Constructive digital harmonic analysis

John J. Benedetto

Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

Narrow band ambiguity functions and CAZAC codes

Narrow band ambiguity functions and CAZAC codes

Discrete ambiguity functions

Let $u: \{0, 1, \ldots, N-1\} \rightarrow \mathbb{C}$.

- $u_p : \mathbb{Z}_N \to \mathbb{C}$ is the *N*-periodic extension of *u*.
- $u_a : \mathbb{Z} \to \mathbb{C}$ is an aperiodic extension of u:

$$u_a[m] = \left\{ egin{array}{cc} u[m], & m=0,1,\ldots,N-1 \ 0, & ext{otherwise}. \end{array}
ight.$$

The discrete periodic ambiguity function A_p(u) : Z_N × Z_N → C of u is

$$A_{\rho}(u)(m,n)=\frac{1}{N}\sum_{k=0}^{N-1}u_{\rho}[m+k]\overline{u_{\rho}[k]}e^{2\pi i kn/N}.$$

The discrete aperiodic ambiguity function A_a(u) : ℤ × ℤ → ℂ of u is

$$A_{a}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} u_{a}[m+k] \overline{u_{a}[k]} e^{2\pi i k n/N}.$$

CAZAC sequences

• $u : \mathbb{Z}_N \to \mathbb{C}$ is Constant Amplitude Zero Autocorrelation (CAZAC):

 $\forall m \in \mathbb{Z}_N, |u[m]| = 1, (CA)$

and

 $\forall m \in \mathbb{Z}_N \setminus \{0\}, \quad A_p(u)(m,0) = 0.$ (ZAC)

- Empirically, the (ZAC) property of CAZAC sequences u leads to phase coded waveforms w with low *aperiodic autocorrelation* $\mathcal{A}(w)(t, 0)$.
- Are there only finitely many non-equivalent CAZAC sequences?
 - "Yes" for *N* prime and "No" for $N = MK^2$,
 - Generally unknown for *N* square free and not prime.

Björck CAZAC codes and ambiguity function comparisons

Björck CAZAC codes and ambiguity function comparisons

aveform design

Legendre symbol

Let N be a prime and (k, N) = 1.

- ▶ *k* is a quadratic residue mod *N* if $x^2 = k \pmod{N}$ has a solution.
- ▶ k is a quadratic non-residue mod N if x² = k (mod N) has no solution.
- The Legendre symbol:

$$\begin{pmatrix} \frac{k}{N} \end{pmatrix} = \begin{cases} 1, & \text{if } k \text{ is a quadratic residue mod } N, \\ -1, & \text{if } k \text{ is a quadratic non-residue mod } N. \end{cases}$$

The diagonal of the product table of \mathbb{Z}_N gives values $k \in \mathbb{Z}$ which are squares. As such we can program Legendre symbol computation.

Example:
$$N = 7$$
. $(\frac{k}{N}) = 1$ if $k = 1, 2, 4$.

< ロ > < 同 > < 回 > < 回 >

Definition

Let N be a prime number. A Björck CAZAC sequence of length N is

$$u[k] = e^{i\theta_N(k)}, \quad k = 0, 1, \dots, N-1,$$

where, for $N = 1 \pmod{4}$,

$$\theta_N(k) = \arccos\left(\frac{1}{1+\sqrt{N}}\right)\left(\frac{k}{N}\right),$$

and, for $N = 3 \pmod{4}$,

$$\theta_N(k) = \frac{1}{2} \arccos\left(\frac{1-N}{1+N}\right) \left[\left(1-\delta_k\right)\left(\frac{k}{N}\right)+\delta_k\right].$$

 δ_k is Kronecker delta and $\left(\frac{k}{N}\right)$ is Legendre symbol.

Absolute value of Bjorck code of length 17

Absolute value of Bjorck code of length 53

|A_p(Bjorck₅₃)(t,γ)|

Norbert Wiener Center for Harmonic Analysis and Applications

Absolute value of Bjorck code of length 503

Björck CAZAC Discrete Narrow-band Ambiguity Function

Let u_p denote the Björck CAZAC sequence for prime p, and let $A_p(u_p)$ be the discrete narrow band ambiguity function defined on $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Theorem (J. and R. Benedetto and J. Woodworth)

$$|A_p(u_p)(m,n)| \leq rac{2}{\sqrt{p}} + rac{4}{p}$$

for all $(m, n) \in (\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \setminus (0, 0)$.

