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The first wavelet system was discovered by Alfréd Haar one hundred years

ago. Since then the field has grown enormously. In 1952, Richard Duffin and Albert

Schaeffer synthesized the earlier ideas of a number of illustrious mathematicians into

a unified theory, the theory of frames. Interest in frames as intriguing objects in

their own right arose when wavelet theory began to surge in popularity. Wavelet and

frame analysis is found in such diverse fields as data compression, pseudo-differential

operator theory and applied statistics.

We shall explore five areas of frame and wavelet theory: frame bound gaps,

smooth Parseval wavelet frames, generalized shearlets, Grassmannian fusion frames,

and p-adic wavlets. The phenomenon of a frame bound gap occurs when certain se-

quences of functions, converging in L2 to a Parseval frame wavelet, generate systems

with frame bounds that are uniformly bounded away from 1. In the 90’s, Bin Han

proved the existence of Parseval wavelet frames which are smooth and compactly



supported on the frequency domain and also approximate wavelet set wavelets. We

discuss problems that arise when one attempts to generalize his results to higher

dimensions.

A shearlet system is formed using certain classes of dilations over R2 that yield

directional information about functions in addition to information about scale and

position. We employ representations of the extended metaplectic group to create

shearlet-like transforms in dimensions higher than 2. Grassmannian frames are in

some sense optimal representations of data which will be transmitted over a noisy

channel that may lose some of the transmitted coefficients. Fusion frame theory is

an incredibly new area that has potential to be applied to problems in distributed

sensing and parallel processing. A novel construction of Grassmannian fusion frames

shall be presented. Finally, p-adic analysis is a growing field, and p-adic wavelets are

eigenfunctions of certain pseudo-differential operators. A construction of a 2-adic

wavelet basis using dilations that have not yet been used in p-adic analysis is given.
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Chapter 1

Introduction

1.1 Background

This dissertation contains five distinct components, which are all unified under

the umbrella of frame and wavelet theory.

Alfréd Haar probably did not foresee the impact that the first wavelet system,

which was a seemingly innocuous example presented in an appendix of his 1909 dis-

sertation, would have on the mathematical and scientific communities ([59], [60]).

This set of functions existed many years with out a name or a greater context to

be viewed in. About 70 years later, Jean Morlet and Alex Grossman resurrected

this mathematical concept to analyze geophysical measurements and other physical

phenomena (see, for example [49], [55], and [56]). They named the objects on-

delettes, little waves, which was later translated to wavelets, and started building

the foundation of wavelet theory. Meyer and Mallat then developed the multireso-

lution analysis scheme ([85] and [83]). Since then the field has grown enormously.

Wavelet analysis is used for data compression, pattern recognition, noise reduction

and transient recognition, and wavelet algorithms work in such varied areas as ap-

plied statistics, numerical PDEs and image processing. An excellent resource for

the study of wavelet theory is Daubechies’ book [36]. Heil and Walnut also wrote

an expository paper about wavelet theory that caught a snapshot of the field as it
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was beginning to expand at lightening speed, [67]. For a thorough collection of fun-

damental papers (or their translations, if necessary) in the field of wavelet theory,

see [66].

In their seminal paper “A class of nonharmonic Fourier series” [45], Richard

Duffin and Albert Schaeffer synthesized the earlier ideas of a number of illustrious

mathematicians, including Ralph Boas Jr ([17], [18]), Raymond Paley and Norbert

Wiener ([88]) into a unified theory, the theory of frames. Interest in frames as

intriguing objects in their own right, apart from their connection to nonharmonic

Fourier series, remained dormant for many years. Frame theory became a subject

of interest when wavelet theory began to surge in popularity. Frames are intricately

connected to sampling theory ([45]) and operator theory ([65]) and have applications

in many fields, including wavelet theory ([36]), pseudodifferential operators ([54]),

signal processing ([75]) and wireless communication ([96]).

We shall explore five areas of frame and wavelet theory: frame bound gaps,

smooth Parseval wavelet frames, generalized shearlets, Grassmannian fusion frames,

and p-adic wavlets. In Chapter 2, we introduce the following: a new method to im-

prove frame bound estimation; a shrinking technique to construct frames; and a

nascent theory concerning frame bound gaps. The phenomenon of a frame bound

gap occurs when certain sequences of functions, converging in L2 to a Parseval frame

wavelet, generate systems with frame bounds that are uniformly bounded away from

1. In [62] and [63], Bin Han proved the existence of Parseval wavelet frames which

are smooth and compactly supported on the frequency domain and also approxi-

mate wavelet set wavelets. In Chapter 3, we discuss problems that arise when one
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attempts to generalize his results to higher dimensions. Chapters 2 and 3 solely

concern dyadic wavelet systems. A shearlet system is formed using certain classes

of non-dyadic dilations over R2 that yield directional information about functions

in addition to information about scale and position. In Chapter 4, we employ rep-

resentations of the extended metaplectic group to create shearlet-like transforms in

dimensions higher than 2. Grassmannian frames are in some sense optimal repre-

sentations of data which will be transmitted over a noisy channel that may lose

some of the transmitted coefficients. Fusion frame theory is an incredibly new area

that has potential to be applied to problems in distributed sensing and parallel

processing. A novel construction of Grassmannian fusion frames shall be presented

in Chapter 5. Finally, p-adic analysis is a growing field, with applications in such

areas as quantum physics ([73]) and DNA sequencing ([44]). As eigenfunctions of

certain pseudo-differential operators, p-adic wavelets play an important role in these

applications. A construction of a 2-adic wavelet basis using dilations that have not

yet been used in p-adic analysis is in Chapter 6.

1.2 Preliminaries

We now document certain notation, definitions, and conventions that will be

used throughout the thesis.

Definition 1. For

x =

 x1

...xd

 ∈ Cd and y =

 y1

...yd

 ∈ Cd,
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x · y = 〈x, y〉x1y1 + . . .+ xdyd;

that is, the dot product is conjugate linear in the second entry.

Definition 2. For a function f ∈ L1(Rd), the Fourier transform of f is defined to

be

F(f)(γ) = f̂(γ) =

∫
f(x)e−2πix·γdx.

By Plancherel’s Theorem, F extends from L1 ∩ L2 to a unitary operator L2 → L2.

We denote the inverse Fourier transform of a function g ∈ L2(R̂d) as F−1g = ǧ.

Definition 3. For f : Rd → C, y ∈ Rd, ξ ∈ R̂d, and A ∈ GL(R, d)\R∗I define the

following operators

Tyf(x) = f(x− y),

Mξf(x) = e2πiξ·xf(x), and

DAf(x) = | detA|1/2f(Ax).

In Chapters 2 and 3, for t ∈ R∗, we shall define

Dtf(x) = 2td/2f(2tx) (1.1)

since dyadic dilations are very commonly used.

These operators are unitaries which satisfy the following commutation rela-
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tions, which are all easily verified (see, for example [9], [53]) :

MξTy = e2πiξ·yTyMξ

MξDA = DAMA−1ξ

DATy = TA−1yDA

FTy = M−yF

FMξ = TξF and

FDA = DtA−1F ,

where tA denotes the transpose of A. We are now able to define the term wavelet.

Definition 4. Let ψ ∈ L2
(
Rd
)

and define the (dyadic) wavelet system (using the

notation in (1.1),

W (ψ) = {DnTkψ(x) : n ∈ Z, k ∈ Zd} = {2nd/2ψ (2nx− k) : n ∈ Z, k ∈ Zd}.

If W (ψ) is an orthonormal basis for L2
(
Rd
)
, then ψ is an orthonormal dyadic

wavelet or simply a wavelet for L2(Rd).

We can extend some of these definitions to general fields and dilations.

Definition 5. Let F be a field with valuation | · |. For f : Fd → C, y ∈ Fd, and

A ∈ GL(F, d) define the following operators

Tyf(x) = f(x− y) and

DAf(x) = | detA|1/2f(Ax),

where in Chapters 2 and 3, the dilation is defined as in (1.1). We will also call

{DATyψ(x) : A ∈ A ⊂ GL(F, d), y ∈ Z ⊂ Fd}

5



a wavelet system and ψ a wavelet.

Next, we define the term frame.

Definition 6. A sequence {ej}j∈J in a Hilbert space H is a frame for H if there

exist constants 0 < A ≤ B <∞ such that

∀f ∈ H, A‖f‖2 ≤
∑
j∈J

|〈f, ej〉|2 ≤ B‖f‖2. (1.2)

The maximal such A and minimal such B are the optimal frame bounds. In this

thesis, the phrase frame bound will always mean the optimal frame bound, where

A is the lower frame bound and B is the upper frame bound. A frame is tight if

A = B, and it is Parseval if A = B = 1. If a frame {ej}j∈J for H has the property

that for all k ∈ J , {ej}j 6=k is not a frame for H, then {ej}j∈J is a Riesz basis for H.

If the second inequality of (1.2) is true, but possibly not the first, then {ej}j∈J is a

Bessel sequence. In this case, we shall still refer to B as the upper frame bound to

simplify statements of certain theorem. We note that it is usually called the Bessel

bound. A frame is normalized if ‖ej‖ = 1 for j ∈ J . A frame is equiangular if for

some α, |〈ej, ei〉| = α for all i 6= j.

Every orthonormal basis is a frame. One may view frames as generaliza-

tions of orthonormal bases which mimic the reconstruction properties (i.e.: ∀x, x =∑
〈x, ej〉ej) of orthonormal bases but may have some redundancy. We remark that

{ej} is a tight frame with frame bound A if and only if

∀f ∈ H, Af =
∑
j∈J

〈f, ej〉ej. (1.3)
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In Definition 4, we deal with wavelet systems that are orthonormal bases. However,

there is no reason that we should not consider systems W(ψ) which form frames

(respectively, Bessel sequences) for L2(Rd). In this case, ψ is a frame wavelet (re-

spectively, Bessel wavelet).

Definition 7. Let X be a measure space. For any measurable set S ⊆ X, the

characteristic function of S, 1S, is

1S(x) =


1 ; x ∈ S

0 ; else

.

Finally, we note that our definition of support will not be the traditional one.

Definition 8. Let (X,µ) be a measure space and f a complex-valued function de-

fined on X. The support of f , supp f is the following equivalence class of measurable

sets

{
S ⊆ X :

∫
X\S
|f(x)|dµ(x) = 0, and if R ⊂ S and

∫
X\R
|f(x)|dµ(x) = 0 then µ(S\R) = 0

}
.

We shall still speak of the support of a function, just as we refer to a function

in an Lp space. So, supp f ⊆ S means that at least one element in the equivalence

class is a subset of S and f is compactly supported means that supp f ⊆ K, where

K is a compact set.

7



Chapter 2

Smooth Functions Associated with Wavelet Sets on Rd and Frame

Bound Gaps

2.1 Introduction

2.1.1 Problem

Wavelet theory for Rd, d > 1, was historically associated with multiresolution

analysis (MRA), e.g., [86]. In particular, for dyadic wavelets, it is well-known that

2d− 1 wavelets are required to provide a wavelet orthonormal basis (ONB) with an

MRA for L2(Rd), cf., [82], [4], and [95]. In fact, until the mid-1990s, it was assumed

that it would be impossible to construct a single dyadic wavelet ψ generating an

ONB for L2(Rd). This changed with the groundbreaking work of Dai and Larson

[33] and Dai, Larson, and Speegle [34], [35]. The earliest known examples of such

single dyadic wavelets for d > 1 had complicated spectral properties, see [6], [12], [8],

[13], [33], [34], [35], [69], [70], [93], [98]. Further, such wavelets have discontinuous

Fourier transforms. As such it is a natural problem to construct single wavelets

with better temporal decay. Further, even on R, in order to improve the temporal

decay, one must consider systems of frames rather than orthonormal bases [5], [25],

[62], [63] or wavelets which have an MRA structure [69], [70]. We shall address

the problem of smoothing ψ̂ by convolution, where ψ is derived by the so-called
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neighborhood mapping method; see Section 2.1.3. This method has the advantage

of being general and constructive. Although there are other smoothing techniques

that have been introduced in the area of wavelet theory, e.g., [62] and [63], we choose

to smooth by convolution because of its theoretical simplicity and computational

effectiveness. However, as will be shown later in the thesis, convolutional smoothing

on the frequency domain yields counterintuitive results.

2.1.2 Preliminaries

Recall that in this chapter, Dtf(x) = 2td/2f(2tx). The Haar wavelet is the

function ψ = 1[0,1/2) − 1[1/2,1). The Haar wavelet is well localized in the time do-

main but not in the frequency domain. There are wavelets that are characteristic

functions in the frequency domain and thus are not localized in the time domain. A

classical example of a wavelet which is the inverse Fourier transform of a character-

istic function is the Shannon or Littlewood-Paley wavelet, 1̌[−1,−1/2)∪[1/2,1). Another

example is the Journé wavelet,

1̌[− 16
7
,−2)∪[− 1

2
,− 2

7)∪[ 2
7
, 1
2)∪[2, 167 ).

At an AMS special session in 1992, Dai and Larson introduced the term wavelet set,

which generalizes this phenomenon. Their original publications concerning wavelet

sets are [33] and also [34] and [35], which were written with Speegle. Hernàndez,

Wang, and Weiss developed a similar theory in [69] and [70], using the terminology

minimally supported frequency (MSF ) wavelets.

Definition 9. If K is a measurable subset of R̂d and 1̌K is a wavelet for L2(Rd),

9



then K is a wavelet set.

We can extend this definition to frames.

Definition 10. If L is a measurable subset of R̂d andW(1̌L) is a frame (respectively,

tight frame or Parseval frame) for L2(Rd), then L is a frame (respectively, tight frame

or Parseval frame) wavelet set.

We need the following definition in order to characterize wavelet sets and

Parseval frame wavelet sets.

Definition 11. Let K and L be two measurable subsets of R̂d. A partition of K is

a collection {Kl : l ∈ Z} of subsets of K such that
⋃
lKl and K differ by a set of

measure 0 and, for all l 6= j, Kl ∩Kj is a set of measure 0. If there exist a partition

{Kl : l ∈ Z} of K and a sequence {kl : l ∈ Z} ⊆ Zd such that {Kl + kl : l ∈ Z} is a

partition of L, then K and L are Zd-translation congruent. Similarly, if there exist a

partition {Kl : l ∈ Z} of K and a sequence {nl : l ∈ Z} ⊆ Z, where {2nlKl : l ∈ Z}

is a partition of L, then K and L are dyadic-dilation congruent.

The following proposition appears in [35].

Proposition 12. Let K ⊆ R̂d be measurable. The following are equivalent:

• K is a (Parseval frame) wavelet set.

• K is Zd-translation congruent to (a subset of) [0, 1)d, and K is dyadic-dilation

congruent to [−1, 1)d\[−1
2
, 1

2
)d.

•
{
K + k : k ∈ Zd

}
is a partition of (a subset of) R̂d and {2nK : n ∈ Z} is a

partition of R̂d.

10



2.1.3 Neighborhood mapping construction

An infinite iterative construction of wavelet sets, called the neighborhood map-

ping construction, is given by Leon, Sumetkijakan, and Benedetto in [14], [12], and

[8]. See also [98], [6], and [93]. In dimensions d ≥ 2, the example wavelet sets K

formed by this process are fractal-like but not fractals. Following a question by E.

Weber, the authors proved that the sets (Km\Am) they defined, formed after a finite

number of steps of the neighborhood mapping construction, are actually Parseval

frame wavelet sets.

We shall require the following definition and theorem from [14].

Definition 13. Let K0 be a bounded neighborhood of the origin in R̂d. Assume that

K0 is Zd-translation congruent to [0, 1]d. Let S be a measurable map S : R̂d → R̂d

satisfying the following properties:

• S is a Zd-translated map, i.e.,

∀γ ∈ Rd, ∃kγ ∈ Zd such that S(γ) = γ + kγ;

• S is injective;

• The range of S − I is bounded, where I is the identity map on Rd;

•
[
∪∞k=1S

k(K0)
]
∩ [∪∞n=02−nK0] = ∅, where S0 = I and Sk ≡ S ◦ · · · ◦ S︸ ︷︷ ︸

k-fold

.

For each m ∈ N ∪ {0} define

Am = Km ∩ [
⋃∞
n=1 2−nKm] ,

Km+1 = (Km\Am) ∪ S(Am),

and K = [K0\
⋃∞
m=0Am] ∪

[⋃∞
m=0

(
S(Am)\

⋃
n>mAn

)]
.
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This process is the neighborhood mapping construction. Loosely speaking, K is the

limit of the Km.

Theorem 14. Let K be defined by the neighborhood mapping construction. K is a

wavelet set. Further, for each m ≥ 0, Km\Am is a Parseval frame wavelet set.

These frame wavelet sets are finite unions of convex sets. The delicate, com-

plicated shape of an orthonormal wavelet set K constructed in [14] makes it difficult

to use natural methods with which to smooth it. It is for this reason that we shall

deal with frame wavelets and with the smoothing of 1̌L, where L is a Km\Am. We

shall use the following collection of sets in Section 2.2.

Example 15. Let

K0 =

[
−1

2
,
1

2

)d
and S(γ1, · · · , γd) = (γ1 + 2 sign(γ1), · · · , γd + 2 sign(γd)).

When d = 1, the resulting K is the Journé wavelet set.

It should be mentioned that Merrill [84] has recently found examples of or-

thonormal wavelet sets for d = 2 which may be represented as finite unions of 5

or more convex sets. She uses the generalized scaling set technique from [6]. It

is unknown if the construction can be used for d > 2. Moreover, the question of

existence of orthonormal wavelet sets in R̂d for d > 2, which are the finite union

of convex sets, is still an open problem. Furthermore, in [14], it is shown that a

wavelet set in R̂d can not be decomposed into a union of d or fewer convex sets. It

is possible that this bound is not sharp for d = 2; that is, it is still not known if

there exists a wavelet set in R̂2 which may be written as the union of 3 or 4 convex

sets.

12



2.1.4 Outline and results

We shall smooth Parseval wavelet sets L by convolving 1L with auxiliary

functions to obtain ψ̂ and consider the properties of W(ψ). In many cases, the

resulting W(ψ) is a frame. In Section 2.2, we develop methods to estimate the

resulting frame bounds. We apply those methods to a canonical example in Section

2.3. However, we see in Section 2.4 that there exists a Parseval wavelet set L such

that W((1L ∗ m
2
1[− 1

m
, 1
m

])
∨) is not a frame for any m > 0. Later in Section 2.4, we

introduce the shrinking method, with which we modify the preceding example to

obtain a frame. This method may be used to modify Parseval frame wavelets sets

in such a way that they may be smoothed using our techniques or other methods,

like those in [63]. Section 2.5 contains Theorems 44 and 48, which show that frame

bound gaps occur with many wavelet sets. In fact, for certain Parseval frame wavelet

sets L and approximate identities {kλ}, the system W((1L ∗ kλ)∨) does not have

frame bounds that converge to 1 as λ→∞, even though, for all 1 ≤ p <∞,

lim
λ→∞
‖1L ∗ kλ − 1L‖Lp(bRd) = 0.

