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Discrete ambiguity functions

Let u : {0,1, . . . ,N − 1} → C.
up : ZN → C is the N-periodic extension of u.
ua : Z→ C is an aperiodic extension of u:

ua[m] =

{
u[m], m = 0,1, . . . ,N − 1

0, otherwise.

The discrete periodic ambiguity function Ap(u) : ZN × ZN → C of
u is

Ap(u)(m,n) =
1
N

N−1∑
k=0

up[m + k ]up[k ]e2πikn/N .

The discrete aperiodic ambiguity function Aa(u) : Z× Z→ C of u
is

Aa(u)(m,n) =
1
N

N−1∑
k=0

ua[m + k ]ua[k ]e2πikn/N .
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CAZAC sequences

u : ZN → C is Constant Amplitude Zero Autocorrelation (CAZAC):

∀m ∈ ZN , |u[m]| = 1, (CA)
and

∀m ∈ ZN \ {0}, Ap(u)(m,0) = 0. (ZAC)

Empirically, the (ZAC) property of CAZAC sequences u leads to
phase coded waveforms w with low aperiodic autocorrelation
A(w)(t ,0).
Are there only finitely many non-equivalent CAZAC sequences?

”Yes” for N prime and ”No” for N = MK 2,
Generally unknown for N square free and not prime.



Björck CAZAC codes and ambiguity function
comparisons

Björck CAZAC codes and ambiguity
function comparisons
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aveform design

Legendre symbol

Let N be a prime and (k ,N) = 1 .
I k is a quadratic residue mod N if x2 = k (mod N) has a solution.
I k is a quadratic non–residue mod N if x2 = k (mod N) has no

solution.
I The Legendre symbol:(

k
N

)
=

{
1, if k is a quadratic residue mod N ,
−1, if k is a quadratic non–residue mod N.

The diagonal of the product table of ZN gives values k ∈ Z which are
squares. As such we can program Legendre symbol computation.

Example: N = 7. ( k
N ) = 1 if k = 1,2,4.

,
14
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Definition

Let N be a prime number. A Björck CAZAC sequence of length N is

u[k ] = eiθN (k), k = 0,1, . . . ,N − 1,

where, for N = 1 (mod 4),

θN(k) = arccos
(

1
1 +
√

N

)(
k
N

)
,

and, for N = 3 (mod 4),

θN(k) =
1
2

arccos
(

1− N
1 + N

)
[(1− δk )

(
k
N

)
+ δk ].

δk is Kronecker delta and
( k

N

)
is Legendre symbol.
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Absolute value of Bjorck code of length 503



Absolute value of Bjorck code of length 701





Björck CAZAC Discrete Narrow-band Ambiguity Function

Let up denote the Björck CAZAC sequence for prime p, and let Ap(up)
be the discrete narrow band ambiguity function defined on
Z/pZ× Z/pZ.

Theorem (J. and R. Benedetto and J. Woodworth)

|Ap(up)(m,n)| ≤ 2
√

p
+

4
p

for all (m,n) ∈ (Z/pZ× Z/pZ) \ (0,0).

The bound is more precise but not better than 2√
p depending on

whether p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

The proof is at the level of Weil’s proof of the Riemann hypothesis

for finite fields and depends on Weil’s exponential sum bound.

Elementary construction/coding and intricate

combinatorial/geometrical patterns.
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The ambiguity function

The complex envelope w of the phase coded waveform Re(w)
associated to a unimodular N-periodic sequence u : ZN → C is

w(t) =
1√
τ

N−1∑
k=0

u[k ] 1

(
t − ktb

tb

)
,

where 1 is the characteristic function of the interval [0,1), τ is the
pulse duration, and tb = τ/N.
For spectral shaping problems, smooth replacements to 1 are
analyzed.
The (aperiodic) ambiguity function A(w) of w is

A(w)(t , γ) =

∫
w(s + t)w(s)e2πisγds,

where t ∈ R is time delay and γ ∈ R̂(= R) is frequency shift.



Caveat emptor

Waveform diversity is a government program for
disadvantaged waveforms

– G. Linde, (a real) radar engineer







Perspective

Sequences for coding theory, cryptography, phase-coded waveforms,
and communications (synchronization, fast start-up equalization,
frequency hopping) include the following in the periodic case:

Gauss, Wiener (1927), Zadoff (1963), Schroeder (1969), Chu
(1972), Zhang and Golomb (1993)
Frank (1953), Zadoff and Abourezk (1961), Heimiller (1961)
Milewski (1983)
Bj ¤orck (1985) and Golomb (1992),

and their generalizations, both periodic and aperiodic.
The general problem of using codes to generate signals leads to
frames.



