Sparse Solutions of Linear Systems of
Equations and Sparse Modeling of
Signals and Images

Alfredo Nava-Tudela
John J. Benedetto, advisor

12/16/2010 Ph.D. Preliminary Oral
Examination



Happy birthday Lucial

12/16/2010 Ph.D. Preliminary Oral
Examination



Outline

- Problem: Find “sparse solutions™ of Ax = b.
- Definitions of “sparse solution™.
- How do we find sparse solutions?
The Orthogonal Matching Pursuit (OMP)
- Some theoretical results.
- Implementation and validation, some details.
- Validation resullts.
- Conclusions/Recapitulation.
- Project timeline, current status.
- References.

12/16/2010 Ph.D. Preliminary Oral
Examination



Problem

Let A be an n by m matrix, with n < m, and rank(A) = n.
We want to solve

AX = b,

where b is a data or signal vector, and x is the solution
with the fewest number of non-zero entries possible,
that is, the “sparsest” one.

Observations:

- A is underdetermined and, since rank(A) = n,

there is an infinite number of solutions. Good!

- How do we find the “sparsest” solution? What does
this mean in practice? Is there a unique sparsest
solution?
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Why is this problem relevant?

231 kb, uncompressed, 74 kb, compressed 3.24:1
320x240x3x8 bit JPEG
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Why is this problem relevant?

512 x 512 Pixels, 75:1, 10.6 Kbyte

24-Bit RGB, JPEG2000
Size 786 Kbyte
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Why is this problem relevant?

“Sparsity” equals compression:
Assume Ax = b. If x is sparse, and b is dense, store x!

Image compression techniques, such as JPEG [6] or
JPEG-2000 [5], are based in this idea, where a linear
transformation provides a sparse representation within
an error margin of the original image.
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Definitions of “sparse”
- Convenient to introduce the [, “norm” [1]:
[Ix[lo = # {k : X, # O}
- (Pg): ming [|x||, subjectto ||Ax - b]|,=0
- (Pof): min, ||x]|, subjectto ||Ax-Db||,<e¢
Observations: In practice, (P, ¢) is the working

definition of sparsity as it is the only one that is
computationally practical. Solving (P, ¢) is NP-hard [2].
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Some theoretical results

Definition: The spark of a matrix A is the minimum
number of linearly dependent columns of A. We write
spark(A) to represent this number.

Theorem: If there is a solution x to Ax = b, and
1X||y < spark(A) / 2, then x is the sparsest solution.
That is, if y # x also solves the equation, then

[Ixllo < llyllo.

Observation: Computing spark(A) is combinatorial,
therefore hard. Alternative?
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Some theoretical results

Definition: The mutual coherence of a matrix A is the

number -
aj a;|

( ) 1<k,j<m, k#j ||ak||2 ' ||aj||2

Lemma: spark(A) = 1+1/mu(A).

Theorem: If x solves Ax = b, and ||x||, < (1+u(A)")/2,
then x is the sparsest solution. That is, if y # x also solves

the equation, then ||x||, < ||yl

Observation: mu(A) is a lot easier and faster to compute,
but 1+1/mu(A) far worse bound than spark(A), in general.
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Finding sparse solutions: OMP
Orthogonal Matching Pursuit algorithm [1]:

Task: Approximate the solution of (£) : min, x|/, subject to Ax = b.
Parameters: We are given the matrix A. the vector b. and the threshold es.
Initialization: Initialize £ = 0, and set

e The initial solution x" = 0.

e The initial residual r’ = b — Ax” = b.

e The initial solution support 8" = Support{x"} = 0.
Main Iteration: Increment & by 1 and perform the following steps:

e Sweep: Compute the errors €(j) = min,, za; — r*'|3 for all j using the
optimal choice z; = aTr*~!/|a;||3.

e Update Support: Find a minimizer j, of €(7): ¥j ¢ S**, €(Ju) < €(j), and
update 8% = 81U {j,}.

¢ Update Provisional Solution: Compute x*, the minimizer of ||Ax — b||3
subject to Support{x} = S*.

e Update Residual: Compute r* = b — Ax*.
e Stopping Rule: If ||r*||; < €, stop. Otherwise, apply another iteration.
Output: The proposed solution is x* obtained after k iterations.
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Some theoretical results

Definition: The mutual coherence of a matrix A is the

number -
aj a;|

A) = max '
H(A) 1<k.j<m, k#j ||ag||2 - ||aj]]2

Theorem: If x solves Ax = b, and ||x]|, < (1+u(A)")/2,
then x is the sparsest solution. That is, if y # x also solves
the equation, then ||x||, < ||yl

Theorem: For a system of linear equations Ax = b (A an n
by m matrix, n < m, and rank(A) = n), if a solution x exists
obeying [|X||o < (1+u(A)1)/2, then an OMP run with
threshold parameter ¢, = 0 is guaranteed to find x exactly.

12/16/2010 Ph.D. Preliminary Oral 12
Examination



Implementation and Validation

In light of these theoretical results, we can envision the
following roadmap to validate an implementation of OMP.

- We have a simple theoretical criterion to guarantee both
solution uniqueness and OMP convergence:

If x is a solution to Ax = b, and ||x||, < (1+u(A))/2,
then x is the unique sparsest solution to Ax = b and OMP
will find it.