- The bound is more precise but not better than $\frac{2}{\sqrt{p}}$ depending on whether $p \equiv 1 \pmod{4}$ or $p \equiv 3 \pmod{4}$.
- The proof is at the level of Weil's proof of the Riemann hypothesis for finite fields and depends on Weil's exponential sum bound.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Elementary construction/coding and intricate combinatorial/geometrical patterns.

The ambiguity function

The complex envelope w of the phase coded waveform Re(w) associated to a unimodular N-periodic sequence u : Z_N → C is

$$w(t) = \frac{1}{\sqrt{\tau}} \sum_{k=0}^{N-1} u[k] \mathbb{1}\left(\frac{t-kt_b}{t_b}\right),$$

where $\mathbb{1}$ is the characteristic function of the interval [0, 1), τ is the pulse duration, and $t_b = \tau/N$.

- For spectral shaping problems, smooth replacements to 1 are analyzed.
- The (aperiodic) ambiguity function $\mathcal{A}(w)$ of w is

$$\mathcal{A}(w)(t,\gamma) = \int w(s+t)\overline{w(s)}e^{2\pi i s \gamma} ds,$$

where $t \in \mathbb{R}$ is time delay and $\gamma \in \widehat{\mathbb{R}}(=\mathbb{R})$ is frequency shiftent Wener Center of the state of t

Waveform diversity is a government program for disadvantaged waveforms

- G. Linde, (a real) radar engineer

Doppler Shift (y)

Sequences for coding theory, cryptography, phase-coded waveforms, and communications (synchronization, fast start-up equalization, frequency hopping) include the following in the periodic case:

- Gauss, Wiener (1927), Zadoff (1963), Schroeder (1969), Chu (1972), Zhang and Golomb (1993)
- Frank (1953), Zadoff and Abourezk (1961), Heimiller (1961)
- Milewski (1983)
- Bjørck (1985) and Golomb (1992),

and their generalizations, both periodic and aperiodic.

The general problem of using codes to generate signals leads to frames.

Balayage, Fourier frames, and sampling theory

Fourier frames, goal, and a litany of names

Definition

$$\mathsf{E} = \{x_n\} \subseteq \mathbb{R}^d, \Lambda \subseteq \widehat{\mathbb{R}}^d$$
. E is a *Fourier frame* for $L^2(\Lambda)$ if

$$\exists A, B > 0, \forall F \in L^2(\Lambda),$$

$$A ||F||_{L^{2}(\Lambda)}^{2} \leq \sum_{n} |\langle F(\gamma), e^{-2\pi i x_{n} \cdot \gamma} \rangle|^{2} \leq B ||F||_{L^{2}(\Lambda)}^{2}.$$

- Goal Formulate a general theory of Fourier frames and non-uniform sampling formulas parametrized by the space $M(\mathbb{R}^d)$ of bounded Radon measures.
- *Motivation* Beurling theory (1959-1960).
- Names Riemann-Weber, Dini, G.D. Birkhoff, Paley-Wiener, Levinson, Duffin-Schaeffer, Beurling-Malliavin, Beurling, H.J. Landau, Jaffard, Seip, Ortega-Certà–Seip.

- Let M(G) be the algebra of bounded Radon measures on the LCAG G.
- Balayage in potential theory was introduced by Christoffel (early 1870s) and Poincaré (1890).

Definition

(Beurling) Balayage is possible for $(E,\Lambda) \subseteq G \times \widehat{G}$, a LCAG pair, if

 $\forall \mu \in M(G), \exists \nu \in M(E) \text{ such that } \hat{\mu} = \hat{\nu} \text{ on } \Lambda.$

We write balayage (E, Λ) .

- The set, Λ , of group characters is the analogue of the original role of Λ in balayage as a collection of potential theoretic kernels.
- Kahane formulated balayage for the harmonic analysis of restriction algebras.