Balayage, Fourier frames, and 
sampling theory



Fourier frames, goal, and a litany of names

Definition

E = {xn} ⊆ Rd,Λ ⊆ R̂d. E is a Fourier frame for L2(Λ) if

∃A,B > 0,∀F ∈ L2(Λ),

A ||F ||2L2(Λ) ≤
∑

n

| < F (γ), e−2πixn·γ > |2 ≤ B ||F ||2L2(Λ).

Goal Formulate a general theory of Fourier frames and
non-uniform sampling formulas parametrized by the space M(Rd) of
bounded Radon measures.

Motivation Beurling theory (1959-1960).

Names Riemann-Weber, Dini, G.D. Birkhoff, Paley-Wiener,
Levinson, Duffin-Schaeffer, Beurling-Malliavin, Beurling,
H.J. Landau, Jaffard, Seip, Ortega-Certà–Seip.

Balayage and the theory of generalized Fourier frames



Balayage

Let M(G) be the algebra of bounded Radon measures on the
LCAG G.

Balayage in potential theory was introduced by Christoffel (early
1870s) and Poincaré (1890).

Definition

(Beurling) Balayage is possible for (E,Λ) ⊆ G× Ĝ, a LCAG pair, if

∀µ ∈ M(G),∃ν ∈ M(E) such that µ̂ = ν̂ on Λ.

We write balayage (E,Λ).

The set, Λ, of group characters is the analogue of the original role of
Λ in balayage as a collection of potential theoretic kernels.

Kahane formulated balayage for the harmonic analysis of restriction
algebras.

Balayage and the theory of generalized Fourier frames



Spectral synthesis

Definition

(Wiener, Beurling) Closed Λ ⊆ Ĝ is a set of spectral synthesis (S-set) if
∀µ ∈ M(G),∀f ∈ Cb(G),
supp(f̂) ⊆ Λ and µ̂ = 0 on Λ =⇒

∫
G

f dµ = 0.

(∀T ∈ A′(Ĝ),∀φ ∈ A(Ĝ), supp(T ) ⊆ Λ and φ = 0 on Λ ⇒ T (φ) = 0.)

Ideal structure of L1(G) - the Nullstellensatz of harmonic analysis

T ∈ D′(R̂d), φ ∈ C∞
c (R̂d), and φ = 0 on supp(T ) ⇒ T (φ) = 0, with

same result for M(R̂d) and C0(R̂d).

S2 ⊆ R̂3 is not an S-set (L. Schwartz), and every non-discrete Ĝ has
non-S-sets (Malliavin).

Polyhedra are S-sets. The 1
3 -Cantor set is an S-set with

non-S-subsets.

Balayage and the theory of generalized Fourier frames



Strict multiplicity

Definition

Γ ⊆ Ĝ is a set of strict multiplicity if

∃ µ ∈ M(Γ)\{0} such that µ̌ vanishes at infinity in G.

Riemann and sets of uniqueness in the wide sense.

Menchov (1916): ∃ closed Γ ⊆ R̂/Z and µ ∈ M(Γ)\{0},
|Γ| = 0 and µ̌(n) = O((log |n|)−1/2), |n| → ∞.

20th century history to study rate of decrease: Bary (1927),
Littlewood (1936), Salem (1942, 1950), Ivašev-Mucatov (1957),
Beurling.

Assumption

∀ γ ∈ Λ and ∀ N(γ), compact neighborhood, Λ ∩N(γ) is a set of
strict multiplicity.

Balayage and the theory of generalized Fourier frames



A theorem of Beurling

Definition

E = {xn} ⊆ Rd is separated if

∃ r > 0, ∀m,n, m 6= n ⇒ ||xm − xn|| ≥ r.

Theorem

Let Λ ⊆ R̂d be a compact S-set, symmetric about 0 ∈ R̂d, and
let E ⊆ Rd be separated. If balayage (E,Λ), then

E is a Fourier frame for L2(Λ).

Equivalent formulation in terms of

PWΛ = {f ∈ L2(Rd) : supp(f̂) ⊆ Λ}.
∀F ∈ L2(Λ), F =

∑
x∈E < F, S−1(ex) >Λ ex in L2(Λ).

For Rd and other generality beyond Beurling’s theorem in R, the
result above was formulated by Hui-Chuan Wu
and JB (1998), see Landau (1967).

