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Discrete ambiguity functions

Letu:{0,1,..., N—1} = C.
@ U, : Zy — Cis the N-periodic extension of u.
@ U, : 7 — Cis an aperiodic extension of u:

ualm] = uml, m=0,1,...,.N—1
alll — 0, otherwise.

@ The discrete periodic ambiguity function Ap(u) : Zy x Zy — C of
uis

=

—1
Ap(u)(m. n) = 3 uplm + Klup[K] 2™/,

0

==
il

@ The discrete aperiodic ambiguity function Aa(u) : Z x Z — C of u
is

N—
Aa(u) Z us[m + KJua[k]e?™k/N.
k:
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CAZAC sequences

@ u:Zn — Cis Constant Amplitude Zero Autocorrelation (CAZAC):

vYme Zy, |ulm]| =1, (CA)
and
vme Zn\ {0}, Ap(u)(m,0)=0. (ZAC)

@ Empirically, the (ZAC) property of CAZAC sequences u leads to
phase coded waveforms w with low aperiodic autocorrelation
A(w)(t,0).

@ Are there only finitely many non-equivalent CAZAC sequences?

@ "Yes” for N prime and "No” for N = MK?,
@ Generally unknown for N square free and not prime.

Norbert Wiener Center
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Bjorck CAZAC codes and ambiguity function

comparisons

Bjorck CAZAC codes and ambiguity
function comparisons
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W aveform design
Legendre symbol
Let N be a prime and (k,N) = 1.

» k is a quadratic residue mod N if x2 = k (mod N) has a solution.

» k is a quadratic non—residue mod N if x> = k (mod N) has no
solution.

» The Legendre symbol:

kN _ 1, if kis a quadratic residue mod N ,
N/ | —1, if kisaquadratic non—residue mod N.

The diagonal of the product table of Zy gives values k € Z which are
squares. As such we can program Legendre symbol computation.

Example: N=7. (K)=1ifk=1,2,4.

Norbert W1ener Ccnter
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Definition

Let N be a prime number. A Bjérck CAZAC sequence of length N is
ulk] = e k=01,...,N—1,

where, for N = 1 (mod 4),

On(k) = arccos <1 +1W> (,@) ;

and, for N = 3 (mod 4),

On(k) = %arccos (11//://) [(1— k) (Z) + k]

dx is Kronecker delta and (£ ) is Legendre symbol.

Norbert W1ener Center
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Bjorck CAZAC Discrete Narrow-band Ambiguity Function

Let u, denote the Bjérck CAZAC sequence for prime p, and let Ay(up)
be the discrete narrow band ambiguity function defined on
7/pZ x 7] pZ.

Theorem (J. and R. Benedetto and J. Woodworth)

Ap(Up)(m, )| < } + %

forall (m,n) € (Z/pZ x Z/pZ) \ (0, 0).

@ The bound is more precise but not better than % depending on
whether p =1 (mod 4) or p = 3 (mod 4).

@ The proof is at the level of Weil’s proof of the Riemann hypothesis
for finite fields and depends on Weil’'s exponential sum bound.

@ Elementary construction/coding and intricate
combinatorial/geometrical patterns.

Norbert W1ener Center
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The ambiguity function

@ The complex envelope w of the phase coded waveform Re(w)
associated to a unimodular N-periodic sequence u : Zy — C is

wit fz [k]]l( bktb>

where 1 is the characteristic function of the interval [0, 1), 7 is the
pulse duration, and t, = 7/N.

@ For spectral shaping problems, smooth replacements to 1 are
analyzed.

@ The (aperiodic) ambiguity function A(w) of w is

Aw)(t) = / w(s + tw(s)e2™ ds,

where t € R is time delay and v € HA%( R) is frequency shifpert Wiener Center
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Caveat emptor

Waveform diversity is a government program for
disadvantaged waveforms

— G. Linde, (a real) radar engineer
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Perspective

Sequences for coding theory, cryptography, phase-coded waveforms,
and communications (synchronization, fast start-up equalization,
frequency hopping) include the following in the periodic case:

@ Gauss, Wiener (1927), Zadoff (1963), Schroeder (1969), Chu
(1972), Zhang and Golomb (1993)
@ Frank (1953), Zadoff and Abourezk (1961), Heimiller (1961)
@ Milewski (1983)
@ Bjorck (1985) and Golomb (1992),
and their generalizations, both periodic and aperiodic.