- Hence, given a full-rank n by m matrix A (n < m), compute
u(A), and find the largest integer k smaller than or equal
to (1+u(A)")/2. That is, k = floor((1+u(A)1)/2).
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Implementation and Validation

- Build a vector x with exactly k non-zero entries and
produce a right hand side vector b = Ax. This way, you
have a known sparsest solution x to which to compare the
output of any OMP implementation.

- Pass A, b, and ¢, to OMP to produce a solution vector
Xomp = OMP(A,b,¢).

- If OMP terminates after k iterations and ||Ax,,, - b|| < &,
for all possible x and ¢, > 0, then the OMP implementation
would have been validated.

Caveat: The theoretical proofs assume infinite precision.
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Implementation and Validation

- Some implementation details worth discussing:

The core of the algorithm is found in the following three
steps. We will discuss in detail our implementation of

the “Update Support” and “Update Provisional Solution”
steps.

e Sweep: Compute the errors €(j) = min,, ||z;a; — r* || for all j using the
optimal choice 27 = ajr* ! /||a;|]3.

e Update Support: Find a minimizer j, of €(7): ¥j ¢ S* ', €(jy) < €(j), and
update 8* = S*1 U {jp}.

e Update Provisional Solution: Compute x*, the minimizer of ||Ax — b||3
subject to Support{x} = S".
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Implementation and Validation

e Update Support: Find a minimizer j, of €(4): ¥j & S* ', €(ju) < ¢(5), and
update S* = S*-1uU {4,}.

---Initialization---
k =0;
activeCol = []; % will contain the indices of the active columns of A.
epsilon = zeros(m,1); % contains the errors epsilon(j) described above.
---Inside Main Loop---
k=k+1;
% Sweep
forj=1:m
a_j =A());
z j=a_j"rO/norm(a_j)"2;
epsilon(j) = norm(z_j*a_j - r0)*2;
end
% Update Support
maxValueEpsilon = max(epsilon);
epsilon(activeCol) = maxValueEpsilon;
[minValueEpsilon, j_0] = min(epsilon); % j 0 is the new index to add.
activeCol(k) = j_0; % update the set of active columns of A.

12/16/2010 Ph.D. Preliminary Oral 16
Examination



Implementation and Validation

e Update Provisional Solution: Compute x*, the minimizer of ||Ax — b||3
subject to Support{x} = S*.

A: = Q X R
A X X - b as azar
3 |o\J R
n m = n n =n|Qi Qe
n3|0 | Rz
m 1 111 3 n-3 3
A;=QR=QR;+Q;R, =QR; + 0= QR

1

Solve the linear system A;x” = b, with x’ € R3. We have:

AX =QRx =QRx =b=Q,/QRx =Q,'b (1)
See [3] for more on the QR decomposition.
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Implementation and Validation

e Update Provisional Solution: Compute x*, the minimizer of ||Ax — b||3
subject to Support{x} = S*.

Observation:
Q1TQ|
Q' X Q = Q'Q
Q'T 1 <'

0
Q‘I 02 = \ =
Q' 0

(1) Q'R =Q;'b < Rx =Q'b
< x =(R,)"Q,"b,

where we can obtain the last equation because A is a full
rank matrix, and therefore A; is too, implying (R,)" exists.
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Implementation and Validation

e Update Provisional Solution: Compute x*, the minimizer of ||Ax — b||3
subject to Support{x} = S*.

The minimizer x¥=3 of ||Ax - b||,?, subject to support{x} = S¥=3,
is then obtained when we solve A;x" = b, with x" € R3, and
we set xk=3 equal to the “natural embedding” of x” into the
zero vector 0 € R™,

---Initialization---

x0 = zeros(m,1);

---Inside Main Loop---

% Update the provisional solution by solving an equivalent unconstrained
% least squares problem.

A_k =A(:,activeCol);

[Q,R] = ar(A_k);

x0(activeCol) = R(1:k,:) \ Q(:,1:k)"*b;
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Validation Results

We ran two experiments:

1) A € R100x200 with entries in N(0,1) i.i.d. for which
u(A) =0.3713, corresponding to k=1 < K.

2) A € R200400 with entries in N(0,1) i.i.d. for which
u(A) = 0.3064, corresponding to k= 2 < K.

Observations:

- A will be full-rank with probability 1 [1].

- For full-rank matrices A of size n x m, the mutual
coherence satisfies u(A) = V{(m - n)/(n-(m - 1))} [4]. That
is, the upper bound of K = (1 + u(A)')/2 can be made
as big as needed, provided n and m are big enough.
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Validation Results

For each matrix A, we chose 100 vectors with k non-zero
entries whose positions were chosen at random, and

whose entries were in N(0,1).

Then, for each such vector x, we built a corresponding
right hand side vector b = Ax.

Each of these vectors would then be the unique sparsest
solution to Ax = b, and OMP should be able to find them.

Finally, given ¢, > 0, if our implementation of OMP were
correct, it should stop after k steps (or less), and if
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Validation Results
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Conclusions/Recapitulation

- There are simple criteria to test the uniqueness of a
given sparse solution.

- There are algorithms that find sparse solutions, e.g.,
OMP; and their convergence can be guaranteed
when there are “sufficiently sparse” solutions.

- Our implementation of OMP is successful up to

machine precision as predicted by current theoretical
bounds.
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Future Work

Revisiting Compression: Propose to study the
compression properties of the matrix

A = [DCT,DWT]

and compare it with the compression properties of
DCT or DWT alone.

Study the behavior of OMP for this problem.

Interested in compression vs error graph
characteristics.
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