Balayage and the theory of generalized Fourier frames



Semi-discrete Gabor frames

Let G ∈ L2(R̂d) satisfy ||G||L2(bRd) = 1; let Λ ⊂ R̂d be an S-set,

symmetric about 0; and let E ⊂ Rd be separated. Define

(STFT) ∀F ∈ L2(Λ), VGF (x, γ) =
∫
Λ

F (λ)G(λ− γ)e2πix·λ dλ.

Theorem

If balayage (E,Λ), then

∃A,B > 0, ∀F ∈ L2(Λ),

A ||F ||2L2(Λ) ≤
∫

bRd

∑
x∈E

|VGF (x, γ)|2 dγ ≤ B ||F ||2L2(Λ).

Remark There are basic problems to be resolved and there have been
fundamental recent advances.

Balayage and the theory of generalized Fourier frames



Non-uniform Gabor frames

Let g ∈ L2(Rd ) satisfy ‖g‖L2(Rd ) = 1; let E = {(sm, tn)} ⊆ R2d be separated;

and let Λ ⊆ R̂2d be an S-set, symmetric about the origin.

Theorem

If balayage (E ,Λ), then

∃A,B > 0,∀f ∈ M1(Rd ) such that supp(Vg f )̂ ⊆ Λ,

A‖f‖L2(Rd ) ≤
∑

m

∑
n

|Vg f (sm, tn)|2 ≤ B‖f‖L2(Rd ).

Feichtinger theory of modulation spaces Mp,q
m . f ∈ M1 means

Vg f ∈ L1(R2d ).

Gröchenig theorem for non-uniform Gabor frames involves an analysis

of convolution operators on the Heisenberg group.



Examples of balayage

1 Let E ⊆ Rd be separated. Define

r = r(E) = sup
x∈Rd

dist(x,E).

If rρ < 1
4 , then balayage (E, B̄(0, ρ)). 1

4 is the best possible.

2 If balayage (E, Λ) and Λ0 ⊆ Λ, then balayage (E, Λ0).

3 Let E = {xn} be a Fourier frame for PWΛ. Then for all Λ0 ⊆ Λ
with dist(Λ0,Λc ) > 0, we have balayage (E, Λ0).

4 In R1, for a separated set E, Beurling lower density > ρ is necessary
and sufficient for balayage (E, [−ρ

2 , ρ
2 ]).

Remark In R1, if E is uniformly dense in the sense of Duffin-Schaeffer,
then D−(E), D+(E), and Du(E) coincide.
So Beurling’s result ⇒ Duffin-Schaeffer’s result on Fourier frames.

Balayage and the theory of generalized Fourier frames



ΦDOs, balayage, synthesis, and sampling

ΦDOs and the Kohn-Nirenberg correspondence

Definition/notation for Λ ⊆ R̂d

∀γ ∈ Λ, gγ ∈ Cb(Rd ) and supp(gγ )̂ ⊆ Λ

s(x , γ) = e2πix·γgγ(x)

The Kohn-Nirenberg correspondence

s 7−→ Hs

with symbol Hs is defined by the Hörmander operator

Hs : L2(R̂d )→ L2(Λ) ⊆ L2(R̂d )

Hs(f̂ )(γ) =

∫
Rd

s(x , γ)f (x)e−2πix·γ dx

Remark

Classically, the symbol is σ and integration is over R̂d .



ΦDOs, balayage, synthesis, and sampling

ΦDOs and generalized Fourier frames for non-uniform sampling

Theorem

Assume balayage (E ,Λ) where Λ ⊆ R̂d is a compact, symmetric S-set.
Assume E = {xn} is separated. Let s(x , γ) = e2πix·γgγ(x), where

{gγ : γ ∈ Λ} ⊆ Cb(Rd )

and
∀γ ∈ Λ, supp(gγ )̂ ⊆ Λ

Let f ∈ Xs ⊆ L2(Rd ) if Hs (̂f ) = F ∈ L2(Λ) and suppF ⊆ Λ, then

∃A > 0 such that ∀f ∈ Xs

A

∫
Λ
|F (γ)|2 dγ
‖f‖L2(Rd )

≤

(∑
n∈Z

∣∣∣∣∫
Λ

F (γ)s(xn, γ)e2πixn·γ dγ
∣∣∣∣2
)1/2

.