Definition

 $\begin{array}{ll} \mbox{(Wiener, Beurling) Closed } \Lambda \subseteq \widehat{G} \mbox{ is a set of } spectral synthesis (S-set) if \\ \forall \mu \in M(G), \forall f \in C_b(G), \\ & \mbox{supp}(\widehat{f}) \subseteq \Lambda \mbox{ and } \widehat{\mu} = 0 \mbox{ on } \Lambda \Longrightarrow \int_G f \ d\mu = 0. \\ \mbox{(}\forall T \in A'(\widehat{G}), \forall \phi \in A(\widehat{G}), \quad \mbox{supp}(T) \subseteq \Lambda \mbox{ and } \phi = 0 \mbox{ on } \Lambda \Rightarrow T(\phi) = 0. \end{array}$

- $\bullet\,$ Ideal structure of $L^1(G)$ the Nullstellensatz of harmonic analysis
- $T \in D'(\widehat{\mathbb{R}}^d), \phi \in C_c^{\infty}(\widehat{\mathbb{R}}^d)$, and $\phi = 0$ on $\operatorname{supp}(T) \Rightarrow T(\phi) = 0$, with same result for $M(\widehat{\mathbb{R}}^d)$ and $C_0(\widehat{\mathbb{R}}^d)$.
- $S^2 \subseteq \widehat{\mathbb{R}}^3$ is not an S-set (L. Schwartz), and every non-discrete \widehat{G} has non-S-sets (Malliavin).
- Polyhedra are S-sets. The $\frac{1}{3}$ -Cantor set is an S-set with non-S-subsets.

Strict multiplicity

Definition

 $\Gamma\subseteq \widehat{G}$ is a set of strict multiplicity if

 $\exists \ \mu \in M(\Gamma) \setminus \{0\}$ such that $\check{\mu}$ vanishes at infinity in G.

- Riemann and sets of uniqueness in the wide sense.
- Menchov (1916): \exists closed $\Gamma \subseteq \widehat{\mathbb{R}}/\mathbb{Z}$ and $\mu \in M(\Gamma) \setminus \{0\}$, $|\Gamma| = 0$ and $\check{\mu}(n) = O((\log |n|)^{-1/2}), |n| \to \infty.$
- 20th century history to study rate of decrease: Bary (1927), Littlewood (1936), Salem (1942, 1950), Ivašev-Mucatov (1957), Beurling.

Assumption

 $\forall \gamma \in \Lambda \text{ and } \forall N(\gamma)$, compact neighborhood, $\Lambda \cap N(\gamma)$ is a set of strict multiplicity.

э

A 30 M

A theorem of Beurling

Definition

 $\mathsf{E} = \{x_n\} \subseteq \mathbb{R}^d$ is separated if

$$\exists r > 0, \ \forall m, n, \ m \neq n \Rightarrow ||x_m - x_n|| \ge r.$$

Theorem

Let $\Lambda \subseteq \widehat{\mathbb{R}}^d$ be a compact S-set, symmetric about $0 \in \widehat{\mathbb{R}}^d$, and let $E \subseteq \mathbb{R}^d$ be separated. If balayage (E,Λ) , then

E is a Fourier frame for $L^2(\Lambda)$.

• Equivalent formulation in terms of

$$\begin{split} &PW_{\Lambda} = \{f \in L^2(\mathbb{R}^d) : \mathsf{supp}(\hat{f}) \subseteq \Lambda\}.\\ \bullet \ \forall F \in L^2(\Lambda), \qquad F = \sum_{x \in \mathsf{E}} < F, S^{-1}(e_x) >_{\Lambda} e_x \ \text{ in } L^2(\Lambda). \end{split}$$

• For \mathbb{R}^d and other generality beyond Beurling's theorem in \mathbb{R} , the result above was formulated by Hui-Chuan Wu and JB (1998), see Landau (1967).

