ N(γ), compact neighborhood, Λ ∩N(γ) is a set of
strict multiplicity.
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A theorem of Beurling

Definition

E = {xn} ⊆ Rd is separated if

∃ r > 0, ∀m,n, m 6= n ⇒ ||xm − xn|| ≥ r.

Theorem

Let Λ ⊆ R̂d be a compact S-set, symmetric about 0 ∈ R̂d, and
let E ⊆ Rd be separated. If balayage (E,Λ), then

E is a Fourier frame for L2(Λ).

Equivalent formulation in terms of

PWΛ = {f ∈ L2(Rd) : supp(f̂) ⊆ Λ}.
∀F ∈ L2(Λ), F =

∑
x∈E < F, S−1(ex) >Λ ex in L2(Λ).

For Rd and other generality beyond Beurling’s theorem in R, the
result above was formulated by Hui-Chuan Wu
and JB (1998), see Landau (1967).
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Lower frame bounds

Let Λ ⊆ R̂d be a compact S-set, and assume balayage (E, Λ) where
E = {xn} is separated.

1 ∀F ∈ L2(Λ), Λ convex,
√

A
R
Λ |F (γ)+F (2γ)+F (3γ)|2 dγ

(
R
Λ |F (γ)|2 dγ)1/2

≤ (
∑
|F̌ (xn)|2)1/2 + 1

2 (
∑
|F̌ ( 1

2xn)|2)1/2 + 1
3 (

∑
|F̌ ( 1

3xn)|2)1/2.

2 Given positive G ∈ L2(Λ). Then ∀F ∈ L2(Λ),

√
A

∫
Λ
|F (γ)|2G(γ) dγ

(
∫
Λ
|F (γ)|2 dγ)

1
2
≤ (

∑
|(FG)ˇ(xn)|2)1/2.
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Semi-discrete Gabor frames

Let G ∈ L2(R̂d) satisfy ||G||L2(bRd) = 1; let Λ ⊂ R̂d be an S-set,

symmetric about 0; and let E ⊂ Rd be separated. Define

(STFT) ∀F ∈ L2(Λ), VGF (x, γ) =
∫
Λ

F (λ)G(λ− γ)e2πix·λ dλ.

Theorem

If balayage (E,Λ), then

∃A,B > 0, ∀F ∈ L2(Λ),

A ||F ||2L2(Λ) ≤
∫

bRd

∑
x∈E

|VGF (x, γ)|2 dγ ≤ B ||F ||2L2(Λ).

Remark There are basic problems to be resolved and there have been
fundamental recent advances.
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Examples of balayage

1 Let E ⊆ Rd be separated. Define

r = r(E) = sup
x∈Rd

dist(x,E).

If rρ < 1
4 , then balayage (E, B̄(0, ρ)). 1

4 is the best possible.

2 If balayage (E, Λ) and Λ0 ⊆ Λ, then balayage (E, Λ0).

3 Let E = {xn} be a Fourier frame for PWΛ. Then for all Λ0 ⊆ Λ
with dist(Λ0,Λc ) > 0, we have balayage (E, Λ0).

4 In R1, for a separated set E, Beurling lower density > ρ is necessary
and sufficient for balayage (E, [−ρ

2 , ρ
2 ]).

Remark In R1, if E is uniformly dense in the sense of Duffin-Schaeffer,
then D−(E), D+(E), and Du(E) coincide.
So Beurling’s result ⇒ Duffin-Schaeffer’s result on Fourier frames.
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Sampling formulas (1)

Let Λ ∈ R̂d be a compact S-set, and assume balayage (E, Λ),
E = {xn} ⊆ Rd separated.

Theorem ∃ε > 0, balayage (E, Λε).

Theorem ∀x ∈ Rd, ∃ {bn(x)} ∈ l1(Z),

supx∈Rd

∑
n |bn(x)| ≤ K(E,Λε)

and e−2πix·γ =
∑

n bn(x)e−2πixn·γ uniformly on Λε.

Let h be entire on Rd with e−Ω(|x|) decay,

h(0) = 1 and supp(ĥ) ⊆ B̄(0, ε).

Theorem

∀f ∈ Cb(R), supp(f̂) ⊆ Λ,

∀y ∈ Rd, f(y) =
∑

f(xn)bn(y)h(xn − y)

Weighted sampling function bn(y)h(xn − y) independent of
f ∈ Cb(Rd), supp(f̂) ⊆ Λ.
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Sampling formulas (2)

The Nyquist condition, 2TΩ ≤ 1, for sampling period T and
bandwidth [−Ω,Ω], gives way to balayage (E,Λ), where Λ is the
bandwidth and the sampling set E is related to Λ by balayage (E,Λ).

Let s ∈ Cb(Rd), supp(ŝ) ⊆ Λ, a compact S-set - sampling function s.

Let A = {a(n)} ⊆ Rd, n ∈ Z and distinct points a(n). Define

VA = {f ∈ Cb(Rd) : ∀x ∈ Rd, f(x) =
X

n

cn(f)s(x−a(n)),
X

n

|cn(f)| < ∞}.

Assume balayage (E,Λ), E = {xn} ⊆ Rd separated.
Define

VE = {f ∈ Cb(Rd) : ∀x ∈ Rd, f(x) =
X

n

cn(f)s(x−xn),
X

n

|cn(f)| < ∞}.

Theorem

V = ∪AVA ⊆ VE ⊆ Cb(Rd). Thus,

∀f ∈ V, f(x) =
∑

n cn(f)s(x− xn), uniformly on Rd.
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The Theory

Signal decomposition in terms of (E,Λ)-balayage, defined by
measures whose absolutely convergent non-harmonic Fourier series
are generalized characters parameterized by Λ.

Sampling multipliers and lower frame bound inequalities

Pseudo-differential operator sampling formulas

Bilinear frame operators and classical extensions of the Calderon
formula in harmonic analysis
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That’s all folks!

John J. Benedetto Frame potential classification algorithm for retinal data


	