Furthermore, when we smooth a specific class of Parseval frame wavelet sets Ld ⊆ R̂d

with certain approximate identities kλ,d = ⊗di=1kλ, the corresponding upper frame

bounds increase and converge to 2 as d→∞.
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2.2 Frame bounds and approximate identities

2.2.1 Approximating frame bounds

In this section we give several methods, mostly well-known, to evaluate frame

bounds. Our goal is to manipulate Parseval frame wavelet set wavelets on the

frequency domain in order to construct frames with faster temporal decay than the

original Parseval frames.

Remark 16. The following calculation and ones similar to it are commonly used

to prove facts about frame wavelet bounds. Define Qn = [0, 2−n]d and T = R/Z.

Using the Parseval-Plancherel theorem on both Rd and Td as well as a standard L1

periodization technique, we let ψ ∈ L2(Rd) and have the following calculation:

∀f ∈ L2(R),
∑
n∈Z

∑
k∈Zd
|〈f,DnTkψ〉|2 =

∑
n∈Z

∑
k∈Zd

∣∣∣〈f̂ , D−nM−kψ̂〉∣∣∣2

14



=
∑
n∈Z

∑
k∈Zd

∣∣∣〈f̂ , DnMkψ̂〉
∣∣∣2

=
∑
n∈Z

∑
k∈Zd

∣∣∣∣∫ f̂(γ)2dn/2e2πik·2nγψ̂(2nγ)dγ

∣∣∣∣2

=
∑
n

2dn
∑
k

∣∣∣∣∣
∫
Qn

∑
l∈Zd

f̂(γ + 2−nl)e2πik·2n(γ+2−nl)ψ̂(2nγ + l)dγ

∣∣∣∣∣
2

=
∑
n

∫
Qn

∣∣∣∣∣∑
l

f̂(γ + 2−nl)ψ̂(2nγ + l)

∣∣∣∣∣
2

dγ

=
∑
n

∫
Qn

∑
l

∑
k∈Zd

f̂(γ + 2−nl)ψ̂(2nγ + l)f̂(γ + 2−nk)ψ̂(2nγ + k)dγ

=
∑
n

∫ ∑
k

f̂(γ)f̂(γ + 2−nk)ψ̂(2nγ)ψ̂(2nγ + k)dγ (2.1)

=

∫ ∣∣∣f̂(γ)
∣∣∣2∑

n

∣∣∣ψ̂(2nγ)
∣∣∣2 dγ +

∫ ∑
n

∑
k 6=0

f̂(γ)f̂(γ + 2−nk)ψ̂(2nγ)ψ̂(2nγ + k)dγ.

(2.2)

Here, (2.1) and (2.2) are formally computed, but the calculations will be justified

when they are used later in the thesis. To simplify notation, we define

F (f) =

∫ ∣∣∣f̂(γ)
∣∣∣2∑

n

∣∣∣ψ̂(2nγ)
∣∣∣2 dγ+

∫ ∑
n

∑
k 6=0

f̂(γ)f̂(γ + 2−nk)ψ̂(2nγ)ψ̂(2nγ+k)dγ.

(2.3)

We would like to find explicit upper and lower bounds of F (f) in terms of ‖f‖2.

Clearly, these bounds correspond to frame bounds for the systemW(ψ). Specifically,

if W(ψ) has frame bounds A, B, then

A = inf
‖f‖2=1

F (f) and B = sup
‖f‖2=1

F (f).

Consequently, if f ∈ L2
(
Rd
)

has unit norm, then A ≤ F (f) ≤ B.

Calculations such as these play a basic role in proving the following well-known

theorem ([36], [24]) and its variants.
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Theorem 17. Let ψ ∈ L2(R̂d), and let a > 0 be arbitrary. Define

µψ(γ) =
∑
k∈Zd

∑
n∈Z

∣∣∣ψ̂ (2nγ) ψ̂ (2nγ + k)
∣∣∣ and

Mψ = esssupγ∈bRd µψ(γ) = esssupa≤‖γ‖≤2a µψ(γ).

If Mψ <∞, then W (ψ) is a Bessel sequence with upper frame bound B, and Mψ ≥

B. Similarly, define

νψ(γ) =
∑
n∈Z

∣∣∣ψ̂ (2nγ)
∣∣∣2 −∑

k 6=0

∑
n∈Z

∣∣∣ψ̂ (2nγ) ψ̂ (2nγ + k)
∣∣∣ and

Nψ = essinfγ∈bRd νψ(γ) = essinfa≤‖γ‖≤2a νψ(γ).

If Nψ > 0, then W (ψ) is a frame with lower frame bound A ≥ Nψ.

We refer to Mψ and Nψ as the Daubechies-Christensen bounds. Christensen

proved Theorem 17 for functions ψ ∈ L2(R), but his proof extends to L2(Rd) with

only minor modifications. Chui and Shi proved necessary conditions for a wavelet

system in L2(R) to have certain frame bounds, [27]. Jing extended this result to

L2(Rd) for d ≥ 1, [72].

Proposition 18. Define κψ(γ) =
∑

n∈Z

∣∣∣ψ̂ (2nγ)
∣∣∣2. If W(ψ) is a wavelet frame for

L2(Rd) with bounds A and B, then, for almost all γ ∈ R̂d,

A ≤ κψ(γ) ≤ B.

Define Kψ = esssupγ∈bRd κψ(γ) and Kψ = essinfγ∈bRd κψ(γ)

We may combine the previous two results to obtain the following corollary.

Corollary 19. Let ψ ∈ L2(Rd). Let a > 0 be arbitrary. If Mψ < ∞, then W(ψ)

is a Bessel sequence with bound B satisfying Kψ ≤ B ≤ Mψ. If, further, Nψ > 0,

then W(ψ) is a frame with lower frame bound A satisfying Nψ ≤ A ≤ Kψ.
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Many of the ψ that we mention in this thesis are continuous. In these cases,

we shall simply calculate the supremum and infimum of κψ, rather than the essential

supremum and essential infimum.

2.2.2 Approximate Identities

Definition 20. An approximate identity is a family {k(λ) : λ > 0} ⊆ L1(Rd) of

functions with the following properties:

i. ∀λ > 0,
∫
k(λ)(x)dx = 1;

ii. ∃K such that ∀λ > 0, ‖k(λ)‖L1(Rd) ≤ K;

iii. ∀η > 0, limλ→∞
∫
‖x‖≥η |k(λ)(x)|dx = 0.

The following result is well-known, e.g., [9], [48], [94].

Proposition 21. Suppose k ∈ L1(Rd) satisfies
∫
k(x)dx = 1. Define the family,

{kλ : kλ(x) = λdk(λx), λ > 0},

of dilations. Then, the following assertions hold.

a. {kλ} is an approximate identity;

b. If f ∈ Lp(Rd) for some 1 ≤ p <∞, then limλ→∞ ‖f ∗ kλ − f‖Lp(Rd) = 0;

c. If k is an even function, there exists a subsequence {λm} of {λ} such that

lim
m→∞

∫
f(u)Txkλm(u)du = f(x) a.e. x ∈ Rd.

17



Proof. a. To verify the condition of Definition 20.i, we compute∫
kλ(x)dx = λd

∫
k(λx)dx =

∫
k(u)du = 1.

For part ii we compute∫
|kλ(x)|dx = λd

∫
|k(λx)|dx =

∫
|k(u)|du = K <∞,

where K is finite since k ∈ L1(Rd). For part iii, take η > 0 and compute∫
‖x‖≥η

|kλ(x)|dx = λd
∫
‖x‖≥η

|k(λx)|dx =

∫
‖u‖≥λη

|k(u)|du;

this last term tends to 0 as λ tends to ∞ since η > 0 and because of the

definition of the integral.

b. Setting w = λu, we have

f ∗ kλ(x)− f(x) =

∫
[f(x− u)− f(x)] kλ(u)du

=

∫ [
f(x− w

λ
)− f(x)

]
k(w)dw

=

∫ [
Tw
λ
f(x)− f(x)

]
k(w)dw.

Apply Minkowsi’s inequality for integrals:

‖f ∗ kλ − f‖p ≤
∫
‖Tw

λ
f − f‖p|k(w)|dw.

As ‖Tw
λ
f − f‖p is bounded by 2‖f‖p and tends to 0 as λ→∞ for each w, the

assertion follows from the dominated convergence theorem.

c. The last part follows from the evenness of k.∫
f(u)Txkλm(u)du =

∫
f(u)kλm(u−x)du =

∫
f(u)kλm(x−u)du = f∗kλm(x).

18



We shall use approximate identities on R̂d. The following notation will stream-

line our arguments.

Proposition 22. Fix a non-negative, compactly supported, bounded, even function

k : R̂d → C with the property that
∫
k(γ)dγ = 1. Then, k ∈ L1 ∩ L2(R̂d) and the

results of Proposition 21 hold. For ω ∈ R̂d and α > 0, define gλ,α,ω ∈ L2(R̂d) by

gλ,α,ω =
√
αTωkλ. If α = 1, we write gλ,ω = gλ,1,ω. Note that ‖gλ,ω‖2 = 1 for all

λ, ω.

The following 2 propositions may be seen as special cases of Proposition 18.

Our results in this subsection require more hypotheses than the results just ref-

erenced, but the proofs are decidedly less technical, requiring fewer analytic esti-

mates, and they also give greater insight as to why these bounds are valid. Fur-

thermore, methods used later in the thesis which improve the bound estimates

provided by Corollary 19 are inspired by these proofs. Recall the function κψ(γ) =∑
n∈Z

∣∣∣ψ̂(2nγ)
∣∣∣2.

Proposition 23. Let ψ ∈ L2(Rd) be a function with non-negative Fourier transform.

Further, assume that κψ(γ) ∈ Lp(R̂d) for some 1 ≤ p ≤ ∞. If W(ψ) is a Bessel

sequence with upper frame bound B, then κψ(γ) ∈ L∞(Rd) and B ≥ Kψ.

Proof. We have assumed ψ̂(γ) ≥ 0 for all γ ∈ R̂d. For any f ∈ L2(Rd) with non-

negative Fourier transform, lines (2.1) and (2.2) hold by the Tonelli theorem, and

we have

F (f) ≥
∫ ∣∣∣f̂(γ)

∣∣∣2 κψ(γ)dγ.
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Thus, for a fixed ω ∈ R̂d,

F (ǧλ,ω) ≥
∫
Tωkλ(γ)κψ(γ)dγ. (2.4)

By Proposition 21, there exists a subsequence {λm} of {λ} such that the right hand

side of (2.4) approaches κψ(ω) as m → ∞ for almost every ω. Since B ≥ F (ǧλ,ω)

for all λ and ω, B ≥ esssupω∈bRd κψ(ω).

Proposition 24. Let ψ ∈ L2(Rd) be a function for which supp ψ̂ is compact and

dist(0, supp ψ̂) > 0. Further, assume that ψ̂ ∈ L∞(R̂d). IfW(ψ) is a Bessel sequence

with upper frame bound B, then B ≥ Kψ.

Proof. Since ψ̂ ∈ L∞(R̂d) and the support of ψ̂ is bounded and of positive distance

from the origin, we have κψ(γ) ∈ L∞(R̂d). Thus, we may use Proposition 21. Fur-

thermore, the sums in lines (2.1) and (2.2) are finite due to the support hypothesis

and thus the calculations are justified. Fix a point ω ∈ R̂d. As in the preceding

proof, we would like to ignore the cross terms of F (ǧλ,ω) in order to obtain the

desired result. We shall prove that the cross terms disappear for certain λ. If ω 6= 0,

since supp ψ̂ is bounded, there exists an N ∈ Z and a neighborhood N of ω such

that ψ̂(2nγ) = 0 for all n > N and all γ ∈ N .

As λ increases, the support of gλ,ω decreases. Hence, let L1 have the property

that supp(gL1,ω) ⊆ N . For all λ > L1, n < N , and γ ∈ R̂d, we have

gλ,ω(γ)ψ̂(2nγ) = 0. (2.5)

On the other hand, choose an L2 > 0 large enough so that for all −n ≥ N , λ ≥ L2,

and l ∈ Zd, we have

supp gλ,ω
⋂

suppT−2−nlgλ,ω = ∅.
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Set L̃ = max{L1, L2}. Then, for any λ > L̃, n ∈ Z, and γ ∈ R̂d,

gλ,ω(γ)gλ,ω(γ + 2−nl)ψ̂(2nγ)ψ̂(2nγ + l) = 0.

Thus for λ > L̃,

F (ǧλ,ω) =

∫
Tωkλ(γ)κψ(γ)dγ.

Letting a certain subsequence of λ get larger, we obtain B ≥ κψ(ω) for almost every

ω. Thus, B ≥ esssupω∈bRd κψ(ω).

2.3 A canonical example

For this section, let L =
[
−1

2
,−1

4

)
∪
[

1
4
, 1

2

)
, which is K0\A0 from the 1-d Journé

construction; see Example 15.

Example 25. We shall compute some Bessel bounds.

a. W(1∨L) is a Parseval frame. Smooth 1L by defining ψ̂ = 1L ∗ 81[− 1
16
, 1
16

]. We

would like to determine if W(ψ) is a Bessel sequence and, if so, to determine

its upper frame bound. We compute Kψ = 17
16

. Within the dyadic interval[
9
32
, 9

16

)
this supremum occurs at 7

16
. Also, Mψ = 17

16
, where the supremum

occurs at the same point. Thus, by Corollary 19, the upper frame bound of

W(ψ) is 17
16

.

b. Similarly, if ψ̂ = 1[− 1
2
, 1
2

)2\[− 1
4
, 1
4

)2 ∗ 641[− 1
16
, 1
16

]2 , then the upper frame bound of

W(ψ) is 305
256

.

Example 26. Once again, let ψ̂ = 1L ∗ 81[− 1
16
, 1
16

].
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a. We have that Kψ = 9
20

and Nψ = 2
9
. It now follows from Corollary 19 that

W is a frame with lower frame bound A, satisfying 2
9
≤ A ≤ 9

20
. We would

like to tighten these bounds around A. This is a delicate operation. For

this estimate, we shall use functions consisting of multiple spikes, scaled by

positive and negative numbers. We have that Kψ occurs at 21
40

within the

dyadic interval
[

9
32
, 9

16

)
. By symmetry, this infimum is also achieved at −21

40
.

Further,

sup
γ

∑
n

∑
l 6=0

ψ̂(2nγ)ψ̂(2nγ + l) =
1

4
.

This supremum occurs at ±1
2
. In order to compute the lower frame bound, we

need to minimize F (f), defined in (2.3), over all f ∈ L2(Rd). We shall refer

to the summands,

f̂(γ)f̂(γ + 2−nk)ψ̂(2nγ)ψ̂(2nγ + k),

in F (f) as cross terms. We would like to find an f̂ ∈ L2(R̂d) that allows us

to use the cross terms to mitigate the other terms as much as possible. Since

±21
40

is close to ±1
2
, one possibility is to set f̂λ = gλ, 1

2
, 1
2
− gλ, 1

2
,− 1

2
. The centers

of the bumps are chosen to be a distance 1 apart from each other so that the

cross terms do not disappear as λ gets larger, while the negative coefficient

is chosen so that the cross terms cancel out some of the other terms. For

large enough λ, supp(gλ, 1
2
, 1
2
)∩ supp(gλ, 1

2
,− 1

2
) = ∅. We may always rescale the k

which generates the gλ, 1
2
,± 1

2
so that these supports are disjoint for all λ. Thus,

without loss of generality, assume that the supports are disjoint for all λ. We
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have
∣∣∣f̂λ∣∣∣2 = 1

2
T 1

2
kλ + 1

2
T− 1

2
kλ. Also,

f̂λ(γ)f̂λ(γ + 1) = −1

2
T 1

2
kλ(γ)

and f̂λ(γ)f̂λ(γ − 1) = −1

2
T− 1

2
kλ(γ).

These equalities rely on the evenness of the kλ. For an appropriate subsequence

λ`, it is true that

F (fλ`) →
1

2

{∑
n

[∣∣∣∣ψ̂(2n
1

2
)

∣∣∣∣2 +

∣∣∣∣ψ̂(2n
(
−1

2

)
)

∣∣∣∣2
]

−
∑
n

∑
l 6=0

[
ψ̂(2n

1

2
)ψ̂(2n

1

2
+ l) + ψ̂(2n

(
−1

2

)
)ψ̂(2n

(
−1

2

)
+ l)

]}
=

1

4

as `→∞. Thus, the lower frame bound A of ψ is bounded above by 1
4
.

b. Can we use similar methods to tighten this lower frame bound estimate? For

example, although the maximum of the cross terms occurs at 1
2
, the minimum

of the remaining terms occurs at 21
40

. Perhaps it would be better to consider

f̂λ = gλ, 1
2
, 21
40
−gλ, 1

2
,− 19

40
. Further, values of α different from 1

2
might yield better

results. Actually, neither of these options changes the results. If we choose

0 < α < 1 and ω ∈ [ 7
16
, 9

16
) and set f̂λ = gλ,α,ω − gλ,1−α,1−ω, then the minimum

bound obtained for A using the same method as in part a is 1
4
. We note that

ω must be chosen from the interval
[

7
16
, 9

16

)
(or the reflection of the interval to

the negative R axis) because that is the only region in the support of ψ̂ where,

for γ lying in that region, ψ̂(γ)ψ̂(γ + l) is non-zero for any l ∈ Z\{0}.

c. Recalling that the Daubechies-Christensen bound is 2
9
, we conclude that the

lower frame bound satisfies 2
9
≤ A ≤ 1

4
.
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This method of fine tuning lower frame bounds is difficult to generalize.

A natural idea that arises when attempting to obtain Parseval frames with

frequency smoothness is to use elements of an approximate identity to convolve

with 1L in order to obtain W(ψ) with frame bounds A and B which are arbitrarily

close to 1, specifically using an approximate identity, {φm}, that consists of the

dilations of a non-negative function φ with L1-norm 1. We know that 1L ∗ φm

converges to 1L in Lp, 1 ≤ p < ∞. Thus, there is a subsequence which converges

almost everywhere to 1L. However, one may think that the corresponding frame

bounds converge to 1, but this does not happen.

Proposition 27. Consider the approximate identity {φm = m
2
1[− 1

m
, 1
m

] : m > 12}.

Although 1L ∗φm → 1L in Lp, 1 ≤ p <∞, the upper frame bounds of W((1L ∗φm)∨)

are all 17
16

, and the lower frame bounds are bounded between 2
9

and 1
4
.