The general problem of using codes to generate signals leads to
frames.

Norbert Wlener Center
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Balayage, Fourier frames, and
sampling theory
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Fourier frames, goal, and a litany of names

Definition

E={z,} CR%,AC Re. E is a Fourier frame for L2(A) if

JA, B > 0,VF € L?(A),

ANFNZa) < DI < F(y), e > |2 < B ||F|[32a)-

@ Goal Formulate a general theory of Fourier frames and
non-uniform sampling formulas parametrized by the space M (R?) of
bounded Radon measures.

e Motivation  Beurling theory (1959-1960).

@ Names Riemann-Weber, Dini, G.D. Birkhoff, Paley-Wiener,
Levinson, Duffin-Schaeffer, Beurling-Malliavin, Beurling,

H.J. Landau, Jaffard, Seip, Ortega-Certa—Seip.

Norbert Wiener Center
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Balayage

o Let M(G) be the algebra of bounded Radon measures on the
LCAG G.

e Balayage in potential theory was introduced by Christoffel (early
1870s) and Poincaré (1890).

Definition
(Beurling) Balayage is possible for (E,A) C G x G, a LCAG pair, if
Vu € M(G), v € M(E) such that i =¥ on A.

We write balayage (E, A).

@ The set, A, of group characters is the analogue of the original role of
A in balayage as a collection of potential theoretic kernels.

@ Kahane formulated balayage for the harmonic analysis of restriction
algebras.

Norbert Wiener Center
for Harmonic Analysis ans Applications
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Spectral synthesis

Definition

(Wiener, Beurling) Closed A C G is a set of spectral synthesis (S-set) if
Yu € M(G),Vf € Cp(G),
supp(f) CAand i=00n A = [ f du=0.

(VT € A'(G),Y¢ € A(G), supp(T) C A and ¢ =0on A= T(¢)=0.)

o Ideal structure of L'(G) - the Nullstellensatz of harmonic analysis

o T e D'(RY),¢ e C®(R%), and ¢ = 0 on supp(T) = T(¢) = 0, with
same result for M (R?) and Cp(R?).

@ S2 C R3 is not an S-set (L. Schwartz), and every non-discrete G has
non-S-sets (Malliavin).

@ Polyhedra are S-sets. The %—Cantor set is an S-set with

non-S-subsets.
Norbert W1ener Center
d Apy
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Strict multiplicity

Definition

I C G is a set of strict multiplicity if

3 p e M(T')\{0} such that i vanishes at infinity in G.

@ Riemann and sets of uniqueness in the wide sense.

o Menchov (1916): 3 closed I' C R/Z and € M(T')\{0},
T =0 and fi(n) = O((log [n])~*/?), |n| — oo

@ 20th century history to study rate of decrease: Bary (1927),

Littlewood (1936), Salem (1942, 1950), Ivasev-Mucatov (1957),
Beurling.

Vv € A andV N(v), compact neighborhood, A N N(v) is a set of
strict multiplicity. Senter

plications

Balayage and the theory of generalized Fourier frames



A theorem of Beurling

E = {z,} CR? is separated if

Jr >0, Vm,n, m#n= ||z, —z,|| >

o’

Theorem

Let A C R be a compact S-set, symmetric about 0 € R?, and
let E C R? be separated. If balayage (E,A), then

E is a Fourier frame for L*(A).

e Equivalent formulation in terms of
PWa = {f € L*(R?) : supp(f) C A}.
o VF € L*(A), F=3 e <F S (es) >r e, in L*(A).
o For R? and other generality beyond Beurling’s theorem in R, the

result above was formulated by Hui-Chuan Wu Norbert Wiener Center
and JB (1998), see Landau (1967).