Let $G \in L^2(\widehat{\mathbb{R}}^d)$ satisfy $||G||_{L^2(\widehat{\mathbb{R}}^d)} = 1$; let $\Lambda \subset \widehat{\mathbb{R}}^d$ be an S-set, symmetric about 0; and let $E \subset \mathbb{R}^d$ be separated. Define

 $(\mathsf{STFT}) \quad \forall F \in L^2(\Lambda), \quad V_G F(x,\gamma) = \int_{\Lambda} F(\lambda) G(\lambda - \gamma) e^{2\pi i x \cdot \lambda} \ d\lambda.$

Theorem

If balayage (E, Λ), then $\exists A, B > 0, \quad \forall F \in L^2(\Lambda),$ $A ||F||^2_{L^2(\Lambda)} \leq \int_{\widehat{\mathbb{R}}^d} \sum_{x \in E} |V_G F(x, \gamma)|^2 d\gamma \leq B ||F||^2_{L^2(\Lambda)}.$

Remark There are basic problems to be resolved and there have been fundamental recent advances.

Balayage and the theory of generalized Fourier frames

Let $g \in L^2(\mathbb{R}^d)$ satisfy $||g||_{L^2(\mathbb{R}^d)} = 1$; let $E = \{(s_m, t_n)\} \subseteq \mathbb{R}^{2d}$ be separated; and let $\Lambda \subseteq \hat{\mathbb{R}}^{2d}$ be an S-set, symmetric about the origin.

Theorem

If balayage (E, Λ) , then

$$\exists A, B > 0, \forall f \in M^{1}(\mathbb{R}^{d}) \text{ such that supp}(V_{g}f)^{\widehat{}} \subseteq \Lambda,$$
$$A \|f\|_{L^{2}(\mathbb{R}^{d})} \leq \sum_{m} \sum_{n} |V_{g}f(s_{m}, t_{n})|^{2} \leq B \|f\|_{L^{2}(\mathbb{R}^{d})}.$$

- Feichtinger theory of modulation spaces M^{p,q}_m. f ∈ M¹ means V_gf ∈ L¹(ℝ^{2d}).
- Gröchenig theorem for non-uniform Gabor frames involves an analysis of convolution operators on the Heisenberg group.

Examples of balayage

• Let $\mathsf{E} \subseteq \mathbb{R}^d$ be separated. Define

$$r = r(E) = \sup_{x \in \mathbb{R}^d} \mathsf{dist}(x, E).$$

If $r\rho < \frac{1}{4}$, then balayage (E, $\bar{B}(0, \rho)$). $\frac{1}{4}$ is the best possible.

- **2** If balayage (E, Λ) and $\Lambda_0 \subseteq \Lambda$, then balayage (E, Λ_0).
- Outer E = {x_n} be a Fourier frame for PW_Λ. Then for all Λ₀ ⊆ Λ with dist(Λ₀, Λ^c) > 0, we have balayage (E, Λ₀).
- In ℝ¹, for a separated set E, Beurling lower density > ρ is necessary and sufficient for balayage (E, [^{-ρ}/₂, ^ρ/₂]).

Remark In \mathbb{R}^1 , if E is uniformly dense in the sense of Duffin-Schaeffer, then $D^-(E), D^+(E)$, and $D_u(E)$ coincide. So Beurling's result \Rightarrow Duffin-Schaeffer's result on Fourier frames.

ΦDOs, balayage, synthesis, and sampling

ΦDOs and the Kohn-Nirenberg correspondence

Definition/notation for $\Lambda \subseteq \widehat{\mathbb{R}}^d$

• $\forall \gamma \in \Lambda, g_{\gamma} \in C_b(\mathbb{R}^d) \text{ and } supp(g_{\gamma}) \subseteq \Lambda$

•
$$s(x,\gamma) = e^{2\pi i x \cdot \gamma} g_{\gamma}(x)$$

The Kohn-Nirenberg correspondence

 $s \mapsto H_s$

with symbol H_s is defined by the Hörmander operator

$$H_{s}: L^{2}(\widehat{\mathbb{R}}^{d}) \to L^{2}(\Lambda) \subseteq L^{2}(\widehat{\mathbb{R}}^{d})$$
$$H_{s}(\widehat{f})(\gamma) = \int_{\mathbb{R}^{d}} s(x, \gamma) f(x) e^{-2\pi i x \cdot \gamma} dx$$

Remark

Classically, the symbol is σ and integration is over $\widehat{\mathbb{R}}^d$.