Proof. For m > 12, we initially calculate

1L ∗ φm(γ) =



0 for γ < −1
2
− 1

m

−m
2

(−γ − 1
2
− 1

m
) for −1

2
− 1

m
≤ γ < −1

2
+ 1

m

1 for −1
2

+ 1
m
≤ γ < −1

4
− 1

m

n
2
(−γ − 1

4
+ 1

m
) for −1

4
− 1

m
≤ γ < −1

4
+ 1

m

0 for −1
4

+ 1
m
≤ γ < 1

4
− 1

m

m
2

(γ − 1
4

+ 1
m

) for 1
4
− 1

m
≤ γ < 1

4
+ 1

m

1 for 1
4

+ 1
m
≤ γ < 1

2
− 1

m

−m
2

(γ − 1
2
− 1

m
) for 1

2
− 1

m
≤ γ < 1

2
+ 1

m

0 for 1
2

+ 1
m
≤ γ
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Let ψ̂m = 1L ∗ φm. Just as above, we then calculate κψm(γ). Because of symmetry,

we only need to calculate κψm over the positive dyadic interval
[

1
4

+ 1
2m
, 1

2
+ 1

m

]
.

κψm(γ) =



(
m2

4

) (
γ2 +

(
2
m
− 1

2

)
γ +

(
1
16
− 1

2m
+ 1

m2

))
for 1

4
+ 1

2m
≤ γ < 1

4
+ 1

m

1 for 1
4

+ 1
m
≤ γ < 1

2
− 2

m(
m2

4

) (
1
4
γ2 +

(
1
m
− 1

4

)
γ +

(
1
16
− 1

2m
+ 5

m2

))
for 1

2
− 2

m
≤ γ < 1

2
− 1

m(
m2

4

) (
5
4
γ2 −

(
5
4

+ 1
m

)
γ +

(
5
16

+ 1
2m

+ 2
m2

))
for 1

2
− 1

m
≤ γ < 1

2
+ 1

m

The maximum value of g is 17
16

and occurs at 1
2
− 1

m
. So the upper frame bound of

W(ψm) is at least 17
16

. We now calculate (µψm−κψm)(γ) =
∑

n

∑
l 6=0

∣∣∣ψ̂m(2nγ)ψ̂m(2nγ + l)
∣∣∣

over the same interval and obtain

(µψm − κψm)(γ) =


0 for 1

4
+ 1

2m
≤ γ < 1

2
− 1

m(
m2

4

) (
−γ2 + γ +

(
−1

4
+ 1

m2

))
for 1

4
+ 1

2m
≤ γ < 1

4
+ 1

m

The upper frame bound of W(ψm) is bounded above by Mψm = supγ(κψm(γ) +

(µψm − κψm)(γ)), which is also 17
16

. Hence W(ψm) has upper frame bound 17
16

for

every m ≥ 12. Now consider

Nψm = inf
γ

(κψm(γ)− (µψm − κψm)(γ)) =
2

9
.

By Theorem 17, W(ψm) is a frame with lower frame bound A ≥ 2
9
. If we now

calculate F ((gλ, 1
2
, 1
2
− gλ, 1

2
,− 1

2
)∨), as in Example 26, we obtain A ≤ 1

4
.

One may hope to improve the frame bounds of the smooth frame wavelets,

e.g., by bringing both of the bounds closer to 1, by convolving with a linear spline.

The following proposition shows that, in this case, the resulting upper frame bound

is closer to 1, than for the case of Proposition 27, but that it also constant for large
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enough m. Further, in the limit, there is a positive gap between upper and lower

frame bounds.

Proposition 28. Consider the approximate identity {φm : m > 12}, where φm(γ) =

max(m(1 − m|γ|), 0), γ ∈ R̂. Although 1L ∗ φm → 1L pointwise a.e. and in Lp,

1 ≤ p < ∞, the upper frame bounds of W((1L ∗ φm)∨) are all 65
64

, and the lower

frame bounds are bounded between 2
9

and 1
4
.

Proof. Let ψ̂m = 1L ∗φm. By utilizing basic methods of optimization from calculus,

we evaluate

Kψm = Mψm =
65

64
.

It follows from Corollary 19 that the upper frame bound of W(ψm) is equal to 65
64

,

independent of which m > 12 is used.

As in Example 26, set f̂λ = gλ, 1
2
, 1
2
− gλ, 1

2
,− 1

2
. Then, we can verify that there

exists a subsequence λ` such that

F (fλ`) →
1

2

{∑
n

[∣∣∣∣ψ̂(2n
(

1

2

)
)

∣∣∣∣2 +

∣∣∣∣ψ̂(2n
(
−1

2

)
)

∣∣∣∣2
]

−
∑
n

∑
l 6=0

[
ψ̂(2n

(
1

2

)
)ψ̂(2n

(
1

2

)
− l) + ψ̂(2n

(
−1

2

)
)ψ̂(2n

(
−1

2

)
− k)

]}
=

1

4
,

as `→∞. Also, the lower Daubechies-Christensen bound is 2
9
, yielding the desired

bounds on the lower frame bound.

We shall call the phenomenon which occurs in Propositions 27 and 28 a frame

bound gap. The results presented in this section prompt the following questions,

which we address in Sections 2.4 and 2.5.
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• Do we obtain a frame when we try to smooth K1\A1 from the 1-d Journé

neighborhood mapping construction?

• Can we ever precisely determine the lower frame bound?

• What happens when we smooth K0\A0 from higher dimensional Journé con-

structions?

• Does a frame bound gap occur for other wavelet sets and other approximate

identities?

2.4 A shrinking method to obtain frames

2.4.1 The shrinking method

When we try to smooth 1L for other sets L obtained using the neighborhood

mapping constrution, we do not necessarily obtain a frame.

Example 29. Let

L =

[
−9

4
,−2

)
∪
[
−1

2
,− 9

32

)
∪
[

9

32
,
1

2

)
∪
[
2,

9

4

)
,

which is K1\A1 from the neighborhood mapping construction of the 1-d Journé set

(Example 15). For m ∈ N, define ψ̂m = 1L ∗ m2 1[− 1
m
, 1
m

]. ThenW(ψm) is not a frame

for any m. This can be shown by considering F ((gλ, 1
2
, 1
2
− gλ, 1

2
,− 1

2
)∨) for arbitrarily

large λ, just as in Example 26. Specifically, a subsequence of F ((gλ, 1
2
, 1
2
− gλ, 1

2
,− 1

2
)∨)

converges to 0, while each gλ, 1
2
, 1
2
− gλ, 1

2
,− 1

2
has unit norm. However, for arbitrary

m, W(ψm) is a Bessel sequence, and for any m > 64, the Bessel bound is bounded
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between 305
256

and 11
8

. Again, we see that the upper frame bound does not converge

to 1.

It seems reasonable to assume that smoothing 1L in Example 29 with a linear

spline may yield a frame; however, the following example shows that this does not

happen.

Example 30. Let

L =

[
−9

4
,−2

)
∪
[
−1

2
,− 9

32

)
∪
[

9

32
,
1

2

)
∪
[
2,

9

4

)
,

and for m > 64, let φm be the linear spline φm(γ) = max(m(1 − m|γ|), 0). Set

ψ̂ = 1L ∗ φm. Then, using Mathematica we obtain

Mψ =
41

32
≈ 1.28125

Kψ ≈ 1.14833

Kψ ≈ 0.38092

Nψ = 0.

In fact, for some subsequence {λ`},

F ((gλ`, 12 ,
1
2
− gλ`, 12 ,− 1

2
)∨)→ νψ(2) = 0

If W(ψ) formed a frame, then it would have a lower frame bound 0 = Nψ ≤ A ≤

νψ(2) = 0. Thus W(ψ) is not a frame, but it is a Bessel sequence with upper frame

bound 1.14833 ≤ B ≤ 1.28125.

We would not only like to construct frames, but also to determine the exact

lower frame bound of such a frame rather than a range of possible values. The

following definitions and theorem will help us do that.

28



Definition 31. For any measurable subset L ⊆ R̂d define

∆(L) = dist
(
L,

⋃
k∈Zd\{0}

(L+ k)
)
.

Definition 32. If f is a function R̂d → R, define f+ = |f |+f
2

. For ε ≥ 0, define

suppε f = supp(f(·)− ε)+.

Essentially, suppε f returns the regions over which f takes values greater than

ε. Notice that supp f = supp0 |f |.

Theorem 33. Let ψ̂ ∈ L∞c (R̂d) be a non-negative function. If there exists an ε > 0

such that for L = suppε ψ̂,
⋃
n∈Z 2nL = R̂d up to a set of measure 0, and for

L̃ = supp ψ̂, ∆(L̃) > 0, and dist(0, L̃) > 0. Then, W(ψ) is a frame for L2(Rd). The

frame bounds are essinfγ κψ(γ) and esssupγ κψ(γ).

Remark 34. If the L ⊆ R̂d is a Parseval frame wavelet set and the closure L ⊆

(−1
2
, 1

2
)d, then ψ̂ = 1L and 0 < ε < 1 satisfy the hypotheses with L = L̃.

Proof. We first note that since ψ̂ is compactly supported and bounded, it lies in

L2(R̂d). Thus ψ ∈ L2(Rd). We now prove that W(ψ) is a frame. Since ∆(L̃) > 0,

∀γ ∈ R̂d
∑
n∈Z

∑
k 6=0

∣∣∣ψ̂(2nγ)ψ̂(2nγ + k)
∣∣∣ = 0. (2.6)

So

Mψ = Kψ.

By assumption, ψ̂ is bounded. Furthermore, since dist(0, L̃) > 0 and L̃ is bounded,

for any γ ∈ R̂d, ψ̂(2nγ) is non-zero for only finitely many n ∈ Z. Putting these two
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facts together, we conclude that

Kψ <∞.

Similarly,

Nψ = Kψ.

Since dyadic dilations of L cover R̂d, for almost every γ ∈ R̂d, there exists n ∈ Z

such that 2nγ ∈ L, which implies that ψ̂(2nγ) > ε. Thus essinfγ∈bRd κψ(γ) > 0.

Thus, by Corollary 19, W(ψ) is a frame with bounds A and B which satisfy

A = Kψ

and B = Kψ.

A statement very similar to the preceding theorem appears camouflaged (through

a number of auxiliary functions) as Theorem 8 in [26].

Remark 35. Let ψ ∈ L2(R) satisfy the hypotheses of Theorem 33. Then for

C = max{A−1, B} and almost all γ ∈ R̂

0 < C−1 ≤ κψ(γ) ≤ C <∞.

Furthermore, it follows from line (2.6) that for almost all γ ∈ R̂,

ψ̂ (2nγ)ψ̂ (2nγ + 2nk) = 0 ∀k ∈ Z\2Z , k ∈ N ∪ {0}.

Thus, by Proposition 2.2 of [37], if S : L2(R̂)→ L2(R̂) is the frame operator defined

as

Sf =
∑
n∈Z

∑
k∈Zd
〈f,DnTkψ〉DnTkψ,

then S is translation invariant. That is, for all x ∈ R, STx = TxS as operators.
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Corollary 36. Let L be a Parseval frame wavelet set from the neighborhood mapping

construction. Let δ = dist(0, L) > 0. Let α > 0 be such that the closure αL ⊆

(−1
2

+ ε, 1
2
− ε)d, for some 0 < ε < 1

2
. Further let φ be an essentially bounded

non-negative function such that suppφ ⊆ min{αδ
2
, ε} · (−1, 1)d and suppφ contains

a neighborhood about the origin. Then if ψ̂ = 1αL ∗ φ, W(ψ) is a frame for L2(Rd).

Proof. Define L̃ = supp ψ̂. Since suppφ contains a neighborhood about the origin,

φ is non-negative, and ψ̂ is continuous, there exists an ε > 0 such that

αL ⊆ ψ̂−1(ε,∞).

Thus, for this ε,

R̂d = αR̂d = α
⋃
n∈Z

2nL ⊆
⋃
n∈Z

2n suppε ψ̂,

up to a set of measure zero. As the convolution of two essentially bounded functions

with compact support, ψ̂ ∈ L∞ immediately. It follows from Theorem 33 thatW(ψ)

is a frame for L2(Rd).

Example 37. Let

L =

[
− 9

32
,−1

4

)
∪
[
− 1

16
,− 9

256

)
∪
[

9

256
,

1

16

)
∪
[

1

4
,

9

32

)
.

Then L is K1\A1 from the 1-d Journé construction, shrunk by a factor of 8. Further

let ψ̂m = 1L ∗ m
2
1[− 1

m
, 1
m

]. Then for any m ≥ 384, W(ψm) is frame with bounds 81
260

and 305
256

. Note that W((18L ∗ m
2
1[− 1

m
, 1
m

])
∨) is not a frame for any m > 0 (Example

29).

Example 38. Let La =
[
−a,−a

2

)
∪
[
a
2
, a
)

for 0 < a < 1
2
. Then La is

[
−1

2
,−1

4

)
∪[

1
4
, 1

2

)
from the 1-d Journé construction, dilated by a factor of 2a < 1. Recall from
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Proposition 27 that

W((1[− 1
2
,− 1

4)∪[ 1
4
, 1
2) ∗

m

2
1[− 1

m
, 1
m

))
∨)

is a frame with upper frame bound 17
16

and lower frame bound between 2
9

and 1
4
.

Define ψ̂m,a = 1La ∗ m2 1[− 1
m
, 1
m

]. For 0 < a < 1
2

and m ≥ max{ 2
1−2a

, 6
a
}, W(ψm,a) is a

frame with with frame bounds 9
20

and 17
16

.

It follows from the calculations in Example 26 that the lower frame bound

of W(ψm, 1
2
) is bounded above by 1

4
, while the shrinking process brings the lower

frame bound up to 9
20

, for W(ψm,a), 0 < a < 1
2
. Corollary 19, which is based on

previously known results, only implies that the lower frame bound of W(ψm, 1
2
) is

bounded between 2
9

and 9
20

. Thus without the methods introduced in Example 26,

we would not know that the shrinking method actually improves the lower frame

bound.

Further note that 17
16
< 305

256
and 9

20
> 81

260
. Thus the frame bounds corresponding

to shrinking K0\A0 from the 1-d Journé construction are closer to 1 than the bounds

obtained by shrinking K1\A1 in the Example 37.

2.4.2 Oversampling

Corollary 36 yields an easy method to obtain wavelet frames with certain

decay properties from Parseval frame wavelet sets. It almost seems counterintuitive

to believe that simply shrinking the support of the frequency domain can change

a function which is not a frame generator into a function that is one. Although

we have proven that this does indeed happen, we now give a heuristic argument
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that this method should work for dyadic-shrinking. If the collection {DnTkψ :

n ∈ Z, k ∈ Zd} ⊆ L2(Rd) is a Bessel sequence, then it is not a frame if and

only if there exists a sequence {fm : ‖fm‖2 = 1,m ∈ Z} ⊆ L2(Rd) such that

limm→∞
∑

n∈Z
∑

k∈Zd |〈fm, DnTkψ〉|2 = 0. Having a positive lower frame bound is

a stronger condition than being complete. However, if we add more elements to

{DnTkψ : n ∈ Z, k ∈ Zd}, it is more likely that the system will be complete and

thus also more likely that it will have a lower frame bound. We would like to show

that shrinking the support of ψ̂ will add more elements to the system. For α > 0

and ψ ∈ L2(Rd), let ϕ̂(γ) = ψ̂(αγ). Then Fϕ = α−d/2Dlog2 αFψ,

⇒ ϕ = F−1Fϕ

= F−1(α−d/2Dlog2 αF)ψ

= F−1(α−d/2FD− log2 α)ψ

= α−d/2D− log2 αψ

⇒ DnTkϕ = α−d/2DnTkD− log2 αψ

= α−d/2Dn−log2 αT k
α
ψ.

Hence, if α = 2N , for N ∈ N,

span{DnTkϕ : n ∈ Z, k ∈ Zd} = span{DnT k

2N
ψ : n ∈ Z, k ∈ Zd}.

Thus, dyadic shrinking on the Fourier domain has the effect of increasing the size

of the system generated by dilations and translations by a power of 2. One may

call this an oversampling of the continuous wavelet system {Dlog2 rTsψ : r > 0, s ∈

R}. If L ⊆ R̂d is Parseval frame wavelet set and φ ∈ L∞c (R̂d), W ((1L ∗ φ)∨) is a
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Bessel sequence but perhaps not a frame (see Example 37). Hence, dyadic shrinking

increases the likelihood that W ((1L ∗ φ)∨) is complete and thus also the likelihood

that W ((1L ∗ φ)∨) has a positive lower frame bound. In general, shrinking by any

α > 1 has the effect of increasing the number of translations in the original wavelet

system and shifts each of the dilation operators by the same amount. We compare

and contrast our results with the following two oversampling theorems found in [26].

Theorem 39. Let W(ψ) be a frame for L2(R) with frame bounds A and B. Then

for every odd positive integer N , the family

{DnT k
N
ψ : n, k ∈ Z}

is a frame with bounds Ã and B̃ which satisfy Ã ≥ NA and B̃ ≤ NB.

Theorem 40. Let ψ ∈ L2(R) decay sufficiently fast and satisfy
∫
ψ(x)dx = 0. If

W(ψ) forms a frame, then for any positive integer N ,

{DnT k
N
ψ : n, k ∈ Z}

is a frame also.

Remark 41. The specific decay conditions in the hypothesis of Theorem 40 are

described in [26], but are too lengthy to list here. The smoothed frame wavelets

mentioned in this thesis all satisfy the decay conditions.

Only dyadic shrinking corresponds to oversampling in the Chui and Shi sense.

Oversampling may potentially create a frame system from a pre-existing frame sys-

tem, but we see in Example 37 that oversampling may change a non-frame system
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to a frame system. Furthermore, in Example 38 we see that oversampling can bring

frame bounds closer to 1, rather than just scaling them as in Theorem 39.

2.5 Frame bound gaps

Definition 42. Let ψ ∈ L2(R̂d) be a Parseval frame wavelet and {ψm}m∈N ⊆ L2(R̂d)

be a sequence of frame wavelets (or Bessel wavelets) with lower frame bounds Am

and upper frame bounds Bm (or just upper frame bounds Bm) for which

lim
m→∞

‖ψ − ψm‖L2(Rd) = 0.

If limm→∞Am < 1 or limm→∞Bm > 1, then there is a frame bound gap. By Parseval’s

equality, ‖ψ−ψm‖L2(Rd) = ‖ψ̂− ψ̂m‖L2(bRd), so it suffices to check for convergence on

the frequency domain.

Many examples of frame bound gaps occur in the previous sections. We shall

now prove that this phenomenon occurs in more general situations. First we make

a quick comment.