Classification

Classification
Dimension reduction
Finite frames and frame potential energy
Frame potential energy classification algorithm
Hyperspectral image processing



Dimension reduction



Kernel dimension reduction

Given data space X of N vectors in RD. (N is the number of pixels in
the hypercube, D is the number of spectral bands.)

Two Steps:
1 Construction of an N × N symmetric, positive semi–definite

kernel, K , from these N data points in RD.
2 Diagonalization of K , and then choosing d ≤ D significant

orthogonal eigenmaps of K .

John J. Benedetto Frame potential classification algorithm for retinal data



Motivation

Different classes of interest may not be orthogonal to each other;
however, they may be captured by different frame elements. It is
plausible that classes may correspond to elements in a frame but
not elements in a basis.
A frame generalizes the concept of an orthonormal basis. Frame
elements are non–orthogonal.

John J. Benedetto Frame potential classification algorithm for retinal data



Dimension reduction paradigm

Given data space X of N vectors xm ∈ RD, and let

K : X × X → R

be a symmetric (K (x , y) = K (y , x)), positive semi–definite
kernel.
We map X to a low dimensional space via the following mapping:

X −→ K −→ Rd (K ), d < D

xm %→ ym = (y [m, n1], y [m, n2], . . . , y [m, nd ]) ∈ Rd (K ),

where y [·, n] ∈ RN is an eigenvector of K .

John J. Benedetto Frame potential classification algorithm for retinal data



Laplacian Eigenmaps

Consider the data points X as the nodes of a graph.
Define a metric ρ : X × X −→ R+, e.g., ρ(xm, xn) = ‖xm − xn‖ is
the Euclidean distance.
Choose q ∈ N.
For each xi choose the q nodes xn closest to xi in the metric ρ,
and place an edge between xi and each of these nodes.
This defines N ′(xi ), viz.,
N ′(xi ) = {x ∈ X : ∃ an edge between x and xi .}.
To define the weights on the edges, we compute:

Wij =

{
exp(−‖xi − xj‖2/σ) if xj ∈ N ′(xi ) or xi ∈ N ′(xj )
0 otherwise

Set K = D −W , where Dii =
∑

j Wij and Dij = 0 for i 6= j ;
Diagonalize K .
K is symmetric and positive semi–definite.

John J. Benedetto Frame potential classification algorithm for retinal data



Finite frames and frame potential energy
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FUNTF

A set F = {ej}j∈J ⊆ Fd is a frame for Fd , F = R or C, if

∃ A,B > 0 such that ∀ x ∈ Fd , A‖x‖2 ≤
∑
j∈J

|〈x ,ej〉|2 ≤ B‖x‖2.

F tight if A = B. A finite unit-norm tight frame F is a FUNTF.
N row vectors from any fixed N × d submatrix of the N × N DFT
matrix, 1√

d
(e2πimn/N), is a FUNTF for Cd .

If F is a FUNTF for Fd , then

∀x ∈ Fd , x =
d
N

N∑
j=1

〈x ,ej〉ej .

Frames: redundant representation, compensate for hardware
errors, inexpensive, numerical stability, minimize effects of noise.



DFT FUNTFs

N × d submatrices of the N × N DFT matrix are FUNTFs for Cd .
These play a major role in finite frame Σ∆-quantization.

Sigma-Delta Super Audio CDs - but not all authorities are fans.



CAZACs and FUNTFs

Let u = {u[k ]}N
k=1 be a CAZAC sequence in C. Define

∀ k = 1, ..., N, vk = v [k ] =
1√
d

(u[k ], u[k + 1], ..., u[k + d − 1]).

Then v = {v [k ]}N
k=1 ⊆ Cd is a CAZAC sequence in Cd and

{vk}N
k=1 is a FUNTF for Cd with frame constant N/d .

Let {xk}N
k=1 ⊆ Cd be a FUNTF for Cd , with frame constant A and

with associated Bessel map L : Cd → `2(ZN); and let
u = {u[j]}M

j=1 ⊆ Cd be a CAZAC sequence in Cd . Then
{ 1√

A
L(u[j])}M

j=1 ⊆ CN(= `2(ZN) is a CAZAC sequence in CN .



Examples of frames

(a) Non–FUNTF (b) FUNTF

John J. Benedetto Frame potential classification algorithm for retinal data



The geometry of finite tight frames

We saw the vertices of platonic solids are FUNTFs.
However, points that constitute FUNTFs do not have to be
equidistributed, e.g., ONBs and Grassmanian frames.
FUNTFs can be characterized as minimizers of a frame potential
function (with Fickus) analogous to Coulomb’s Law.
Frame potential energy optimization has basic applications
dealing with classification problems for hyperspectral and
multi-spectral (biomedical) image data.