Balayage and the theory of generalized Fourier frames



Semi-discrete Gabor frames

Let G € L2(RY) satisfy 1G]l 2 gay = Lilet A C R? be an S-set,
symmetric about 0; and let £ C R? be separated. Define

(STFT) VF e L*(A), VgF(z,7) = [, F(A)G(A —7)e*™ = dA.

If balayage (E,A), then
JA,B >0, VF € L?(A),

A||F|Bagy, < / S VaF () dy < B [|F|Ban).
rxel

Remark  There are basic problems to be resolved and there have been
fundamental recent advances.

Norbert W1ener Center
d Apy
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Non-uniform Gabor frames

Let g € L*(R?) satisfy ||g]|,2(ze) = 1; let E = {(sm, ta)} € R*” be separated;
and let A C R? be an S-set, symmetric about the origin.

If balayage (E, N), then

3A,B > 0,Vf € M'(RY) such that supp(Vef) C A,

Allfllzgay < > D 1 Vaf(Sm, t)|? < BIIfll 2(zay-
m n

@ Feichtinger theory of modulation spaces M29. f € M' means
Vof € L'(R?9).
@ Grochenig theorem for non-uniform Gabor frames involves an analysis
of convolution operators on the Heisenberg group. Notoert Wener Center

 Applications



Examples of balayage

©

o

Let E C RY be separated. Define

r=r(E) = sup dist(z, E).
z€R4

If rp < 4, then balayage (E, B(0,p)). } is the best possible.

If balayage (E, A) and Ag C A, then balayage (E, Ayp).

Let E = {z,,} be a Fourier frame for PW,. Then for all Ag C A
with dist(Ag, A° ) > 0, we have balayage (E, Ao).

In R!, for a separated set E, Beurling lower density > p is necessary

and sufficient for balayage (E, [‘7”7 g])

Remark  In R, if E is uniformly dense in the sense of Duffin-Schaeffer,
then D~ (E), D" (FE), and D,(E) coincide.
So Beurling's result = Duffin-Schaeffer’s result on Fourier frames.

Norbert Wiener Center
for Harmonic Analysis ans Applications
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®DOs, balayage, synthesis, and sampling

®DOs and the Kohn-Nirenberg correspondence

Definition/notation for A C R?

@ Yy € A, g, € Co(R?) and supp(g-) C A
9 s(x,7) = &g, (x)
The Kohn-Nirenberg correspondence
S+— Hs
with symbol Hs is defined by the Hérmander operator
Hs : L3(RY) = L3(A) C L3(RY)
FH0) = [ | stx)fess o

v

Classically, the symbol is o and integration is over RY.




®DOs, balayage, synthesis, and sampling

®DOs and generalized Fourier frames for non-uniform sampling

Theorem

Assume balayage (E, A) where A C RYisa compact, symmetric S-set.
Assume E = {x,} is separated. Let s(x,v) = €7 g, (x), where

{9, 17 €A} C Go(RY)

and

Vy e N, supp(gy) A
Let f € Xs C L3(RY) if Hs(f) = F € L2(A) and suppF C A, then

2) 1/2

JA > 0 suchthat Vfe Xs

A FO)Rdy (Z

7l 2

/ F(7)s(xn, )€™ dry
A

nez




Classification

Classification
e Dimension reduction
e Finite frames and frame potential energy
e Frame potential energy classification algorithm
e Hyperspectral image processing

Norbert Wiener Center
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Dimension reduction
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Kernel dimension reduction

Given data space X of N vectors in RP. (N is the number of pixels in
the hypercube, D is the number of spectral bands.)

Two Steps:

@ Construction of an N x N symmetric, positive semi—definite
kernel, K, from these N data points in RP.

@ Diagonalization of K, and then choosing d < D significant
orthogonal eigenmaps of K.

John J. Benedetto Frame potential classification algorithm for retinal data



@ Different classes of interest may not be orthogonal to each other;
however, they may be captured by different frame elements. It is
plausible that classes may correspond to elements in a frame but
not elements in a basis.