Remark 43. Let L ⊆ R̂d be bounded and measurable and g ∈ L1
loc(R̂d). For m > 1

define

g(m)(γ) = mg(mγ), and

ψ̂m = 1L ∗ g(m).
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Then

ψ̂m(u) =

∫
1L(u− γ)g(m)(γ)dγ

=

∫
1L(u− γ

m
)g(γ)dγ

=

∫
−mL+mu

g(γ)dγ.

Theorem 44. For 0 < a < 1/2, let L ⊆ R̂d be the Parseval frame wavelet set

[−a, a]d\[−a
2
, a

2
]d. Also let g : R̂d → R satisfy the following conditions:

i. supp g ⊆
∏d

i=1[−bi, ci], where for all i, bi, ci > 0 and supp0 g contains a neigh-

borhood of 0;

ii.
∫
g(γ)dγ = 1; and

iii. 0 <

∫
Qd
i=1[

ci
2
,ci]

g(γ)dγ < 1 and 0 <

∫
Qd
i=1[− bi

2
,ci]

g(γ)dγ < 1.

Define ψ̂m = 1L ∗ g(m). For any

m > max
1≤i≤d

{max

{
2(bi + ci)

a
,
bi + ci
1− 2a

,
4bi + ci

a
,
4ci + bi

a

}
},

W(ψm) is a frame with frame bounds Am and Bm, and there exist α < 1 and β > 1,

both independent of m, such that Am ≤ α and Bm ≥ β. In particular, there are

frame bound gaps.

Remark 45. Any non-negative function g : R̂d → R which integrates to 1 and has

support
∏d

i=1[−bi, ci] ⊇ supp g ⊇
∏d

i=1(−bi, ci) satisfies the hypotheses.

Remark 46. This result holds true if m ∈ N or m ∈ R.

Proof. Let m > max1≤i≤d{max{2(bi+ci)
a

, bi+ci
1−2a

, 4bi+ci
a

, 4ci+bi
a
}}.
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Since m > bi+ci
1−2a

, ∆(supp ψ̂m) > 0. Thus,

µψm(u) = νψm(u) = κψm(u),

where κψm is compactly supported. Further, for all 1 ≤ i ≤ d,

m >
2(bi + ci)

a
> max{2bi

a
,
2ci
a
},

so dist(0, supp ψ̂m) > 0. It follows from Theorem 33 and Corollary 19, that W(ψm)

is a frame with bounds Am = Kψm and Bm = Kψm .

As m > max1≤i≤d{max{4bi+ci
a

, 4ci+bi
a
}},

for u ∈
(∏d

i=1[−a− bi
m
, a+ ci

m
]
)
\
(∏d

i=1[−a
2
− bi

2m
, a

2
+ ci

2m
]
)

,

κψm(u) = (ψ̂m(u))2 + (ψ̂m(
u

2
))2, where

ψ̂m(u) =

∫
−mL+mu

g(γ)dγ.

To bound Bm, we evaluate κψm(v) where v = (a− b1
m
, a− b2

m
, . . . , a− bd

m
). We

first compute ψ̂m(v). Since [a
2
, a]d ⊆ L,

d∏
i=1

[−bi,
ma

2
− bi] ⊆ −mL+mv.

As m > 2(bi+ci)
a

for all 1 ≤ i ≤ d,
∏d

i=1[−bi, ci] ⊆
∏d

i=1[−bi, ma2 − bi]. Hence,

ψ̂m(v) =

∫
−mL+mv

g(γ)dγ =

∫
Qd
i=1[−bi,ci]

g(γ)dγ = 1.

We now compute ψ̂m(v
2
). Since m is sufficiently large, for 1 ≤ i ≤ d,

[−bi, ci] ∩ (−m[−a,−a
2

] +
m

2
(a− bi

m
)) = [−bi, ci] ∩ ([−ma

2
− bi

2
,−bi

2
])

= [−bi,−
bi
2

],
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[−bi, ci] ∩ (−m[−a
2
,
a

2
] +

m

2
(a− bi

m
)) = [−bi, ci] ∩ ([−bi

2
,ma− bi

2
])

= [−bi
2
, ci], and

[−bi, ci] ∩ (−m[
a

2
, a] +

m

2
(a− bi

m
)) = [−bi, ci] ∩ ([ma− bi

2
,
3ma

2
− bi

2
])

= ∅.

It follows that(
d∏
i=1

[−bi, ci]

)
∩
(
−mL+m(

v

2
)
)

=

(
d∏
i=1

[−bi, ci]

)
\

(
d∏
i=1

[−bi
2
, ci]

)
,

and that

ψ̂m(
v

2
) =

∫
−mL+m( v

2
)

g(γ)dγ = 1−
∫

Qd
i=1[− bi

2
,ci]

g(γ)dγ.

Define β = κψm(v) = 1 +
(

1−
∫Qd

i=1[− bi
2
,ci]
g(γ)dγ

)2

. Then, Bm ≥ κψm(v) = β > 1,

and β is independent of m.

Let ω = (a+ c1
m
, a+ c2

m
, . . . , a+ cd

m
). We shall show that κψm(ω) is strictly less

than 1. We compute

−mL+mω =

(
d∏
i=1

[ci, 2ma+ ci]

)
\

(
d∏
i=1

[
ma

2
+ ci,

3ma

2
+ ci]

)

⇒

(
d∏
i=1

[−bi, ci]

)
∩ (−mL+mω) = ∅.

Thus, ψ̂m(ω) = 0. Furthermore,

−mL+m(
ω

2
) =

(
d∏
i=1

[−ma
2

+
ci
2
,
3ma

2
+
ci
2

]

)
\

(
d∏
i=1

[
ci
2
,ma+

ci
2

]

)
.

It follows from our choice of m that for all 1 ≤ i ≤ d, −ma
2

+ ci
2
< −bi and

ci < ma+ ci
2
< 3ma

2
+ ci

2
. Hence,(

d∏
i=1

[−bi, ci]

)
∩ (−mL+m(

ω

2
)) =

(
d∏
i=1

[−bi, ci]

)
\

(
d∏
i=1

[
ci
2
, ci]

)
, and
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ψ̂m(
ω

2
) = 1−

∫
Qd
i=1[

ci
2
,ci]

g(γ)dγ.

We define

α = κψm(ω) =

(
1−

∫
Qd
i=1[

ci
2
,ci]

g(γ)dγ

)2

.

Consequently, Am ≤ α < 1 for all sufficiently large m.

Corollary 47. For 0 < a < 1
2
, let Ld ⊆ R̂d be the wavelet set [−a, a]d\[−a

2
, a

2
]d.

Also, let g : R̂→ R satisfy the following conditions:

i. supp g ⊆ [−b, c] for some b, c > 0 and supp0 g contains a neighborhood of 0;

ii.
∫
g(γ)dγ = 1; and

iii. 0 <
∫ c
c
2
g(γ)dγ < 1 and 0 <

∫ c
− b

2
g(γ)dγ < 1.

Define gd =
⊗d

i=1 g : R̂d → R. Further define ψ̂m,d = 1Ld ∗ gd(m)
. Then, for each

m > max{2(b+ c)

a
,
b+ c

1− 2a
,
4b+ c

a
,
4c+ b

a
},

and d ≥ 1, W(ψm,d) is a frame with bounds Am,d and Bm,d which satisfy

Am,d ≤

1−

(∫ c

c
2

g(γ)dγ

)d
2

< 1, and

Bm,d ≥

1−

(∫ c

− b
2

g(γ)dγ

)d
2

+ 1 > 1.

Also for such m, limd→∞Bm,d = 2.

Proof. All of the hypotheses of Theorem 44 are satisfied, so

Am,d ≤

1−

(∫ c

c
2

g(γ)dγ

)d
2

< 1, and

Bm,d ≥

1−

(∫ c

− b
2

g(γ)dγ

)d
2

+ 1 > 1,
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where

lim
d→∞

1−

(∫ c

− b
2

g(γ)dγ

)d
2

+ 1 = 2,

since 0 <
∫ c
− b

2
g(γ)dγ < 1. Furthermore,

Bm,d = sup
u∈[−a− b

m
,a+ c

m
]d\[−a

2
− b

2m
,a
2

+ c
2m

]d
κψm,d(u)

= sup
u∈[−a− b

m
,a+ c

m
]d\[−a

2
− b

2m
,a
2

+ c
2m

]d
(ψ̂m,d(u))2 + (ψ̂m,d(

u

2
))2

≤ 2.

Thus, limd→∞Bm,d = 2 for all large enough m.

A similar result holds for a large class of wavelet sets in R̂.

Theorem 48. Let L =
⋃

j∈J⊆Z

[aj, bj], with aj < bj for all j ∈ J , be a Parseval frame

wavelet set. Let g : R̂ → R be a non-negative function satisfying
∫
g(γ)dγ = 1 and

with support supp g = [−c, d], where c, d > 0 and which contains a neighborhood

of zero. Define ψ̂m = 1L ∗ g(m) for m > c+d
bj−aj for all j ∈ J . Then if W(ψm)

forms a Bessel sequence, the upper frame bound satisfies Bm ≥ β > 1, where β is

independent of m. In particular, there is a frame bound gap.

Proof. Set ak = min{aj > 0 : j ∈ J }, and let bi ∈ {bj}j∈J be the unique bj > 0

such that there exists N ∈ N∪ {0} with 2Nak = bi. We wish to bound κψm(bi− c
m

).

Since m > c+d
bi−ai ,

−mL+m(bi −
c

m
) ⊇ m[−bi,−ai] +m(bi −

c

m
)

= [−c,m(bi − ai)− c]

⊇ [−c, d],
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implying that

ψ̂m(bi −
c

m
) =

∫
−mL+m(bi− c

m
)

g(γ)dγ = 1.

Similarly,

−mL+m(2−N(bi −
c

m
)) = −mL+mak − 2−Nc

⊇ m[−bk,−ak] +mak − 2−Nc

= [m(ak − bk)− 2−Nc,−2−Nc]

⊇ [−c,−2−Nc].

So

ψ̂m(2−N(bi −
c

m
)) ≥

∫ −2−N c

−c
g(γ)dγ > 0.

Hence,

Bm ≥ κψm(bi −
c

m
) ≥ 1 +

(∫ −2−N c

−c
g(γ)dγ

)2

> 1.

We note that by construction (viii) in Chapter 4 of [33], cantor-like wavelet

sets exist. Thus, Theorem 48 does not apply to all wavelet sets in R̂.

Corollary 49. Let L =
J⋃
j=1

[aj, bj] ⊆ (−1

2
,
1

2
), with aj < bj for all j ∈ J , be a

Parseval frame wavelet set. Let g : R̂ → R be a non-negative function satisfying∫
g(γ)dγ = 1, with support supp g = [−c, d], where c, d > 0, and which contains a

neighborhood of zero. Define ψ̂m = 1L ∗ g(m) for all m large enough that

m > max

{
c+ d

(minj aj)− (maxj bj) + 1
,max

j

{ c+ d

bj − aj
}
,

d

dist(0, L)
,

c

dist(0, L)

}
.

Then W(ψm) forms a frame with upper frame bound Bm ≥ β > 1, where β is

independent of m.
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Proof. Since m > c+d
(minj aj)−(maxj bj)+1

, µψm = νψm = κψm . Because supp ψ̂m ) L,

inf κψm > 0. Finally, since m > max{ d
dist(0,L)

, c
dist(0,L)

} and supp ψ̂m is compact,

supκψm <∞. Hence W(ψm) is a frame.

The remainder of the claim follows from Theorem 48.

In this chapter Parseval frame wavelets are smoothed on the frequency do-

main by elements of successive elements of approximate identities. However, the

corresponding frame bounds do not converge to 1 even though L is a Parseval frame

wavelet set. We contrast these facts to the case of time domain smoothing. In [1],

the Haar wavelet is smoothed using convolution on the time domain with members

of particular approximate identities {kλ}. The smoothed functions generate Riesz

basis wavelets which have frame bounds which approach 1 as λ → ∞. Thus, con-

volutional smoothing affects frame bounds dramatically differently depending on

whether the smoothing is done on the temporal or frequency domains. Further-

more, Theorems 44 and 48 may be used to show that certain smooth functions are

not the result of convolutional smoothing; see Section 3.5 in the next chapter. Fi-

nally, the shrinking method introduced in Section 2.4 may be used to simply modify

non-complete systems in order to obtain frames.

42



Chapter 3

Smooth Parseval frames for L2(R) and generalizations to L2(Rd)

3.1 Introduction

3.1.1 Motivation

As in Chapter 2, we are concerned with finding frame wavelets which are

smoothed approximations of Parseval wavelet set wavelets. We attempt to generalize

Bin Han’s non-constructive proof of the existence of Schwartz class functions which

approximate Parseval wavelet set wavelets in L2(R) arbitrarily well. We show that

the natural approaches to such a generalization fail. Furthermore, we show that

a collection of well-known functions which also approximate wavelet set wavelets

generate frames with upper frame bounds that converge to 1.

3.1.2 Background

Recall that in this chapter, Dtf(x) = 2td/2f(2tx).

Definition 50.

• The space C∞c (Rd) consists of functions f : Rd → C which are infinitely

differentiable and compactly supported.

• Given a multi-index α = (α1, α2, . . . , αd) ∈ (N ∪ {0})d, we write |α| =
∑d

i=1 αi,
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xα =
∏d

i=1 x
αi
i , and Dα =

∂α1

∂x
α1
1

∂α2

∂x
α2
2
· · · ∂αd

∂x
αd
d

. An infinitely differentiable func-

tion f : Rd → C is an element of the Schwartz space S (Rd) if

∀n = 0, 1, . . . sup
|α|≤n,α∈(N∪{0})d

sup
x∈Rd

(
1 + ‖x‖2

)α |Dαf(x)| <∞.

Clearly S ⊂ L1, so the Fourier transform is well defined on S and is in fact

a topological automorphism. Since C∞c ⊆ S , the (inverse) Fourier transform

of a smooth compactly supported function is smooth.

• We will denote the space {f ∈ L2(R) : supp f̂ ⊆ [0,∞)} as H2(R), as in [63].

We now make note of a now well-known result, which appeared in Bin Han’s

paper [63], as well as many other contemporary papers.

Theorem 51. Let ψ ∈ L2(Rd). Then W(ψ) is a Parseval frame if and only if

∑
n∈Z

|ψ̂(2nγ)|2 = 1 and
∞∑
n=0

ψ̂(2nγ)ψ̂(2n(γ +m)) = 0 (3.1)

with absolute convergence for almost every γ ∈ R̂d and for all m ∈ Zd\2Zd.

3.1.3 Outline and Results

In Section 3.2.1, we present the results from [62] and [63] which concern the ex-

istence of smooth Parseval frames which approximate 1-dimensional Parseval frame

wavelet sets. Bin Han’s methods involve auxiliary smooth functions which we try

to generalize to higher dimensions in Section 3.2.2. We show that forming tensor

products or other similarly modified versions of the auxiliary functions from Section

3.2.1 either fails to yield a Parseval frame or fails to yield a smooth wavelet when
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used to smooth a certain type of wavelet set. However, some Parseval wavelet set

wavelets in R̂d can be smoothed using methods inspired by Han’s work, see Section

3.3. In Section 3.4 we construct a class of C∞c functions which form frames with

upper frame bounds converging to 1.

We conclude with Section 3.5 which contains a review of previously known

methods to smooth frame wavelet set wavelets.

3.2 Schwartz class Parseval frames

3.2.1 Parseval frames for L2(R)

In his Master’s thesis, [62], as well as the paper [63], Bin Han proved the

existence of C∞ Parseval frames for H2(R). The following two lemmas and definition

appear in the paper [63].

Lemma 52. There exists a function θ ∈ C∞(R) satisfying θ(x) = 0 when x ≤ −1

and θ(x) = 1 when x ≥ 1 and

θ(x)2 + θ(−x)2 = 1, x ∈ R.

Definition 53. Given a closed interval I = [a, b] and two positive numbers δ1, δ2

such that δ1 + δ2 ≤ b− a, we define

f(I;δ1,δ2)(x) =


θ
(
x−a
δ1

)
when x < a+ δ1

1 when a+ δ1 ≤ x ≤ b− δ2

θ
(
b−x
δ2

)
when x > b− δ2

Note that supp(f(I;δ1,δ2)) ⊆ [a− δ1, b+ δ2].
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Lemma 54. For any positive numbers δ1, δ2, δ3 and 0 < a < b < c,

f(I;δ1,δ2)(2
nx) = f(2−kI;2−kδ1,2−kδ2)(x)

and

f 2
([a,b];δ1,δ2)(x) + f 2

([b,c];δ2,δ3)(x) = f 2
([a,c];δ1,δ3)(x).

The preceding lemmas are used to prove

Proposition 55 ([63]). Suppose that a family of disjoint closed intervals Ii = [ai, bi],

1 ≤ i ≤ l in (0,∞) is arranged in a decreasing order, i.e., 0 < bl < bl−1 < . . . < b1

and ∪li=1Ii is dyadic dilation congruent to [1/2, 1) ⊆ R̂. If ∆(∪li=1Ii) > 0. Then for

any

0 < δ <
1

2
min{∆(∪li=1Ii), min

1≤i≤l
{bi − ai}, min

1≤i<l
dist(Ii, Ii+1)},

let

ψ̂δ = f(I1; δ
2
,δ) +

l∑
i=2

f(Ii;2−ki−1δ,2−ki−1δ)

where ki is the unique non-negative integer such that 2kiIi ⊆ [1
2
b1, b1]. We have

ψδ ∈ S (R) and W(ψδ) is a Parseval frame in H2(R).

Bin Han states that a similar proposition holds for L2(R), but does not ex-

plicitly state it nor prove it. However, it is easy to extend the result using similar

methods to his proof of the preceding proposition.

Proposition 56. Suppose that a family of disjoint closed intervals Ii = [ai, bi],

1 ≤ i ≤ l in R̂ is arranged in a decreasing order, i.e., bl < bl−1 < . . . < b1 where

bj < 0 < aj−1 and ∪li=1Ii is dyadic dilation congruent to [−1,−1/2) ∪ [1/2, 1) ⊆ R̂.
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If ∆(∪li=1Ii) > 0, then for any

0 < δ <
1

2
min{∆(∪li=1Ii), min

1≤i≤l
{bi − ai}, min

1≤i<l
dist(Ii, Ii+1)},

let

ψ̂δ = f(I1; δ
2
,δ) +

[
l−1∑
i=2

f(Ii;2−ki−1δ,2−ki−1δ)

]
+ f(Il;δ,

δ
2

)

where for 2 ≤ i ≤ j − 1, ki is the unique non-negative integer such that 2kiIi ⊆

[1
2
b1, b1] and for j ≤ i ≤ l − 1, ki is the unique non-negative integer such that

2kiIi ⊆ [al,
1
2
al]. We have ψδ ∈ S (R) and W(ψδ) is a Parseval frame in L2(R).