Frame force and potential energy

F : Sd−1 × Sd−1 \ D −→ R
d

P : Sd−1 × Sd−1 \ D −→ R,

where P(a, b) = p(‖a − b‖), p′(x) = −xf (x)

Coulomb force

CF (a, b) = (a − b)/‖a − b‖3
, f (x) = 1/x3

Frame force

FF (a, b) = 〈a, b〉(a − b), f (x) = 1 − x2/2

Total potential energy for the frame force

TFP({xn}) =
N∑

m=1

N∑

n=1
|〈xm, xn〉|2



Characterization of FUNTFs

Theorem
Let N ≤ d . The minimum value of TFP, for the frame force and N
variables, is N; and the minimizers are precisely the orthonormal
sets of N elements for Rd .

Let N ≥ d . The minimum value of TFP, for the frame force and N
variables, is N2/d ; and the minimizers are precisely the FUNTFs of N
elements for Rd .

Problem
Find FUNTFs analytically, effectively, computationally.



Frame potential energy classification algorithm



Optimization problem: maximal separation

Goal: Construct a FUNTF {Ψk}s
k=1 such that each Ψk is associated

to only one classifiable material.

For {θk}s
k=1 ∈ Sd−1 × · · ·× Sd−1 and n = 1, . . . , s, set

p(θn) =
N∑

m=1

|〈ym, θn〉|

and consider the maximal separation

sup
{θj}s

j=1

min{|p(θk )− p(θn)| : k (= n}.

John J. Benedetto Frame potential classification algorithm for retinal data



Optimization problem: ideal class definition

Y = {ym}N
m=1 ⊆ Rd (K ) ⊆ RN

Given s classes Cj , j = 1, . . . , s, defined in terms of a tolerance

ε > 0 and partition {Pj}s
j=0 of Y , as Cj = Pj ∩ Y ⊆ B(zj , ε)

j = 1, . . . , s for some zj ∈ Rd (K ).



Optimization problem: FUNTF construction

Point of view: Combine frame potential energy theorem, maximal

separation criteria (Mδ), and ideal class definition (Cε).

Paradigm: Given Y , s, Mδ, and Cε. Construct a FUNTF {Ψj}s
j=1

such that

∀j = 1, . . . , s, |〈Ψj ,Y ∩ Pj〉| ≥ R(ε, δ)

and

∀j 6= k , |〈Ψk ,Y ∩ Pj〉| ≤ r(ε, δ),

where r(ε, δ) < R(ε, δ).



Frame coefficient images

Given Ψ = {Ψn}s
n=1 ⊆ Rd = Rd (K ) ⊆ RN and m ∈ {1, . . . ,N}.

Consider the set of frame decompositions

∀ym ∈ Rd ,m = 1, . . . ,N, ym =
s∑

n=1

cαm,nΨn, indexed by α ∈ R.

For each m ∈ {1, . . . ,N} choose an `1 sparse decomposition

ym =
s∑

n=1

cα(m)
m,n Ψn

defined by the inequality,

∀α,
s∑

n=1

|cα(m)
m,n | ≤

s∑
n=1

|cαm,n|.



Frame coefficient images (continued)

Choose n ∈ {1, ..., s}. Take a slice, Pn, of the data cube at n. Pn
contains N points m.

(a) Data Cube (b) Top Down Slice (c) cα(m)
m,n defined

The image with N pixels m, associated to the the frame element
Ψn, is defined by {cα(m)

m,n |m = 1, ...,N}.

John J. Benedetto Frame potential classification algorithm for retinal data



Hyperspectral image processing



Urban data set classes

Figure: HYDICE Copperas Cove, TX — http://www.tec.army.mil/Hypercube/

Norbert Wiener Center Frame Potential and Wiener Amalgam Penalty Criteria for Classification



Urban data set classes

There are 23 classes associated with the different colors in the
previous figure.
In fact, if the 23 classes were to correspond roughly to
orthogonal subspaces, then one cannot achieve effective
dimension reduction less than dimension d = 23.
However, we could have a frame with 23 elements in a space of
reduced dimension d < 23.



Frame coefficients

(a) Original (b) Road coefficients

(c) Tree coefficients (d) White house coefficients

Norbert Wiener Center Frame Potential and Wiener Amalgam Penalty Criteria for Classification
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