ΦDOs, balayage, synthesis, and sampling

• DOs and generalized Fourier frames for non-uniform sampling

Theorem

Assume balayage (E, Λ) where $\Lambda \subseteq \widehat{\mathbb{R}}^d$ is a compact, symmetric S-set. Assume $E = \{x_n\}$ is separated. Let $s(x, \gamma) = e^{2\pi i x \cdot \gamma} g_{\gamma}(x)$, where

 $\{g_{\gamma}: \gamma \in \Lambda\} \subseteq C_b(\mathbb{R}^d)$

and

 $\forall \gamma \in \Lambda$, $supp(g_{\gamma}) \subseteq \Lambda$

Let $f \in X_s \subseteq L^2(\mathbb{R}^d)$ if $H_s(\widehat{f}) = F \in L^2(\Lambda)$ and $supp F \subseteq \Lambda$, then

$$\exists A > 0 \quad \text{such that} \quad \forall f \in X_s$$
$$A \frac{\int_{\Lambda} |F(\gamma)|^2 \, d\gamma}{\|f\|_{L^2(\mathbb{R}^d)}} \le \left(\sum_{n \in \mathbb{Z}} \left| \int_{\Lambda} \overline{F(\gamma)} s(x_n, \gamma) e^{2\pi i x_n \cdot \gamma} \, d\gamma \right|^2 \right)^{1/2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Classification

- Dimension reduction
- Finite frames and frame potential energy
- Frame potential energy classification algorithm
- Hyperspectral image processing

Dimension reduction

イロト イポト イヨト イヨト

æ

Given data space X of N vectors in \mathbb{R}^{D} . (N is the number of pixels in the hypercube, D is the number of spectral bands.)

Two Steps:

- Construction of an N × N symmetric, positive semi–definite kernel, K, from these N data points in ℝ^D.
- ② Diagonalization of K, and then choosing $d \le D$ significant orthogonal eigenmaps of K.

- Different classes of interest may not be orthogonal to each other; however, they may be captured by different frame elements. It is plausible that classes may correspond to elements in a frame but not elements in a basis.
- A frame generalizes the concept of an orthonormal basis. Frame elements are non-orthogonal.

John J. Benedetto

Dimension reduction paradigm

• Given data space *X* of *N* vectors $x_m \in \mathbb{R}^D$, and let

$$K: X \times X \to \mathbb{R}$$

be a symmetric (K(x, y) = K(y, x)), positive semi-definite kernel.

• We map X to a low dimensional space via the following mapping:

$$X \longrightarrow K \longrightarrow \mathbb{R}^d(K), \quad d < D$$

$$x_m \mapsto y_m = (y[m, n_1], y[m, n_2], \ldots, y[m, n_d]) \in \mathbb{R}^d(\mathcal{K}),$$

where $y[\cdot, n] \in \mathbb{R}^N$ is an eigenvector of *K*.

Laplacian Eigenmaps

- Consider the data points *X* as the nodes of a graph.
- Define a metric ρ : X × X → ℝ⁺, e.g., ρ(x_m, x_n) = ||x_m x_n|| is the Euclidean distance.
- Choose $q \in \mathbb{N}$.
- For each x_i choose the q nodes x_n closest to x_i in the metric ρ, and place an edge between x_i and each of these nodes.
- This defines $N'(x_i)$, viz., $N'(x_i) = \{x \in X : \exists \text{ an edge between } x \text{ and } x_i.\}.$
- To define the weights on the edges, we compute:

$$W_{ij} = \begin{cases} \exp(-\|x_i - x_j\|^2 / \sigma) & \text{if } x_j \in N'(x_i) \text{ or } x_i \in N'(x_j) \\ 0 & \text{otherwise} \end{cases}$$

- Set K = D W, where $D_{ii} = \sum_{j} W_{ij}$ and $D_{ij} = 0$ for $i \neq j$;
- Diagonalize K.
- *K* is symmetric and positive semi–definite.