Proof. We’d like to make use of Theorem 51. To this end, let

f1 = f(I1; δ
2
,δ)

fi = f(Ii;2−ki−1δ,2−ki−1δ) for 2 ≤ i ≤ l − 1

fl = f(Il;δ,
δ
2

)

In order for the fi to be well defined, we need

δ

2
+ δ ≤ b1 − a1

2−ki−1δ + 2−ki−1δ ≤ bi − ai for 2 ≤ i ≤ l − 1

δ

2
+ δ ≤ bl − al

By our choice of δ, for all 1 ≤ i ≤ l,

δ

2
+ δ <

1
2
(bi − ai)

2
+

1

2
(bi − ai)

=
3

4
(bi − ai)

< bi − ai.
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So for i = 1 and i = l the desired inequalities hold. Also because ki ≥ 0 for each

2 ≤ i ≤ l − 1,

2−ki−1δ + 2−ki−1δ = 2−kiδ

< 2−ki
(
bi − ai

2

)
= 2−ki−1(bi − ai)

< bi − ai

So the fi are all well-defined and

supp f1 ⊆ [a1 −
δ

2
, b1 + δ],

supp fi ⊆ [ai − 2−ki−1δ, bi + 2−ki−1δ] for any 2 ≤ i ≤ l − 1

supp fl ⊆ [al −
δ

2
, bl + δ].

Hence for any 1 ≤ i ≤ l, supp fi ⊂ [ai − δ, bi + δ]. Since 0 < δ < 1
2
∆(∪li=1),

∆(∪li=1 supp fi) ≥ ∆(∪li=1[ai − δ, bi + δ]) ≥ ∆(∪li=1Ii)− 2δ > 0.

Thus for all 1 ≤ i, k ≤ l, n ∈ N ∪ {0}, m ∈ Z\0,

fi(2
nγ)fk(2

n(γ +m)) = 0,

since 2nm ∈ Z\{0}. Hence for any n ∈ N ∪ {0} and m ∈ Z\{0},

ψ̂δ(2
nγ)ψ̂δ(2

n(γ +m)) = 0 a.e.

By construction,

1I1 +

(
l−1∑
i=2

12kiIi

)
+ 1Il = 1[al,

1
2
al]∪[ 1

2
b1,b1].
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Using the Lemma 54, we obtain

f 2
1 (γ) +

j−1∑
i=2

f 2
i (2−kiγ) = f 2

(I1; δ
2
,δ)

(γ) +

j−1∑
i=2

f 2
(Ii;2−ki−1δ,2−ki−1δ)(2

−kiγ)

= f 2
(I1; δ

2
,δ)

(γ) +

j−1∑
i=2

f 2
(2kiIi;

1
2
δ, 1

2
δ)

(γ)

= f 2
([ 1

2
b1,b1]; 1

2
δ,δ)

(γ).

Similarly,
l−1∑
i=j

f 2
i (2−kiγ) + f 2

l (γ) = f 2
([al,

1
2
al];δ,

1
2
δ)

(γ).

So we know that

∑
n∈Z

l∑
i=1

f 2
i (2nγ) =

∑
n∈Z

(
f 2

([al,
1
2
al];δ,

1
2
δ)

(2nγ) + f 2
([ 1

2
b1,b1]; 1

2
δ,δ)

(2nγ)
)

=
∑
n∈Z

(
f 2

(2−n[al,
1
2
al];2−nδ,2−n−1δ)

(γ) + f 2
(2−n[ 1

2
b1,b1];2−n−1δ,2−nδ)

(γ)
)
.

For any n ∈ Z, we again apply Lemma 54 to get(
f 2

(2−n[al,
1
2
al];2−nδ,2−n−1δ)

(γ) + f 2
(2−n[ 1

2
b1,b1];2−n−1δ,2−nδ)

(γ)

)
+

(
f 2

(2−n−1[al,
1
2
al];2−n−1δ,2−n−2δ)

(γ) + f 2
(2−n−1[ 1

2
b1,b1];2−n−2δ,2−n−1δ)

(γ)

)
= f 2

([2−nal,2−n−2al];2−nδ,2−n−2δ)(γ) + f 2
([2−n−2b1,2−nb1];2−n−2δ,2−nδ)(γ)

As a result of these 2 equalities,
∑l

i=1

∑
n∈Z fi(2

nγ) = 1(−∞,∞)(γ), where the con-

vergence is almost everywhere and absolute for 1 ≤ i ≤ l. Since 0 < δ <

1
2

min1≤i≤l{dist(Ii, Ii+1)}, supp fi ⊆ [ai − δ, bi + δ],

|ψ̂δ(γ)|2 =
l∑

i=1

f 2
i (γ).

Thus ∑
n∈Z

|ψ̂δ(2nγ)|2 =
∑
n∈Z

l∑
i=1

f 2
i (2nγ) = 1
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for almost all γ. Hence ψδ generates a Parseval wavelet frame in L2(R). Clearly

ψδ ∈ S (R) since fi ∈ S (R), 1 ≤ i ≤ l.

In Corollary 36, we shrunk Parseval frame wavelet sets and obtained frame

wavelets with better decay than the original Parseval frame wavelet. We again

employ that idea in order to modify any bounded Parseval frame wavelet set in R̂

so that we may apply Proposition 56 in order to obtain a smooth Parseval frame

wavelet set.

Corollary 57. Let L ⊆ R̂ be a Parseval frame wavelet set. Let N ∈ Z have the

trait that 2NL ⊆ (−1
2
, 1

2
). Then there exists a ψ ∈ S (R) such that ψ̂ ∈ C∞c (R) and

W(ψ) is a Parseval frame and the measure of supp(ψ)\2NL is arbitrarily small.

3.2.2 Extensions of Han’s construction

We would like to extend Han’s results even further in order to create Schwartz

class Parseval frames over L2(Rd) for d > 1. The basic idea of Han’s construction

is to replace each 1[ai,bi](x) with an appropriate C∞c bump function f([ai,bi];δi,δ̃i)
(x),

where ∪i[ai, bi] is a Parseval frame wavelet set with ∆(∪i[ai, bi]) > 0. We will attempt

to generalize the smoothing techniques on the class of Parseval frame wavelet sets

{La} = {[−2a, 2a]2\[−a, a]2 : 0 < a <
1

4
}.

It is easy to see that any such La is indeed a Parseval frame wavelet set since each

tiles the plane under dyadic dilation and ∆(La) > 0 for 0 < a < 1
4

(Proposition

12). These sets are natural ones to start with because of their simplicity. When

50



a = 2N for N ≤ −3, then La may be obtained by dyadically shrinking the K0\A0

set obtained from the neighborhood mapping construction of the 2-d Journé set,

as in Example 15. We need to define an appropriate family of bump functions to

replace each 1La(x, y). We try the following functions:

h(La;δ, δ
2

)(x, y) = f([−2a,2a];δ,δ)(x)f([−2a,2a];δ,δ)(y)− f([−a,a]; δ
2
, δ
2

)(x)f([−a,a]; δ
2
, δ
2

)(y), and

(3.2)

g(La;δ, δ
2

)(x, y) =



θ
(

2a−|y|
δ

)
when |x| ∈ [0, 2a− δ] and |y| ∈ [2a− δ, 2a+ δ]

θ
(

2a−|y|
δ

)
θ
(

2a−|x|
δ

)
when |x|, |y| ∈ [2a− δ, 2a+ δ]

θ
(

2a−|x|
δ

)
when |y| ∈ [0, 2a− δ] and |x| ∈ [2a− δ, 2a+ δ]

1 when (|x|, |y|)T ∈ [0, 2a− δ]2\[0, a+ δ
2
]2

θ
(
|y|−a
δ/2

)
when |x| ∈ [0, a− δ

2
] and |y| ∈ [a− δ

2
, a+ δ

2
]

θ
(
|y|−a
δ/2

)
θ
(
|x|−a
δ/2

)
when |x|, |y| ∈ [a− δ

2
, a+ δ

2
]

θ
(
|x|−a
δ/2

)
when |y| ∈ [0, a− δ

2
] and |x| ∈ [a− δ

2
, a+ δ

2
]

0 otherwise,

(3.3)

where θ is as in Lemma 52. We first note that g is well defined even though the

piecewise domains overlap. In order to form h, we tensor the 1-dimensional interval

bump functions to create 2-dimensional rectangle bump functions and then subtract

such functions corresponding to [−2a, 2a]2 and [−a, a]2. The function g may be seen

as a piecewise tensor product. In fact,

h(La;δ, δ
2

)(x, y) = g(La;δ, δ
2

)(x, y) for (x, y)T /∈ [−a− δ

2
, a+

δ

2
]2\[−a+

δ

2
, a− δ

2
]2
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and supph(La;δ, δ
2

) = supp g(La;δ, δ
2

). Although both of these functions seem promising,

neither
∑

n∈Z h
2
(La;δ, δ

2
)
(2nx, 2ny) nor

∑
n∈Z g

2
(La;δ, δ

2
)
(2nx, 2ny) are equal to 1 almost

everywhere. It follows from Theorem 51 that neither W(ȟ) nor W(ǧ) are Parseval

frames.

Proposition 58. Let 0 < a < 1
4
, set L = [−2a, 2a]2\[−a, a]2, and pick a δ such that

0 < δ < 1
2

min{1−4a, a}. Let h be as in Equation 3.2. Then
∑

n∈Z h
2
(La;δ, δ

2
)
(2nx, 2ny)

is not equal to 1 a.e.

Proof. We first rewrite h(La;δ, δ
2

) in terms of θ (from Lemma 52).

h(La;δ, δ
2

)(x, y) =



θ
(

2a−|y|
δ

)
when |x| ∈ [0, 2a− δ] and |y| ∈ [2a− δ, 2a+ δ]

θ
(

2a−|y|
δ

)
θ
(

2a−|x|
δ

)
when |x|, |y| ∈ [2a− δ, 2a+ δ]

θ
(

2a−|x|
δ

)
when |y| ∈ [0, 2a− δ] and |x| ∈ [2a− δ, 2a+ δ]

1 when (|x|, |y|)T ∈ [0, 2a− δ]2\[0, a+ δ
2
]2

1− θ
(
a−|y|
δ/2

)
when |x| ∈ [0, a− δ

2
] and |y| ∈ [a− δ

2
, a+ δ

2
]

1− θ
(
a−|y|
δ/2

)
θ
(
a−|x|
δ/2

)
when |x|, |y| ∈ [a− δ

2
, a+ δ

2
]

1− θ
(
a−|x|
δ/2

)
when |y| ∈ [0, a− δ

2
] and |x| ∈ [a− δ

2
, a+ δ

2
]

0 otherwise.

We will prove the claim if we show that
∑

n∈Z h
2
(La;δ, δ

2
)
(2nx, 2ny) < 1 on a set of

positive measure. Note that for (x, y)T ∈ [0, a− δ
2
]× (a− δ

2
, a+ δ

2
],

∑
n∈Z

h2
(La;δ, δ

2
)
(2nx, 2ny) = h2

(La;δ, δ
2

)
(x, y) + h2

(La;δ, δ
2

)
(2x, 2y)

=

(
1− θ

(
a− y
δ/2

))2

+ θ2

(
a− y
δ/2

)
= 1 + 2θ

(
a− |y|
δ/2

)[
θ

(
a− |y|
δ/2

)
− 1

]
< 1
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since 0 < θ
(
a−|y|
δ/2

)
< 1 for y > a− δ

2
.

Proposition 59. Let 0 < a < 1
4
, set L = [−2a, 2a]2\[−a, a]2, and pick a δ such that

0 < δ < 1
2

min{1−4a, a}. Let g be as in Equation 3.3. Then
∑

n∈Z g
2
(La;δ, δ

2
)
(2nx, 2ny)

is not equal to 1 a.e.

Proof. We first compute the following for x, y > 0, making use of Lemma 54:

g2
(La;δ, δ

2
)
(x, y) + g2

(La;δ, δ
2

)
(2x, 2y)
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=



θ2
(

2a−y
δ

)
when (x, y)T ∈ [0, 2a− δ]× [2a− δ, 2a+ δ]

θ2
(

2a−y
δ

)
θ2
(

2a−x
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]2

θ2
(

2a−x
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]× [0, 2a− δ]

1 when (x, y)T ∈ [0, 2a− δ]2\[0, a+ δ
2 ]2

θ2
(
a−y
δ/2

)
+ θ2

(
y−a
δ/2

)
when (x, y)T ∈ [0, a− δ

2 ]× [a− δ
2 , a+ δ

2 ]

θ2
(
a−y
δ/2

)
θ2
(
a−x
δ/2

)
+ θ2

(
y−a
δ/2

)
θ2
(
x−a
δ/2

)
when (x, y)T ∈ [a− δ

2 , a+ δ
2 ]2

θ2
(
a−x
δ/2

)
+ θ2

(
x−a
δ/2

)
when (x, y)T ∈ [a− δ

2 , a+ δ
2 ]× [0, a− δ

2 ]

1 when (x, y)T ∈ [0, a− δ
2 ]2\[0, a2 + δ

4 ]2

θ2
(
y−a/2
δ/4

)
when (x, y)T ∈ [0, a2 −

δ
4 ]× [a2 −

δ
4 ,

a
2 + δ

4 ]

θ2
(
y−a/2
δ/4

)
θ2
(
x−a/2
δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]2

θ2
(
x−a/2
δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]× [0, a2 −
δ
4 ]

0 otherwise

=



θ2
(

2a−y
δ

)
when (x, y)T ∈ [0, 2a− δ]× [2a− δ, 2a+ δ]

θ2
(

2a−y
δ

)
θ2
(

2a−x
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]2

θ2
(

2a−x
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]× [0, 2a− δ]

1 when (x, y)T ∈ [0, 2a− δ]2\[0, a+ δ
2 ]2

1 when (x, y)T ∈ [0, a− δ
2 ]× [a− δ

2 , a+ δ
2 ]

θ2
(
a−y
δ/2

)
θ2
(
a−x
δ/2

)
+ θ2

(
y−a
δ/2

)
θ2
(
x−a
δ/2

)
when (x, y)T ∈ [a− δ

2 , a+ δ
2 ]2

1 when (x, y)T ∈ [a− δ
2 , a+ δ

2 ]× [0, a− δ
2 ]

1 when (x, y)T ∈ [0, a− δ
2 ]2\[0, a2 + δ

4 ]2

θ2
(
y−a/2
δ/4

)
when (x, y)T ∈ [0, a2 −

δ
4 ]× [a2 −

δ
4 ,

a
2 + δ

4 ]

θ2
(
y−a/2
δ/4

)
θ2
(
x−a/2
δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]2

θ2
(
x−a/2
δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]× [0, a2 −
δ
4 ]

0 otherwise.

54



Continuing inductively we obtain
∑

n∈Z g
2
(La;δ, δ

2
)
(2nx, 2ny)

=



0 when x = y = 0

θ2
(
a−2my
δ/2

)
θ2
(
a−2mx
δ/2

)
when (2mx, 2my)T ∈ [a− δ

2
, a+ δ

2
]2 for m ∈ Z

+θ2
(

2my−a
δ/2

)
θ2
(

2mx−a
δ/2

)
1 otherwise.

We would like to show that θ2
(
a−y
δ/2

)
θ2
(
a−x
δ/2

)
+ θ2

(
y−a
δ/2

)
θ2
(
x−a
δ/2

)
does not take

the value 1 for almost all (x, y)T ∈ [a − δ
2
, a + δ

2
]2. Assume that 1

2
< β < 1 and

0 < α < 1. Then β
2β−1

> 1

and so α 6= β

2β − 1

⇒ 2αβ − α 6= β

⇒ 1 + 2αβ − α− β 6= 1

⇒ αβ + (1− α)(1− β) 6= 1

It follows from the intermediate value theorem and continuity that the measure of

E = {(x, y)T ∈ [a− δ
2
, a+ δ

2
]2 : 1

2
< θ2

(
a−y
δ/2

)
< 1, 0 < θ2

(
a−x
δ/2

)
< 1} is positive. So

for (x, y)T ∈ E,

θ2

(
a− y
δ/2

)
θ2

(
a− x
δ/2

)
+ θ2

(
y − a
δ/2

)
θ2

(
x− a
δ/2

)
= θ2

(
a− y
δ/2

)
θ2

(
a− x
δ/2

)
+

(
1− θ2

(
a− y
δ/2

))(
1− θ2

(
a− x
δ/2

))
6= 1
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However, as the calculations above show,
∑

n∈Z h
2
(La;δ, δ

2
)
(2mx, 2ny) = 1 for all

(|x|, |y|)T /∈ {0} ∪

(⋃
m∈Z

2m
[
a− δ

2
, a+

δ

2

]2
)
.

So we adjust h(La;δ, δ
2

)(x, y) on C = [a − δ
2
, a + δ

2
]2 ∪ [2a − δ, 2a + δ]2 in hopes of

obtaining a Parseval frame. We do this by setting

f(La;δ, δ
2

)(x, y) = h(La;δ, δ
2

)(x, y) for (|x|, |y|)T /∈ C

and

f(La;δ, δ
2

)(x, y) = f(La;δ, δ
2

)(x̃, ỹ),

for (|x|, |y|)T , (|x̃|, |ỹ|)T ∈ C, |x|+|y| = |x̃|+|ỹ|, and |x|+|y| small enough. Explicitly,

f(La;δ, δ
2

)(x, y) =

θ
(

2a−|y|
δ

)
when |x| ∈ [0, 2a− δ] and |y| ∈ [2a− δ, 2a+ δ]

θ
(

4a−|x|−|y|−δ
δ

)
when |x|, |y| ∈ [2a− δ, 2a+ δ], where 4a− 2δ ≤ |x|+ |y| ≤ 4a

θ
(

2a−|x|
δ

)
when |y| ∈ [0, 2a− δ] and |x| ∈ [2a− δ, 2a+ δ]

1 when (|x|, |y|)T ∈ [0, 2a− δ]2\[0, a+ δ
2
]2

1 when |x|, |y| ∈ [a− δ
2
, a+ δ

2
] where 2a ≤ |x|+ |y| ≤ 2a+ δ

θ
(
|y|−a
δ/2

)
when |x| ∈ [0, a− δ

2
] and |y| ∈ [a− δ

2
, a+ δ

2
]

θ
(
|x|+|y|−2a+δ/2

δ/2

)
when |x|, |y| ∈ [a− δ

2
, a+ δ

2
] where 2a− δ ≤ |x|+ |y| ≤ 2a

θ
(
|x|−a
δ/2

)
when |y| ∈ [0, a− δ

2
] and |x| ∈ [a− δ

2
, a+ δ

2
]

0 otherwise.