@ A frame generalizes the concept of an orthonormal basis. Frame
elements are non—orthogonal.

John J. Benedetto Frame potential classification algorithm for retinal data



Dimension reduction paradigm

@ Given data space X of N vectors x,, € RP, and let
K: XxX—=R

be a symmetric (K(x, y) = K(y, X)), positive semi—definite
kernel.

@ We map X to a low dimensional space via the following mapping:
X—K—RIYK), d<D
Xm = Ym = (yIm, ], y[m, g, ..., y[m, ng]) € RY(K),

where y[-, n] € RV is an eigenvector of K.

John J. Benedetto Frame potential classification algorithm for retinal data



Laplacian Eigenmaps

@ Consider the data points X as the nodes of a graph.

@ Define a metric p : X x X — R*, e.g., p(Xm, Xn) = ||Xm — Xnl| is
the Euclidean distance.

@ Choose g e N.

@ For each x; choose the g nodes x, closest to x; in the metric p,
and place an edge between x; and each of these nodes.

@ This defines N'(x;), viz.,
N'(x;) = {x € X : 3 an edge between x and x;.}.

@ To define the weights on the edges, we compute:

e [ exp(=llxi— x[2/0) if x;€ N'(x) or x; € N'(x)
10 otherwise

@ SetK =D — W, where D; =}, Wjand D = 0 for i # j;
@ Diagonalize K.
@ K is symmetric and positive semi—definite.

John J. Benedetto Frame potential classification algorithm for retinal data



Finite frames and frame potential energy
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FUNTF

o Aset F ={g}jcy CF9is a frame for F%, F = R or C, if
JAB>0 suchthat VxeF9, Alx|? <Y [(x,e)P < Blx|>
jed
@ F tight if A= B. Afinite unit-norm tight frame F is a FUNTF.

@ N row vectors from any fixed N x d submatrix of the N x N DFT
matrix, f(ezm'”"/’v) is a FUNTF for C9.

@ If Fis a FUNTF for F9, then

vx eF9, x=

Z \

N
erj

@ Frames: redundant representation, compensate for hardware
errors, inexpensive, numerical stability, minimize effects Qjoz@@ﬂ%ner(jemer

or Harmonic Analysis and Applications



DFT FUNTFs

@ N x d submatrices of the N x N DFT matrix are FUNTFs for C9.
These play a major role in finite frame X A-quantization.

! k%o k% Xk
N=8d=5 —
\/g EE ok ok
* % * ko ok
% % ¥ ok %
koK k ok %
1 2wl 9mim2  2wim2  2mim€  2wimI
2]
M= Lwsmg 8.

@ Sigma-Delta Super Audio CDs - but not all authorities are fans.
Norbert Wiener Center
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CAZACs and FUNTFs

@ Let u= {u[k]}}_, be a CAZAC sequence in C. Define

]
(IR, k1), Uk d = 1),

Then v = {v[k]}}_, C C%is a CAZAC sequence in C? and
{vii  isa FUNTF for C? with frame constant N/d.

Vk=1,..N, v =vVlk]=

@ Let {xc}}_, C CY be a FUNTF for CY, with frame constant A and
with associated Bessel map L : C¢ — (2(Zy); and let
u = {u[j]}}*; € CY be a CAZAC sequence in C?. Then
{ﬁL(u[/'])}j"i1 C CN(= ?(zy) is a CAZAC sequence in CN.

Norbert Wlener Center
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Examples of frames

(a) Non—FUNTF

John J. Benedetto Frame potential classification algorithm for retinal data



The geometry of finite tight frames

@ We saw the vertices of platonic solids are FUNTFs.

@ However, points that constitute FUNTFs do not have to be
equidistributed, e.g., ONBs and Grassmanian frames.

@ FUNTFs can be characterized as minimizers of a frame potential
function (with Fickus) analogous to Coulomb’s Law.

@ Frame potential energy optimization has basic applications
dealing with classification problems for hyperspectral and
multi-spectral (biomedical) image data.



Frame force and potential energy

F.89 " x 89"\ D —R?