Finite frames and frame potential energy

FUNTF

• A set $F = \{e_j\}_{j \in J} \subseteq \mathbb{F}^d$ is a *frame* for \mathbb{F}^d , $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , if

$$\exists \ \textit{A},\textit{B} > 0 \quad \text{such that} \quad \forall \ \textit{x} \in \mathbb{F}^d, \quad \textit{A} \|\textit{x}\|^2 \leq \sum_{j \in J} |\langle \textit{x},\textit{e}_j \rangle|^2 \leq \textit{B} \|\textit{x}\|^2.$$

- *F* tight if A = B. A finite unit-norm tight frame *F* is a FUNTF.
- N row vectors from any fixed N × d submatrix of the N × N DFT matrix, 1/√d (e^{2πimn/N}), is a FUNTF for C^d.
- If F is a FUNTF for \mathbb{F}^d , then

$$\forall x \in \mathbb{F}^d, \quad x = \frac{d}{N} \sum_{j=1}^N \langle x, e_j \rangle e_j.$$

 Frames: redundant representation, compensate for hardware errors, inexpensive, numerical stability, minimize effects of noise representation.

DFT FUNTFs

 N × d submatrices of the N × N DFT matrix are FUNTFs for C^d. These play a major role in finite frame ΣΔ-quantization.

$$N = 8, d = 5 \qquad \frac{1}{\sqrt{5}} \begin{bmatrix} * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \end{bmatrix}$$
$$x_m = \frac{1}{5} (e^{2\pi i \frac{m}{8}}, e^{2\pi i \frac{m^2}{8}}, e^{2\pi i \frac{m^5}{8}}, e^{2\pi i \frac{m^6}{8}}, e^{2\pi i \frac{m^7}{8}})$$
$$m = 1, \dots, 8.$$

Sigma-Delta Super Audio CDs - but not all authorities are fans.

Norbert Wiener Center

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

CAZACs and FUNTFs

• Let $u = \{u[k]\}_{k=1}^{N}$ be a CAZAC sequence in \mathbb{C} . Define

$$\forall k = 1, ..., N, \quad v_k = v[k] = \frac{1}{\sqrt{d}}(u[k], u[k+1], ..., u[k+d-1]).$$

Then $v = \{v[k]\}_{k=1}^N \subseteq \mathbb{C}^d$ is a CAZAC sequence in \mathbb{C}^d and $\{v_k\}_{k=1}^N$ is a FUNTF for \mathbb{C}^d with frame constant N/d.

• Let $\{x_k\}_{k=1}^N \subseteq \mathbb{C}^d$ be a FUNTF for \mathbb{C}^d , with frame constant A and with associated Bessel map $L : \mathbb{C}^d \to \ell^2(\mathbb{Z}_N)$; and let $u = \{u[j]\}_{j=1}^M \subseteq \mathbb{C}^d$ be a CAZAC sequence in \mathbb{C}^d . Then $\{\frac{1}{\sqrt{A}}L(u[j])\}_{j=1}^M \subseteq \mathbb{C}^N (=\ell^2(\mathbb{Z}_N)$ is a CAZAC sequence in \mathbb{C}^N .

Examples of frames

The geometry of finite tight frames

- We saw the vertices of platonic solids are FUNTFs.
- However, points that constitute FUNTFs do not have to be equidistributed, e.g., ONBs and Grassmanian frames.
- FUNTFs can be characterized as minimizers of a frame potential function (with Fickus) analogous to Coulomb's Law.
- Frame potential energy optimization has basic applications dealing with classification problems for hyperspectral and multi-spectral (biomedical) image data.

$$F: S^{d-1} imes S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$

$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

where $P(a, b) = p(||a - b||), \quad p'(x) = -xf(x)$

Coulomb force

$$CF(a,b) = (a-b)/||a-b||^3$$
, $f(x) = 1/x^3$

Frame force

$$FF(a,b) = \langle a,b \rangle (a-b), \quad f(x) = 1 - x^2/2$$

Total potential energy for the frame force

$$TFP(\{x_n\}) = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Theorem

Let $N \le d$. The minimum value of *TFP*, for the frame force and *N* variables, is *N*; and the *minimizers* are precisely the orthonormal sets of *N* elements for \mathbb{R}^d .

Let $N \ge d$. The minimum value of *TFP*, for the frame force and *N* variables, is N^2/d ; and the *minimizers* are precisely the FUNTFs of *N* elements for \mathbb{R}^d .