Proposition 60. Let 0 < a < 1
4
, set L = [−2a, 2a]2\[−a, a]2, and pick a 0 < δ <

1
2

min{1− 4a, a}. Let ψ̂δ = f(La;δ, δ
2

). For x, y > 0,

ψ̂2
δ (~x) + ψ̂2

δ (2~x) = f 2
([−2a,2a]2\[−a

2
,a
2

]2;δ, δ
4

)
(~x).
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Proof.

ψ̂2
δ (~x) + ψ̂2

δ (2~x)

=



θ2
(

2a−y
δ

)
when (x, y)T ∈ [0, 2a− δ]× [2a− δ, 2a+ δ]

θ2
(

4a−x−y−δ
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]2

θ2
(

2a−x
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]× [0, 2a− δ]

1 when (x, y)T ∈ [0, 2a− δ]2\[0, a+ δ
2 ]2

1 when (x, y)T ∈ [a− δ
2 , a+ δ

2 ]2 where 2a ≤ x+ y2a+ δ

θ2
(
a−y
δ/2

)
+ θ2

(
y−a
δ/2

)
when (x, y)T ∈ [0, a− δ

2 ]× [a− δ
2 , a+ δ

2 ]

θ2
(
x+y−2a+δ/2

δ/2

)
+

θ2
(

2a−x−y−δ/2
δ/2

)
when (x, y)T ∈ [a− δ

2 , a+ δ
2 ]2 where 2a− δ ≤ x+ y ≤ 2a

θ2
(
a−x
δ/2

)
+ θ2

(
x−a
δ/2

)
when (x, y)T ∈ [a− δ

2 , a+ δ
2 ]× [0, a− δ

2 ]

1 when (x, y)T ∈ [0, a− δ
2 ]2\[0, a2 + δ

4 ]2

1 when (x, y)T ∈ [a2 −
δ
4 ,

a
2 + δ

4 ]2 where a ≤ x+ ya+ δ
2

θ2
(
y−a/2
δ/4

)
when (x, y)T ∈ [0, a2 −

δ
4 ]× [a2 −

δ
4 ,

a
2 + δ

4 ]

θ2
(
x+y−a+δ/4

δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]2 where a− δ
2 ≤ x+ y ≤ a

θ2
(
x−a/2
δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]× [0, a2 −
δ
4 ]

0 otherwise,
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=



θ2
(

2a−y
δ

)
when (x, y)T ∈ [0, 2a− δ]× [2a− δ, 2a+ δ]

θ2
(

4a−x−y−δ
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]2

θ2
(

2a−x
δ

)
when (x, y)T ∈ [2a− δ, 2a+ δ]× [0, 2a− δ]

1 when (x, y)T ∈ [0, 2a− δ]2\[0, a2 + δ
4 ]2

1 when (x, y)T ∈ [a2 −
δ
4 ,

a
2 + δ

4 ]2 when a ≤ x+ y ≤ a+ δ
2

θ2
(
y−a/2
δ/4

)
when (x, y)T ∈ [0, a2 −

δ
4 ]× [a2 −

δ
4 ,

a
2 + δ

4 ]

θ2
(
x+y−a+δ/4

δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]2 where a− δ
2 ≤ x+ y ≤ a

θ2
(
x−a/2
δ/4

)
when (x, y)T ∈ [a2 −

δ
4 ,

a
2 + δ

4 ]× [0, a2 −
δ
4 ]

0 otherwise,

= f2
([−2a,2a]2\[−a

2
,a
2

]2;δ, δ
4

)
(~x),

as desired.

Proposition 61. Let 0 < a < 1
4
, set L = [−2a, 2a]2\[−a, a]2, and pick a 0 < δ <

1
2

min{1 − 4a, a}. Let ψ̂δ = f(La;δ, δ
2

). Then ψ̂δ ∈ Cc(R̂2)\C1
c (R̂2) and W(ψδ) is a

Parseval frame for L2(R2).

Proof. Since

supp ψ̂δ ⊆ [−2a− δ, 2a+ δ]2 ⊆
(
−2a− 1

2
(1− 4a), 2a+

1

2
(1− 4a)

)2

=

(
−1

2
,
1

2

)2

,

for all n ∈ N ∪ {0} and k ∈ Z2\{0},

ψ̂δ (2n(~x+ k)) ψ̂δ(2n~x) = 0 a.e.,

where ~x = (x, y). In order to utilize Theorem 51, we would like to show that

∑
n∈Z

∣∣∣ψ̂δ(2n~x)
∣∣∣2 = 1 a.e.
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We will accomplish this by showing that

ψ̂2
δ (~x) + ψ̂2

δ (2~x) = f 2
([−2a,2a]2\[−a

2
,a
2

]2;δ, δ
4

)
(~x).

Then it will follow from iteration that

N∑
n=M

∣∣∣ψ̂δ(2n~x)
∣∣∣2 = f 2

([−21−Ma,21−Ma]2\[−2−Na,2−Na]2;2−M δ,2−1−N δ)(~x),

which is 1 on [21−Ma + 2−Mδ, 21−Ma − 2−Mδ]2\[2−Na + 2−1−Nδ, 2−Na − 2−1−Nδ]2,

where

21−Ma− 2−Mδ = 2−M(2a− δ)→∞ as M → −∞

and

2−Na− 2−1−Nδ = 2−N(a− δ

2
)→ 0 as N →∞

So
∑

n∈Z

∣∣∣ψ̂δ(2n~x)
∣∣∣2 = 1 a.e. By symmetry, it will suffice to show that

ψ̂2
δ (~x) + ψ̂2

δ (2~x) = f 2
([−2a,2a]2\[−a

2
,a
2

]2;δ, δ
4

)
(~x)

for positive x and y. The preceding proposition is a proof of this fact.

Thus,W(ψδ) is a Parseval frame, but ψ̂δ has cusps along {(2a−δ+t, 2a−δ)T :

0 ≤ t ≤ 2δ}, as well as other edges. So ψ̂δ /∈ C1
c (R̂2).

Thus we have found a method to smooth the Parseval frame wavelets 1̌La for

0 < a < 1
4
, which is analogous to Han’s method, but it does not yield Parseval

frame wavelets with good temporal decay like Schwartz functions. It seems that

this method should generalize to other Parseval frame wavelet sets in R̂2 which

have piecewise horizontal and vertical boundaries. However, there does not seem

to be an easy way to write an explicit formula that works in general. Furthermore,
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only a relatively small number of Parseval frame wavelet sets have such a boundary.

Perhaps not all is lost. Instead of trying to smooth 1K for some Parseval frame

wavelet set K resulting from the neighborhood mapping construction, we now try

to build Schwartz class Parseval frames for L2(R2) directly from the C∞c bump

functions over R̂.

3.3 A construction in higher dimensions

In the preceding work, problems arose around the corners of the boundary

of La = [−2a, 2a]2\[−a, a]2 when we tried to smooth 1La . What if there were no

corners to deal with? For 0 < a < 1
4
, we define

f([a,2a]×S1; δ
2
,δ)(x, y) = f([a,2a]; δ

2
,δ)(
√
x2 + y2),

where yet again f([a,2a]; δ
2
,δ)(·) is as in Definition 53.

Proposition 62. Let 0 < a < 1
4
. For any 0 < δ < 1

2
min{1 − 4a, a}, define

ψ̂δ : R2 → R by ψ̂δ(x, y) = f([a,2a]; δ
2
,δ)(
√
x2 + y2). Then, ψ̂ ∈ S (R2) and W(ψδ) is

a Parseval frame for L2(R2).

Proof. By construction, ψ̂δ ∈ C∞c (R̂2) ⇒ ψδ ∈ S (R2). Since δ < 1
2
(1 − 4a),

∆(supp ψ̂δ) < 0. So for all n ∈ N ∪ {0} and k ∈ Z\{0},

ψ̂δ(2
n(~x+ k))ψ̂(2n~x) = 0 a.e.

where ~x = (x, y)T . Hence, in order to prove that W(ψδ) is a Parseval frame, it
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suffices to show that
∑

n∈Z

∣∣∣ψ̂δ(2n~x)
∣∣∣2 = 1 a.e. We compute

∑
n∈Z

∣∣∣ψ̂(2n~x)
∣∣∣2 =

∑
n∈Z

∣∣∣f([a,2a]; δ
2
,δ)

(√
(2nx)2 + (2ny)2

)∣∣∣2
=

∑
n∈Z

∣∣∣f([a,2a]; δ
2
,δ)(2

nz)
∣∣∣2 for z =

√
x2 + y2 (3.4)

We know that (3.4) = 1 for almost all non-negative z, specifically for z > 0. So∑
n∈Z

∣∣∣ψ̂δ(2nx̂)
∣∣∣2 = 1 for R̂2 3 ~x 6= 0. ThusW(ψδ) is a Parseval frame for L2(R2).

This result and proof generalize to Rd, d > 2.

Corollary 63. Let 0 < a < 1
4
. For any 0 < δ < 1

2
min{1−4a, a}, define ψ̂δ : Rd → R

by ψ̂δ(x) = f([a,2a]; δ
2
,δ)(‖x‖). Then, ψ̂ ∈ S (Rd) and W(ψδ) is a Parseval frame for

L2(Rd).

Proof. The proof is as above.

We now have Schwartz class Parseval frames for L2(Rd), d > 1 which are

elementary to describe.

3.4 Partitions of unity

C∞ partitions of unity are important tools in analysis and differential topology.

While the topic of C∞ partitions of unity is outside the scope of this thesis, we shall

utilize a class of functions which is commonly used in conjunction with that subject,

e.g.: [81].

Definition 64. Let f : R̂→ R be the function f(γ) = e−
1
γ1(0,∞). Also, let b,m > 0
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be such that b− 1
m
> 0. Define ϕ̂ ∈ C∞c (R̂) as

ϕ̂b,m(γ) =
f(b+ 1

m
− |γ|)

f(b+ 1
m
− |γ|) + f(|γ| − b+ 1

m
)
.

If a > 4
m

is clear from the context, we shall write ϕ̂m = ϕ̂a
4
,m.

ϕ̂b,m is a smooth function which takes the value 1 on the disk (−b+ 1
m
, b− 1

m
)

and the value 0 outside the disk D(−b − 1
m
, b + 1

m
). We shall now prove that the

function is actually monotonic over the positive reals.

Lemma 65. Fix b − 1
m
> 0. Then ϕ̂b,m is increasing over (−∞, 0) and decreasing

over (0,∞).

Proof. Let γ > 0. We calculate ϕ̂′b,m(γ)

=

(
f(b+ 1

m − γ) + f(γ − b+ 1
m)
) (
−f ′(b+ 1

m − γ)
)
− f(b+ 1

m − γ)
(
−f ′(b+ 1

m − γ) + f ′(γ − b+ 1
m)
)(

f(b+ 1
m − γ) + f(γ − b+ 1

m)
)2

=
−
(
f(γ − b+ 1

m
))f ′(b+ 1

m
− γ) + f(b+ 1

m
− γ)f ′(γ − b+ 1

m
)
)(

f(b+ 1
m
− γ) + f(γ − b+ 1

m
)
)2 .

For all γ ∈ R̂, f(γ) ≥ 0 and f ′(γ) = 1
γ2 e
− 1
γ1(0,∞) ≥ 0. Hence for γ ≥ 0, ϕ̂′b,m(γ) ≤ 0.

Since ϕ̂b,m is even, this implies that ϕ̂′b,m(γ) ≥ 0 for γ ≤ 0.

Theorem 66. Let 0 < α < 1
2

and m > max{ 6
a
, 2

1−2a
}. Define

ψ̂m = ϕ̂m(γ +
3a

4
) + ϕ̂m(γ − 3a

4
) ∈ C∞c (R̂).

Then ψm ∈ S(R) and W(ψm) forms a frame with bounds Am and Bm. For all m,

Am ≤ 1
2
, but as m→∞, Bm → 1.

Proof. As m > 4
a
, ϕ̂m is well-defined, and it follows from the definition of ϕ̂m that

supp ψ̂m = [−a− 1

m
,−a

2
+

1

m
] ∪ [

a

2
− 1

m
, a+

1

m
].

62



Since m > 2
1−2a

, supp ψ̂m ⊂ (−1
2
, 1

2
). By continuity, there exists ε > 0 such that

[−a,−a
2
) ∪ [a

2
, a) ⊆ suppε ψ̂m. Thus, it follows from Theorem 33 that W(ψm) forms

a frame with lower frame bound Am = Kψm and upper frame bound Bm = Kψm . As

ψ̂m is even, it suffices to optimize κψm over any positive dyadic interval. We shall use

[a
2

+ 1
2
, a+ 1

m
). Since m > 5

a
, κψm(γ) = (ψ̂m(γ))2 + (ψ̂m(γ

2
))2 for γ ∈ [a

2
+ 1

2m
, a+ 1

m
).

Also m > 6
a

implies that a− 2
m
> a

2
+ 1

m
. Hence, over [a

2
+ 1

2m
, a+ 1

m
),

κψm = (ψ̂m(γ))2 + (ψ̂m(
γ

2
))2

=



(ψ̂m(γ))2 + 0 for a
2

+ 1
2m
≤ γ < a

2
+ 1

m

1 + 0 for a
2

+ 1
m
≤ γ < a− 2

m

1 + (ψ̂m(γ
2
))2 for a− 2

m
≤ γ < a− 1

m

(ψ̂m(γ))2 + (ψ̂m(γ
2
))2 for a− 1

m
≤ γ < a+ 1

m

=



(ϕ̂m(γ − 3a
4

))2 for a
2

+ 1
2m
≤ γ < a

2
+ 1

m

1 for a
2

+ 1
m
≤ γ < a− 2

m

1 + (ϕ̂m(γ
2
− 3a

4
))2 for a− 2

m
≤ γ < a− 1

m

(ϕ̂m(γ − 3a
4

))2 + (ψ̂(γ
2
− 3a

4
))2 for a− 1

m
≤ γ < a+ 1

m

.

Note that

• γ − 3a
4
< 0 for a

2
+ 1

2m
≤ γ < a

2
+ 1

m
since m > 4

a
,

• γ
2
− 3a

4
< 0 for a− 2

m
≤ γ < a− 1

m
,

• γ − 3a
4
> 0 for a− 1

m
≤ γ < a+ 1

m
since m > 4

a
, and

• γ
2
− 3a

4
< 0 for a− 1

m
≤ γ < a+ 1

m
since m > 2

a
.
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Thus, κψm is increasing over a
2

+ 1
2m
≤ γ ≤ a − 1

m
, but is not monotonic over

a− 1
m
< γ < a+ 1

m
. Hence

min
a
2

+ 1
2
≤γ≤a− 1

m

κψm(γ) = κψm(
a

2
+

1

2
)

=

(
ϕ̂m((

a

2
+

1

2m
)− 3a

4
)

)2

=

(
ϕ̂m(−a

4
+

1

2m
)

)2

=

(
e−2m/3

e−2m/3 + e−2m

)2

=

(
1

1 + e−4m/3

)2

,

and

max
a
2

+ 1
2
≤γ≤a− 1

m

κψm(γ) = κψm(a− 1

m
)

= 1 +

(
ϕ̂m(

1

2
(a− 1

m
)− 3a

4
)

)2

= 1 +

(
e−2m

e−2m + e−2m/3

)2

= 1 +

(
1

1 + e4m/3

)2

.

Note that as m→∞,

min
a
2

+ 1
2
≤γ≤a− 1

m

κψm(γ) → 1

max
a
2

+ 1
2
≤γ≤a− 1

m

κψm(γ) → 1

We shall now consider κψm over (a− 1
m
, a+ 1

m
). We start by substituting γ = a+ t

m
,
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t ∈ (−1, 1) and expanding κψm over these values:

κψm(a+
t

m
) =

(
ϕ̂m(a+

t

m
− 3a

4
)

)2

+

(
ϕ̂m(

a

2
+

t

2m
− 3a

4
)

)2

=

(
ϕ̂m(

a

4
+

t

m
)

)2

+

(
ϕ̂m(−a

4
+

t

2m
)

)2

=

(
e−m/(1−t)

e−m/(1−t) + e−m/(1+t)

)2

+

(
e−2m/(2+t)

e−2m/(2+t) + e−2m/(2−t)

)2

=

(
1

1 + e2mt/(1−t2)

)2

+

(
1

1 + e−4mt/(4−t2)

)2

At t = 0, κψm takes the value
(

1
2

)2
+
(

1
2

)2
= 1

2
. We claim that for any 0 < δ < 1

2
,

κψm(a+ t
m

) converges uniformly to 1 over [δ, 1− δ]. Choose an arbitrary 0 < ε < 2.

We claim that for any

m > max

(1− δ2) ln(
√

2
ε
− 1)

δ
,
(δ2 − 4) ln(1−

√
1− ε

2
)

4δ


|κψm(a + t

m
) − 1| < ε for all t ∈ [δ, 1 − δ]. A routine application of the triangle

inequality yields

|κψm(a+
t

m
)− 1| =

∣∣∣∣∣
(

1

1 + e2mt/(1−t2)

)2

+

(
1

1 + e−4mt/(4−t2)

)2

− 1

∣∣∣∣∣
≤

∣∣∣∣∣
(

1

1 + e2mt/(1−t2)

)2
∣∣∣∣∣+

∣∣∣∣∣
(

1

1 + e−4mt/(4−t2)

)2

− 1

∣∣∣∣∣ .
Since m >

(1−δ2) ln(
√

2
ε
−1)

δ
, for all t ∈ [δ, 1− δ],√

2

ε
− 1 < e2mδ/(1−δ2) ≤ e2mt/(1−t2)

⇒ 2

ε
< (1 + e2mt/(1−t2))2

⇒

∣∣∣∣∣
(

1

1 + e2mt/(1−t2)

)2
∣∣∣∣∣ < ε

2
.
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Since m >
(δ2−4) ln(1−

√
1− ε

2
)

4δ
,

1−
√

1− 2

ε
> e−4mδ/(4−δ2) ≥ e−4mt/(4−t2)

⇒ (e−4mt/(4−t2))2 − 2(e−4mt/(4−t2)) +
ε

2
> 0

⇒ |(e−4mt/(4−t2))2 − 2(e−4mt/(4−t2))| < ε

2

⇒ |1− (1 + e−4mt/(4−t2))2| < ε

2

⇒

∣∣∣∣∣1− (1 + e−4mt/(4−t2))2

(1 + e−4mt/(4−t2))2

∣∣∣∣∣ < ε

2

⇒
∣∣∣∣ 1

(1 + e−4mt/(4−t2))2
− 1

∣∣∣∣ < ε

2
.