P:S8% 1 x 8"\ D — R,
where P(a.b) = p(|a—b|),  p/(x) = —xf(x)
@ Coulomb force
CF(a,b) = (a—b)/lla—b|°, f(x)=1/x°
@ Frame force
FF(a,b) = (a,b)(a—b), f(x)=1-x2/2
@ Total potential energy for the frame force

N N

TFP({XH}) = Z Z |<Xm7 Xn>|2 Norbert Wiener Center

Analysis and Applications
m=1 n=1



Characterization of FUNTFs

Theorem

Let N < d. The minimum value of TFP, for the frame force and N
variables, is N; and the minimizers are precisely the orthonormal
sets of N elements for RY.

Let N > d. The minimum value of TFP, for the frame force and N
variables, is N2 /d; and the minimizers are precisely the FUNTFs of N
elements for RY.

Problem
Find FUNTFs analytically, effectively, computationally.

Norbert Wlener Center
for Harmonic Analysis and Applications



Frame potential energy classification algorithm
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Optimization problem: maximal separation

Goal: Construct a FUNTF {W,}?_, such that each VW is associated
to only one classifiable material.

For {0k}5_, € S ' x ... xS%Tandn=1,...,s, set

N
p(0n) = Z |(Ym, On)|
m=1
and consider the maximal separation

sup min{|p(6x) — p(0n)| : k # n}.

/}/ 1

John J. Benedetto Frame potential classification algorithm for retinal data



Optimization problem: ideal class definition

o Y = {ymili_ CRI(K) CRV

@ Given sclasses C;,j =1,...,s, defined in terms of a tolerance
€ > 0 and partition {P;}? ; of Y, as C;=P;NY C B(z,¢)
j=1,...,sfor some z; € RY(K).

Norbert W1ener Center
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Optimization problem: FUNTF construction

@ Point of view: Combine frame potential energy theorem, maximal
separation criteria (M;), and ideal class definition (C.).

@ Paradigm: Given Y, s, Ms, and C.. Construct a FUNTF {\IJ,-}/.SZ1
such that

Vi=1,....s, [(¥;,YNP)| > R(e,J)
and
Vji#k, (Wi, YN P < r(e,0),

where r(e, §) < R(e, ).

Norbert W1ener Center
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Frame coefficient images

o GivenV¥ ={V¥,}5  CRI=RIK)CRNandme {1,...,N}.
Consider the set of frame decompositions

S
YmeRIm=1,... N, yn= Zc,‘;,’,,w,,, indexed by a € R.

n=1

@ Foreach me {1,..., N} choose an ¢' sparse decomposition

)
Ym = o Vs
n=1

defined by the inequality,

Z|c°‘<"’ | < Z|cmn|

Norbert W1ener Center
d Applications



Frame coefficient images (continued)

@ Choose n e {1, ..., s}. Take a slice, P, of the data cube at n. P,
contains N points m.

L] y'm
-f n
$ m
]
PI'I
(a) Data Cube (b) Top Down Slice (€) e defined

@ The image with N pixels m, associated to the the frame element
W), is defined by {can” [m=1,...,N}.

John J. Benedetto Frame potential classification algorithm for retinal data



Hyperspectral image processing
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Urban data set classes

Figure: HYDICE Copperas Cove, TX — http://www.tec.army.mil/Hypercube/

Norbert Wiener Center
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Urban data set classes

@ There are 23 classes associated with the different colors in the
previous figure.

@ In fact, if the 23 classes were to correspond roughly to
orthogonal subspaces, then one cannot achieve effective
dimension reduction less than dimension d = 23.

@ However, we could have a frame with 23 elements in a space of
reduced dimension d < 23.

Norbert Wiener Center
for Harmonic Analysis ans Applications
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(c) Tree coefficients (d) White house coefficients Norbert Wiener Center
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Overview of Classification Results

ARO MURI | Opportunistic Sensing | Rice, Maryland, lllinois, Yale, Duke, UCLA| October 2010



W J

Norbert Wiener Center
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