Problem

Find FUNTFs analytically, effectively, computationally.

Frame potential energy classification algorithm

▶ ◀ ᆿ ▶

Goal: Construct a FUNTF $\{\Psi_k\}_{k=1}^s$ such that each Ψ_k is associated to only one classifiable material.

For
$$\{\theta_k\}_{k=1}^s \in S^{d-1} \times \cdots \times S^{d-1}$$
 and $n = 1, \dots, s$, set
$$p(\theta_n) = \sum_{m=1}^N |\langle y_m, \theta_n \rangle|$$

and consider the maximal separation

$$\sup_{\{\theta_j\}_{j=1}^s} \min\{|p(\theta_k) - p(\theta_n)| : k \neq n\}.$$

•
$$Y = \{y_m\}_{m=1}^N \subseteq \mathbb{R}^d(K) \subseteq \mathbb{R}^N$$

• Given *s* classes C_j , j = 1, ..., s, defined in terms of a tolerance $\epsilon > 0$ and partition $\{P_j\}_{j=0}^s$ of *Y*, as $C_j = P_j \cap Y \subseteq B(z_j, \epsilon)$ j = 1, ..., s for some $z_j \in \mathbb{R}^d(K)$.

Optimization problem: FUNTF construction

- Point of view: Combine frame potential energy theorem, maximal separation criteria (*M*_δ), and ideal class definition (*C*_ε).
- Paradigm: Given Y, s, M_δ, and C_ε. Construct a FUNTF {Ψ_j}^s_{j=1} such that

$$\forall j = 1, \dots, s, |\langle \Psi_j, Y \cap P_j \rangle| \ge R(\epsilon, \delta)$$

and

$$\forall j \neq k, |\langle \Psi_k, Y \cap P_j \rangle| \leq r(\epsilon, \delta),$$

where $r(\epsilon, \delta) < R(\epsilon, \delta)$.

Frame coefficient images

• Given $\Psi = {\{\Psi_n\}_{n=1}^s \subseteq \mathbb{R}^d = \mathbb{R}^d(K) \subseteq \mathbb{R}^N \text{ and } m \in {\{1, \dots, N\}}.$ Consider the set of frame decompositions

$$\forall y_m \in \mathbb{R}^d, m = 1, \dots, N, \quad y_m = \sum_{n=1}^s c_{m,n}^{\alpha} \Psi_n, \text{ indexed by } \alpha \in \mathbb{R}.$$

• For each $m \in \{1, ..., N\}$ choose an ℓ^1 sparse decomposition

$$y_m = \sum_{n=1}^s c_{m,n}^{\alpha(m)} \Psi_n$$

defined by the inequality,

$$\forall \alpha, \quad \sum_{n=1}^{s} |\mathcal{C}_{m,n}^{\alpha(m)}| \leq \sum_{n=1}^{s} |\mathcal{C}_{m,n}^{\alpha}|.$$
Norbert Wiener Center
is Harmonic Analysis as Applications

Frame coefficient images (continued)

Choose n ∈ {1,...,s}. Take a slice, P_n, of the data cube at n. P_n contains N points m.

• The image with *N* pixels *m*, associated to the the frame element Ψ_n , is defined by $\{c_{m,n}^{\alpha(m)} \mid m = 1, ..., N\}$.

Hyperspectral image processing

イロト イ理ト イヨト イヨト

크

Urban data set classes

Figure: HYDICE Copperas Cove, TX - http://www.tec.army.mil/Hypercube/

< □ > < □ > < □ > < □ >

- There are 23 classes associated with the different colors in the previous figure.
- In fact, if the 23 classes were to correspond roughly to orthogonal subspaces, then one cannot achieve effective dimension reduction less than dimension d = 23.
- However, we could have a frame with 23 elements in a space of reduced dimension d < 23.

Frame coefficients

(a) Original

(b) Road coefficients

(d) White house coefficients

Overview of Classification Results

d

ARO MURI | Opportunistic Sensing | Rice, Maryland, Illinois, Yale, Duke, UCLA | October 2010

for Harmonic Analysis and Applications

Norbert Wiener Center for Harmonic Analysis and Applications Norbert Wiener 26° 26° 26