Thus, |κψm(a+ t
m

)−1| < ε for all t ∈ [δ, 1−δ]. It is also true that for any 0 < δ < 1
2
,

κψm(a+ t
m

) converges uniformly to 1 over [−1+ δ,−δ]. The proof works in the same

manner, except the triangle inequality is used in the following way

|κψm(a+
t

m
)− 1| =

∣∣∣∣∣
(

1

1 + e2mt/(1−t2)

)2

+

(
1

1 + e−4mt/(4−t2)

)2

− 1

∣∣∣∣∣
≤

∣∣∣∣∣
(

1

1 + e2mt/(1−t2)

)2

− 1

∣∣∣∣∣+

∣∣∣∣∣
(

1

1 + e−4mt/(4−t2)

)2
∣∣∣∣∣ .

Combining this convergence with our knowledge of the values κψm(0) = 1
2
, κψm(a+

1
m

) =
(

1
1+e−4m/3

)2

, and κψm(a− 1
m

) = 1 +
(

1
1+e4m/3

)2

, we conclude that

lim
m→∞

Bm = lim
m→∞

Kψm = 1.

Since the t
1−t2 exponent makes computer calculations nearly impossible, these

smooth frames are interesting, but not usable in applications. As there is no up-

per frame bound gap, it follows from Theorem 48 that these functions which are

commonly used in mathematics are not the result of convolutional smothing.
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3.5 Other Methods

3.5.1 MSF smoothing

As mentioned above, E. Hernàndez, X. Wang, and G. Weiss, [69], created the

theory of MSF wavelets. They characterize wavelets ψ for which ψ̂ has support

in [−8
3
α, 2 − 4

3
α], for 0 < α ≤ 1

2
, and prove that these are all associated with a

multiresolution analysis (MRA). The authors then smoothed these MSF wavelets

[70]. Their smoothing procedure was accomplished by deforming given low-pass

filters to obtain new filters. This process sometimes results in non-bandlimited

orthonormal wavelets.

This process will not work to improve the frame wavelet set wavelets which

were created in [14] because this process relies heavily on the associated MRA struc-

ture, which requires an orthonormal basis. Further, some of the sets generated in

the neighborhood mapping construction do not have support lying in [−8
3
α, 2− 4

3
α],

for some 0 < α ≤ 1
2
. For example, K1\A1 in the construction of the 1-d Journé set

is [−9
4
,−2)∪ [−1

2
,− 9

32
)∪ [ 9

32
, 1

2
)∪ [2, 9

4
). The support of this set is spread due to the

fact that it is approximating a wavelet set which is not associated with an MRA.

3.5.2 Baggett, Jorgensen, Merrill, and Packer smoothing

A different smoothing idea is employed in [5]. The authors smooth the 1-d

Journé wavelet using a Generalized Multiresolution Analysis. Frame wavelets for

67



L2(R) are constructed which have the same dimension function,

∑
k∈Z

∞∑
n=1

|ψ̂ (2n (x+ k)) |2,

as the Journé wavelet set but are arbitrarily differentiable and have C∞ Fourier

transforms. As in [70], they do not regularize the members of the frame directly

but rather define auxillary functions which build wavelets sharing certain traits with

the original wavelet. Since they construct Parseval frame wavelets, we know from

Theorem 48 that their functions cannot result from convolutional smoothing on the

frequency domain. They note that if ψ is a frame wavelet contructed using the

methods of [5], then {Tkψ : k ∈ Z} does not form a frame for span{Tkψ : k ∈ Z}.

They reference [13] in their comment. The following theorem from [13] may be used

to prove the same result for frames found using our methods.

Proposition 67. Let ψ ∈ L2(R) and let Ψ(γ) =
∑

k∈Z |ψ̂(γ + k)|2 ∈ L∞(T). The

sequence {Tkψ : k ∈ Z} is a frame for span{Tkψ : k ∈ Z} if and only if there are

positive constants A and B such that

A ≤ Ψ(γ) ≤ B a.e. on T\N,

where N = {γ ∈ T : Ψ(γ) = 0}.

Proposition 68. Let ψ be as in Corollary 36. Then {Tkψ : k ∈ Zd} is not a frame

for spank∈ZdTkψ.

Proof. Since ψ is the result of a convolution, it is continuous. Let 1
2

denote the

vector in R̂d for which every component is 1
2
. Then Ψ(1

2
) =

∑
k∈Z |ψ̂(1

2
+ k)|2 = 0
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by the construction of ψ. Since ψ̂ is continuous, for any ε > 0 which is sufficiently

small, there exists a γ ∈ R̂d such that ε = Ψ(γ). The conclusion now follows from

Proposition 67.

3.5.3 Smoothing by time domain convolution

In [1], the authors make use of the following two results in order to smooth

the Haar wavelet by means of convolution on the time domain.

Proposition 69 ([50]). Let f be a bounded variation function with total variation

V (f). Assume that supp f ⊆ I, where I is an interval of length less than 1, and∫
f(t)dt = 0. Then W(f) is a Bessel sequence, with bound

M = 11‖f‖∞ (V (f) + ‖f‖∞) |I|.

Theorem 70. If {en : n ∈ N} is an orthonormal basis for L2 (R) and {en − fn :

n ∈ N} is a Bessel sequence with bound M < 1, then {fn : n ∈ N} is a Riesz basis

with bounds A and B satisfying A ≥
(

1−
√
M
)2

and B ≤
(

1 +
√
M
)2

.

The main idea of [1] is to convolve the Haar function ψ = 1[0,1/2) − 1[1/2,1)

with a function φ ∈ W 1,j (R) = {φ ∈ L1 (R) : φ(j) ∈ L1 (R)}. This results in a

C(m) (R) function ψ ∗ φ. If φ has additional properties, then Proposition 69 can be

used to show thatW (ψ − ψ ∗ φ) is a Bessel sequence with bound M < 1. It follows

from Theorem 70 that ψ ∗ φ is a C(m) (R) function which generates a Riesz basis

with bounds
(

1−
√
M
)2

and
(

1 +
√
M
)2

. Thus, convolutional smoothing on the

temporal domain does not yield frame bound gaps, in contrast to smoothing on the

frequency domain.
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3.5.4 Operator interpolation

Let K and L be (orthonormal) wavelet sets. By Proposition 12, K and L are

Zd-translation congruent and tile R̂d by dyadic dilation. Dai and Larson use these

facts to construct a unitary operator U on L2(R̂d) in [33]. If the group generated

by U commutes with the Fourier transformed dilation and translation operators

when applied to 1K , then the wavelet sets admit operator interpolation. This means

that polynomials in U , with coefficients satisfying certain conditions, applied to

1K yield the Fourier transform of a mother wavelet. If K and L satisfy futher

conditions, then this interpolated wavelet may also be continuous in the frequency

domain. In [64], this process is extended to Parseval (sub-) frame wavelet sets. The

“sub-” prefix means that the generated sequence of functions form a Parseval frame

for their span, rather than necessarily for all of L2(Rd). The loosened restrictions

allow for K and L to be Parseval sub-frame wavelet sets which are Zd-translation

congruent. While the sets Km\Am from the neighborhood mapping construction

are Parseval frame wavelets, operator interpolation does not seem to be a viable

method to obtain frame wavelets with good decay from these sets. Initially, if we

fix a neighborhood K0 and map S, then Km1\Am1 and Km2\Am2 will have different

measure if m1 6= m2. Hence, these sets can not be Zd-translation congruent. If

we look to sets created using different neighborhoods K0 and K̃0 and maps S and

S̃, we may obtain Parseval frame wavelet sets Km1\Am1 and K̃m2\Ãm2 which have

equal measure and thus may potentially be Zd-translation congruent. However,

calculations have not yet yielded any pairs of these equal measure sets which are
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actually Zd-translation congruent. Hence, we are unable to interpolate between the

corresponding Parseval frame wavelets. Although operator interpoliation is a clever

application of von Neumann algebra theory to regularization of (sub-frame) wavelet

set wavelets, it is not helpful in our endeavor.

3.5.5 Stability results and an error in [46]

While attempting to modify the methods of [1] in order to use them, we

considered a number of various stability results. Stability results give conditions

under which perturbations of a frame or Riesz basis is again a frame or Riesz basis.

Theorem 70 is a very special case of the following stability proven by Chistensen

and Heil for Banach frames [25]. The result as it applies to Hilbert spaces has a

remarkably simple proof which uses the triangle inequality.

Theorem 71. Let {en} be a frame for a Hilbert space H with frame bounds A and

B. Let {fn} ⊆ H. If {en − fn} is a Bessel sequence for H with bound M < A, then

{fn} is a frame with frame bounds Ã and B̃ satisfying A
(

1−
√
M/A

)2

≤ Ã and

B̃ ≤ B
(

1 +
√
M/B

)2

.

While the hypothesis for this result is much weaker than many pre-existing

basis-type assumptions and, thus, is more applicable, the use of the triangle in-

equality in its proof means that, in general, the constants in Theorem 71 are not

optimal. In fact, convolving K0\A0 from the 2-d Journé construction with elements

of an approximate identity failed to yield bounds M < 1, meaning that Theorem 71

cannot be applied at all in this case. Fortunately, Corollary 19 provides frame bound
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estimation that is simple to compute. There are other stability results in [46], but,

unfortunately, one of the major results of the paper is incorrect.

Definition 72. {DjTkφ} is semiorthogonal if for any j 6= m and any k, n ∈ Zd,

〈DjTkφ,DmTnφ〉 = 0.

They write in [46]

Theorem 10: Let Φ be a semiorthogonal sequence in L2(Rd),

and let ψ be any function in the closure of the linear span of

{Tkφ : k ∈ Zd}. If Φ is a wavelet frame (wavelet Riesz basis)

in L2(Rd) with bounds A and B and ‖ψ − φ‖ < A3/2B, then

Ψ = {φj,k = DjTkφ : j, k ∈ Zd} is a semiorthogonal wavelet

frame wavelet (wavelet Riesz basis) in L2(Rd) with bounds([
1−

(
B

A3/2

)]
‖ψ − φ‖

)2
A and

([
1 +

(
B1/2

A

)]
‖ψ − φ‖

)2

B.

Obviously, they mean j ∈ Z. Also, there is a typo in the statement of the new

bounds. Since B ≥ A, the bounds as stated would always yield lower frame

bounds ≤ 0. Based on the results that they cited in the proof, they meant to

write
(
1−

(
B

A3/2

)
‖ψ − φ‖

)2
A and

(
1 +

(
B1/2

A

)
‖ψ − φ‖

)2

B.

Proof: The semiorthogonality is trivial. Let g = φ − ψ, and let

S be the frame operator, i.e.:

Sf =
∑
j∈Zd

∑
k∈Zd
〈f, φj,k〉φj,k.

Again the j should lie in Z.

The hypotheses imply that if j 6= 0, then 〈g, φj,k〉 = 0. Thus,

g =
∑

m∈Zd amφ0,m(x), for am = 〈S−1g, φ0,m〉.
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While it is true that g =
∑

n

∑
m〈S−1g, φn,m〉φn,m, there is no reason for 〈S−1g, φm,n〉 =

0 for all n 6= 0. If the rest of the proof were correct, then this problem would most

likely be fixed by writing g =
∑

m∈Zd bmS
−1φ0,m, for bm = 〈g, φ0,m〉.

Let {cn,k} be any finite sequence of scalars, then∥∥∥∥∥∑
j

∑
k

cj,kgj,k

∥∥∥∥∥
2

=

∥∥∥∥∥∑
j

∑
k

∑
m∈Zd

amcj,kφm,j+k

∥∥∥∥∥
2

≤ B
∑
j

∑
k

∑
m

|amcj,k|2

= B
∑
m

|am|2
∑
j

∑
k

|cj,k|2 .

Initially, there is an error in the indices,
∥∥∥∑j

∑
k

∑
m∈Zd amcj,kφm,j+k

∥∥∥2

should be
∥∥∥∑j

∑
k

∑
m∈Zd amcj,kφj,m+k

∥∥∥2

. More crucially, the authors miss the sub-

tle fact that m and k are taking values all over Zd, so m1+k1 = m2+k2 for numerous

values of mi, ki. Using the substitution n = m+ k, the correct inequality would be∥∥∥∥∥∑
j

∑
k

∑
m∈Zd

amcj,kφj,m+k

∥∥∥∥∥
2

=

∥∥∥∥∥∑
j

∑
n

∑
m∈Zd

amcj,n−mφj,n

∥∥∥∥∥
2

≤ B
∑
j

∑
n

∣∣∣∣∣∑
m

cj,n−mam

∣∣∣∣∣
2

.

Since in general |
∑

m xm|
2 6≤

∑
m |xm|

2, their desired result does not follow. Their

proof isn’t repairable, which of course doesn’t mean that the theorem is also incor-

rect; however, calculations using other methods indicate that a class of functions

which satisfy the hypotheses do not form frames. Let Φ =W(1[−1,−1/2)∪[1/2,1)). Φ is

an orthonormal basis and is thus trivially a semiorthogonal Riesz basis with frame

bound 1. Set

ψ̂ = (
1

2
I − 1

2
M2)1[−1,−1,2)∪[1/2,1),
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then ψ ∈ span{Tk1[−1,−1,2)∪[1/2,1)}. Also,

‖ψ − 1
∨
[−1,−1/2)∪[1/2,1)‖2 = ‖ψ̂ − 1[−1,−1/2)∪[1/2,1)‖2

=

∥∥∥∥((
1

2
− 1

2
e4πix)− 1

)
1[−1,−1/2)∪[1/2,1)(x)

∥∥∥∥2

=

∫ −1/2

−1

1

4
(1 + 2 cos 4πix+ 1)dx+

∫ 1

1/2

1

4
(1 + 2 cos 4πix+ 1)dx

=
1

2
(−1

2
− (−1) + 1− 1

2
)

=
1

2

< 1.

Thus, the hypotheses of Theorem 10 in [46] are satisfied. However, ψ is a continuous

function which vanishes at every point γ = ± 1
2k

. Thus κψ is also a continuous

function which vanishes at every point γ = ± 1
2k

, and

inf
γ∈bRκψ(γ) = 0.

It now follows from Proposition 18 that W(ψ) is not a frame.

3.5.6 Conclusion

Theorem 44 in Chapter 2 showed that convolutional smoothing of Parseval

frame wavelet set wavelets on the frequency domain yields systems with upper frame

bounds which increase away from 1 as the dimension increases. This theme of

Chapter 2 and [11] is continued in this chapter. We see in Section 3.2.2 that natural

generalizations of Bin Han’s construction of smooth Parseval wavelets in L2(R) to R2

also fail. Thus, the question remains whether there exist continuous functions ψ̂n for

which W(ψn) has frame bounds converging to 1 and for which ‖1[−a,a]2\[−a/2,a/2]2 −
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ψ̂n‖L2(bR2) converges to 0 as n→∞ for some a < 1/2. Furthermore, we also explicitly

construct smooth frame wavelets which have upper frame bounds converging to 1

in Section 3.3. This construction, combined with results from Chapter 2 shows

that basic functions used in differential topology are not the result of convolutional

smoothing.
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Chapter 4

Shearlet Analogues for L2(Rd)

4.1 Introduction

4.1.1 Problem

Typically, multidimensional data has been analyzed using tensor products of

1-dimensional wavelets; however, these methods do not yield any information about

directional components or trends. For example, if one image was a rotation of

another image, we would like the coefficients of the wavelet representation to in-

dicate that. A number of new representations have sprung up in an attempt to

solve this problem. Contourlets ([42]), curvelets and ridgelets ([21]), bandlets ([89]),

wedgelets ([43]), and shearlets ([57] and [80]) are just a few examples. There is a

Fast Shearlet Transform, which makes the shearlets especially desirable. However,

these transforms are for 2-dimensional data sets. It is becoming more common for

higher dimensional data sets to appear, which need to be analyzed. Inspired by the

work of Cordero, DeMari, Nowak, and Tabacco ([28], [28], [39], and [40]), we would

like to exploit the representation theory of the extended metaplectic group in order

to construct analogs of the shearlet transform for L2(Rd), d > 2.
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4.1.2 Shearlets

Shearlets were introduced by Labate, Guo, Kutyniok and Weiss in [57] and

[80] and are a specific type of composite dilation wavelet ([58]).

Definition 73. Given ψ ∈ L2(R2), the continuous shearlet system is

{TyD(S`Aa)−1ψ = a−3/4ψ(A−1
a S−1

` (· − y)) : a > 0, ` ∈ R, y ∈ R2},

where Aa is the parabolic scaling matrix

 a 0

0
√
a

 and S` is the shearing matrix

 1 `

0 1

.

Shearlet bases and frames are formed by selecting a discrete subcollection of

a continuous shearlet system. The most common subcollection is generated by the

indices

{(a, `, y) = (4j, k2j, Sk2jA4jm) : j, k ∈ Z,m ∈ Z2}.

By the commutation properties of the dilation and translation operators and shear-

ing and parabolic scaling matrices,

TS
k2j

A
4j
mD(S

k2j
A

4j
)−1 = D(S

k2j
A

4j
)−1Tm

= D(A
4j
Sk)−1Tm,

which looks exactly like the operators used to generate wavelets in Sections 2 and 3,

with dilation by powers of 2 replaced with dilation by the products of matrix powers

A4jSk.
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Definition 74. Let B = {Bj}j∈J and C = {Ck}k∈K be subsets of GL(d,R). Let

ψ ∈ L2(Rd). The composite dilation wavelet system corresponding to B and C is

{D(BjCk)−1Tmψ : j ∈ J , k ∈ K,m ∈ Zd}.

A shearlet system is a composite dilation wavelet system with Bj = A4j and

Ck = Sk. Typically, more restraints are put on the sets B and C. For example,

it is common for B to be a collection of invertible matrices with integer entries

and eigenvalues with moduli greater than 1 and for C to be a group of matrices,

each with determinant 1. However, these constraints are not always necessary, see

[58]. Many authors have published results about shearlets and composite dilation

wavelets, which in some sense emulate wavelet theory and applications. To name a

few examples, there is a shearlet multiresolution analysis theory and decomposition

algorithm ([78]), there is an FFT-based method to compute the Continuous Shearlet

Transform ([79]), and there are composite dilation wavelet sets ([16]). Many of these

results should hopefully extend to the higher dimensional shearlets.

4.1.3 Outline and Results

Our goal is to integrate shearlet theory into the theory created by Cordero,

DeMari, Nowak and Tabacco. To this end we also present some of the main results

of Cordero et al. concerning reproducing subgroups of the metaplectic group and

their connection to known function transforms in Section 4.2. In Section 4.3, we

generalize the Translation-Dilation-Shearing group to L2(Rd) for arbitrarily large

d. The Translation-Dilation-Shearing group maps under a certain representation to
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a group of operators that are related to the operators used in the shearlet trans-

form. We also fit the actual group of shearlet operators into the framework set up

by Cordero et al. in Section 4.4. We conclude with Section 4.5, which contains

references to other generalizations of shearlets and future directions of research.

4.2 Reproducing subgroups

4.2.1 Preliminaries

In a general sense, a reproducing formula is simply an integral representation

of the identity on some function space. Reproducing formulas are used throughout

mathematics and the sciences. The Cauchy integral formula of complex analysis

([51]), reconstruction in computed axial tomography ([87]), and resolutions of the

identity are all examples of such formulas. We shall be particularly interested in the

following types of reproducing formulas, which hold for all f ∈ L2(Rd),

f =

∫
H

〈f, µe(h)φ〉µe(h)φdh, (4.1)

where H is a Lie subgroup of a particular Lie group, µe is a particular representation

of that group, φ is a suitable window in L2(Rd), and the integral is interpreted

weakly. Equations which have the form of (4.1) arise in such areas as time-frequency

analysis, wavelet theory, and quantum mechanics ([53], [47]). If such a φ exists, we

shall call H a reproducing subgroup and any function φ which satisfies Eqn (4.1) a

reproducing function for H. We begin by introducing the Heisenberg group(s) and

Schrödinger representation.
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Definition 75. For d ≥ 1, the Heisenberg (Lie) group Hd is a central extension of

R2d by R, endowed with the manifold structure of R× R2d and the product

(λ, x, ξ) · (λ̃, x̃, ξ̃) = (λ+ λ̃+
1

2
(〈x̃, ξ〉 − 〈x, ξ̃〉), x+ x̃, ξ + ξ̃).

The Schrödinger representation ρ is a unitary representation of the Heisenberg

group. That is, ρ is a strongly continuous group homomorphism from Hd to the

unitary operators on L2(Rd) defined by ρ(λ, x, ξ) = e2πiλeπi〈x,ξ〉TxMξ.

We are now able to be more precise in our description of equation (4.1). We

would like to first clarify of which Lie group H is a subgroup. In order to do this,

we must define the symplectic group.

Definition 76. For d ≥ 1, let J =

 0 Id

−Id 0

. The symplectic group Sp(d,R)

is the subgroup of 2d× 2d matrices g ∈ M(2d,R) which satisfy tgJ g = J , where tg

denotes the transpose of g.

We shall make a few quick comments concerning the pertinent representation

theory. A detailed exposition may be found in [53]. Each symplectic matrix in-

duces a unitary representation of the Heisenberg group which, by the Stone-von

Neumann Theorem is equivalent to the Schrödinger representation. By considering

the relationship between each symplectic matrix and the corresponding intertwining

operators, one obtains a projective unitary representation of Sp(d,R). By passing

to the double cover of the Sp(d,R), the metaplectic group Mp(d,R), one obtains

an actual unitary representation µ, the metaplectic representation. Matrix mul-

tiplication defines an action of Sp(d,R) in R2d which in turn induces an action of
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Mp(d,R) on Hd. The metaplectic representation extends to the extended metaplectic

representation µe on Hd o Mp(d,R). We shall define µe to be

µe(x, ξ, A) = ρ(λ, x, ξ)µ(A), (λ, x, ξ, A) ∈ Hd o Mp(d,R). (4.2)

We use the standard model of the metaplectic representation which is given by the

following formulas:

µ

 A 0

0 tA−1

 f(x) = DA−1f(x), A ∈ GL(d,R), (4.3)

µ

 I 0

C I

 f(x) = eiπ〈Cx,x〉f(x), C ∈ M(d,R), C = tC (4.4)

µ(J ) = (−i)d/2F .

Sp(d,R) is generated by finite products of
 A 0

0 tA−1

 : A ∈ GL(d,R)

 ,


 I 0

C I

 : C ∈ M(d,R), C = tC

 , and J

(see, [47]). It follows from Schur’s Lemma that this definition of µ on generators of

Sp(d,R) is ambiguous up to sign; however, for the H we shall consider, (4.3) and

(4.4) explicitly define a representation.

The H in (4.1) shall be Lie subgroups of Sp(d,R) and µe defined as in (4.2). In

Theorems 89 and 107, we shall prove which φ ∈ L2(Rd) satisfy Eqn (4.1) for given

Lie subgroups H. The H that we shall use are related to the shearlet transform.
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4.2.2 Lie subgroups of R2 o Sp(1,R)

DeMari and Nowak classified all connected Lie subgroups, up to inner conju-

gation, of HoSp(1,R) and R2oSp(1,R) in [40]. They then analyzed those groups in

[39] and determined which ones were reproducing. It turns out that the reproducing

subgroups correspond to the known transforms of L2(R), namely, the Gabor-Weyl-

Heisenberg, wavelet and chirp transforms. One may hope that by characterizing

the reproducing subgroups of R2d o Sp(d,R), new transforms for L2(Rd) may be

discovered. However, the structure of R2d o Sp(2d,R) is incredibly complicated for

d > 1. For example, the affine (or ax + b) group embeds into R2d o Sp(d,R). The

representation of the affine group over R as the product of translation and dilation

operators splits into only two irreducible representations. However, the analogous

representation for the affine group over Rd, d > 1, is highly reducible ([53]). Also,

in order to characterize the Lie subgroups of R2 o Sp(1,R), DeMari and Nowak

used a characterization of the subgroups of Sp(1,R) that does not exist over higher

dimensions. Thus, it may not be possible to characterize all of the reproducing

subgroups of R2d o Sp(d,R) for d > 1. However, the theory may still be used in

order to find new transformations. In [29] and [30], the authors prove that 2 differ-

ent subgroups of R4 o Sp(2,R) are indeed reproducing. We will generalize one of

those, the Translation-Dilation-Shearing group, to higher dimensions in the follow-

ing section. There are some known dimension bounds for reproducing subgroups in

R2doSp(d,R) for arbitrary d ([28]). The bounds are sharp, but it is still not known

whether reproducing subgroups exist of the intermediate dimensions between the
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upper and lower bounds, even when d = 2.

4.3 Translation-dilation-shearing group

We begin with the following definition from [29] and [28].

Definition 77. The Translation-Dilation-Shearing Group isAt,`,y =

 t−1/2S`/2 0

t−1/2ByS`/2 t1/2(tS−`/2)

 : t > 0, ` ∈ R, y ∈ R2

 ,

where

By =

 0 y1

y1 y2

 , y = t(y1, y2) ∈ R2; S` =

 1 `

0 1

 , ` ∈ R.

The matrix S` is called a shearing matrix.

This group is a reproducing subgroup of Sp(2,R). We would like to generalize

the Translation-Dilation-Shearing group to higher dimensions. Under this extension,

a subgroup of Sp(1,R) which corresponds to wavelets in a certain way is a lower

dimensional analogue of the Translation-Dilation-Shearing group.

Definition 78. We define the following collection of sets, which we shall show are

Lie subgroups of Sp(k,R) for k ≥ 1:

(TDS)k =

At,`,y =

 t−1/2S`/2 0

t−1/2ByS`/2 t1/2(tS−`/2)

 : t > 0, ` ∈ Rk−1, y ∈ Rk


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where

By =





yk ; i = j = k

yj ; i = k, j < k

yi ; i < k, j = k

0 ; else


i,j

=



0 0 . . . y1

0 0 . . . y2

...
...

. . .
...

y1 y2 . . . yk


, y = t(y1, y2, · · · , yk) ∈ Rk.

For k ≥ 2 and ` = t(`1, `2, . . . `k−1) ∈ Rk−1, S` is the shearing matrix

S` =




1 ; i = j

`j ; 1 ≤ i ≤ k − 1, j = k

0 ; else


i,j

=



1 0 . . . 0 `1

0 1 . . . 0 `2

...
...

. . .
...

0 0 . . . 1 `k−1

0 0 . . . 0 1


For k = 1, we formally define S` for ` ∈ R0 to be simply 1.

Note that when k = 1,

(TDS)1 =

At,y =

 t−1/2 0

t−1/2By t1/2

 : t > 0, y ∈ R

 .

We will use both At,y and the formally defined At,`,y as notation in the case k = 1

while hopefully keeping the exposition clear. Furthermore, when k > 1, as a geo-

metric operator, S` fixes the kth dimension and stretches the first k− 1 coordinates

parallel to the kth coordinate. Mundane computations show that for `, ˜̀ ∈ Rk−1,

S`S˜̀ = S`+˜̀ and for y, ỹ ∈ Rk, By +Bỹ = By+ỹ.

Proposition 79. For any k ≥ 1, (TDS)k is a Lie subgroup of Sp(k,R) of dimension

2k.
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Proof. We first show that (TDS)k ⊆ Sp(k,R). Let 0 denote the matrix of all 0s of

the appropriate dimensions.

tAt,`,yJAt,`,y =

 t−1/2(tS`/2) t−1/2(tS`/2)By

0 t1/2S−`/2


 0 Ik

−Ik 0

At,`,y

=

 −t−1/2(tS`/2)By t−1/2(tS`/2)

−t1/2S−`/2 0


 t−1/2S`/2 0

t−1/2ByS`/2 t−1/2(tS−`/2)



=

 −t−1(tS`/2)ByS`/2 + t−1(tS`/2)ByS`/2
tS`/2

tS`/2

−S−`/2S`/2 0


= J .

We now show that (TDS)k is closed under multiplication. A quick computation

shows that

At,`,yAt̃,˜̀,ỹ =

 (tt̃)−1/2S`/2+˜̀/2 0

(tt̃)−1/2
(
ByS`/2+˜̀/2 + t(tS−`/2)BỹS˜̀/2

)
(tt̃)1/2(tS−`/2−˜̀/2)

 .

We would like to be able to write this in the form At,`,y, where t > 0, ` ∈ Rk−1,

y ∈ Rk. If we are able to do this, then t = tt̃, ` = `+ ˜̀ and y needs to be such that

ByS`/2+˜̀/2 + t(tS−`/2)BỹS˜̀/2 = ByS`/2+˜̀/2. We start with the base calculation

ByS` =





yi ; 1 ≤ i ≤ k − 1, j = k

yj ; i = k, 1 ≤ j ≤ k − 1

yk +
∑k−1

m=1 `mym ; i = j = k

0 ; else


i,j

.
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So

ByS`/2+˜̀/2 =





yi ; 1 ≤ i ≤ k − 1, j = k

yj ; i = k, 1 ≤ j ≤ k − 1

yk +
∑k−1

m=1
`m+˜̀

m

2
ym ; i = j = k

0 ; else


i,j

, and

tS−`/2BỹS˜̀/2 = tS−`/2





ỹi ; 1 ≤ i ≤ k − 1, j = k

ỹj ; i = k, 1 ≤ j ≤ k − 1

ỹk +
∑k−1

m=1

˜̀
m

2
ỹm ; i = j = k

0 ; else


i,j

=





ỹi ; 1 ≤ i ≤ k − 1, j = k

ỹj ; i = k, 1 ≤ j ≤ k − 1

ỹk +
(∑k−1

m=1

˜̀
m

2
ỹm

)
+
∑k−1

m=1−
`m
2
ỹm ; i = j = k

0 ; else


i,j

.

Thus ByS`/2+˜̀/2 + t(tS−`/2)BỹS˜̀/2

=





yi + tỹi ; 1 ≤ i ≤ k − 1, j = k

yj + tỹj ; i = k, 1 ≤ j ≤ k − 1

yk +
∑k−1

m=1
`m+˜̀

m
2 ym + t

(
ỹk +

∑k−1
m=1

−`m+˜̀
m

2 ỹm

)
; i = j = k

0 ; else


i,j

=





yi + tỹi ; 1 ≤ i ≤ k − 1, j = k

yj + tỹj ; i = k, 1 ≤ j ≤ k − 1

(yk + tỹk) +
(∑k−1

m=1
`m+˜̀

m
2 (ym + tỹm)

)
− 2

∑k−1
m=1

`m
2 tỹm ; i = j = k

0 ; else


i,j

.
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If ByS`/2+˜̀/2 + t(tS−`/2)BỹS˜̀/2 = ByS`/2+˜̀/2, then

yi = yi + tỹi, for 1 ≤ i ≤ k − 1 and

yk +
k−1∑
m=1

`m + ˜̀
m

2
ym = (yk + tỹk) +

(
k−1∑
m=1

`m + ˜̀
m

2
(ym + tỹm)

)
− 2

k−1∑
m=1

`m
2
tỹm

⇒ yk = yk + tỹm −
k−1∑
m=1

`mtỹm.

So each (TDS)k corresponds to a subgroup of Sp(k,R) with a group operation

parameterized by

(t, `, y)(t̃, ˜̀, ỹ) = (tt̃, `+ ˜̀, t(y1 + tỹ1, . . . , yk−1 + tỹk−1, yk + tỹk −
k−1∑
m=1

`mtỹm)),

when k > 1 and

(t, y)(t̃, ỹ) = (tt̃, y + tỹ),

when k = 1, with identity the identity matrix corresponding to (1, 0, 0) for any

k ≥ 1. Hence for each k ≥ 1, (TDS)k is a matrix group. In particular, each (TDS)k

is a Lie subgroup of Sp(k,R). Finally, (TDS)k is of dimension 1+(k−1)+k = 2k.

We now define the first of three unitary representations of (TDS)k, the wavelet

representation. This representation is called the wavelet representation because each

element of the Lie group is mapped to a product of a translation and a dilation

operator.

Proposition 80. The mapping ν defined on each (TDS)k by

ν(At,`,y) = TyDt−1(tS`)

is a unitary representation.
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Proof. Let y, ỹ ∈ Rk, t, t̃ > 0, `, ˜̀∈ Rk−1. We shall compute (TyDt−1(tS`))(TỹDt̃−1(tS˜̀)
).

For f ∈ L2(Rk),

(TyDt−1(tS`))(TỹDt̃−1(tS˜̀)
)f(x) = t̃−k/2TyDt−1(tS`)f(t̃−1(tS˜̀(x− ỹ))

= (tt̃)−k/2f((tt̃)−1(tS`+˜̀(x− (y + ttS−`ỹ))).

We compute

tS−`ỹ =



ỹ1

ỹ2

...

ỹk −
∑k−1

m=1 `mỹm



y + ttS−`ỹ =



y1 + tỹ1

y2 + tỹ2

...

yk + tỹk −
∑k−1

m=1 `mtỹm


Hence

(TyDt−1(tS`))(TỹDt̃−1(tS˜̀)
) = TyD(tt̃)−1(tS`+˜̀)

,

where yi = yi + tỹi for 1 ≤ i ≤ k − 1 and yk = yk + ỹk −
∑k−1

m=1 `mtỹm. Thus

ν(At,`,y)ν(At̃,˜̀,ỹ) = ν(At,`,yAt̃,˜̀,ỹ). Strong continuity of the representation follows

from the strong continuity of the translation and dilation operators. It follows that

each ν is a unitary representation.

Thus, the (TDS)k groups generate composite dilation wavelets. The second

representation is derived from the first.
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Definition 81. Conjugate ν with F to obtain the π representation of each (TDS)k

π(At,y)f(u) = F ◦ ν(At,y) ◦ F−1f(u) = e−2πiyuDtf(u), k = 1

π(At,`,y)f(u) = F ◦ ν(At,`,y) ◦ F−1f(u) = e−2πi〈y,u〉DtS−`f(u), k > 1

The final representation that we consider in this section is the metaplectic

representation. We make use of the factorization

At,`,y = Dt,`Lt,y,` =

 t−1/2S`/2 0

0 t1/2(tS−`/2)


 I 0

t−1(tS`/2)ByS`/2 I

 .

Then for f ∈ L2(Rk) by Eqns (4.3) and (4.4),

µ(At,`,y)f(x) = [µ(Dt,`)µ(Lt,y,`)f ] (x)

= tk/4 [µ(Lt,y,`)f ] (t1/2S−`/2x)

= tk/4e−iπ〈
tS`/2Byx,S−`/2x〉f(t1/2S−`/2x)

= tk/4e−iπ〈Byx,x〉f(t1/2S−`/2x).

We record the Haar measures of the (TDS)k for future use.

Proposition 82. The left Haar measures, up to normalization, of the (TDS)k are

dτ = dt
t2
dy for k = 1 and dτ = dt

tk+1dyd` for k > 1, where dt, dy and d` are the

Lebesgue measures over R+, Rk and Rk−1, respectively.

Proof. Assume that k > 1. Let f be integrable with respect to dτ . We shall use the

89



notation f(t, `, y) = f(At,`,y). Then

∫
(TDS)k

f(At̃,˜̀,ỹAt,`,y)
dt

tk+1
dyd` =

∫
Rk−1

∫
Rk

∫ ∞
0

f(t̃t, ˜̀+ `, ỹ + t̃(tS−˜̀)y)
dt

tk+1
dyd`

=

∫
Rk−1

∫
Rk

∫ ∞
0

f(t, ˜̀+ `, ỹ + t̃(tS−˜̀)y)
1

t̃

dt

(t/t̃)k+1
dyd`

=

∫
Rk−1

∫
Rk

∫ ∞
0

f(t, ˜̀+ `, y)
t̃kdt

t
k+1

dy

t̃k
d`

=

∫
Rk−1

∫
Rk

∫ ∞
0

f(t, `, y)
dt

t
k+1

dyd`

=

∫
(TDS)k

f(At,`,y)
dt

t
k+1

dyd`

=

∫
(TDS)k

f(At,`,y)
dt

tk+1
dyd`.

The ` component did not affect the t or y components. Thus, the calculation above

also proves the claim for k = 1 as a degenerate case.

We shall now build a collection of auxiliary results in order to prove admissi-

bility conditions for the (TDS)k.

Definition 83. For k = 1 define the sets R± = Ṙ± = {±x > 0} ⊂ R, and for k > 1

Ṙk
± = {(x1, x2, . . . , xk) : x1, x2, . . . , xk−1 6= 0,±xk > 0} ⊂ Rk and

Rk
± = {(x1, x2, . . . , xk) : ±xk > 0} ⊂ Rk.

Further define the mapping Ψ : Rk → Rk by

x 7→ (x1xk, x2xk, . . . , xk−1xk,
x2
k

2
) for k ≥ 2, and (4.5)

x 7→ x2

2
for k = 1. (4.6)

The following proposition is an extension of Proposition 4.1 in [29].
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Proposition 84. The mappings defined on lines (4.5) and (4.6) restrict to diffeo-

morphisms Ψ : Ṙk
± → Ṙk

+ and is such that Ψ(−x) = Ψ(x). Further, they satisfy

a. The Jacobian of Ψ at x = (x1, x2, . . . , xk) ∈ Ṙk
± is JΨ(x) = xkk;

b. The Jacobian of Ψ−1 : Ṙk
+ → Ṙk

+ at u = (u1, u2, . . . , uk) = Ψ(x1, x2, . . . , xk) is

JΨ−1(u) = (2uk)
−k/2 = x−kk ;

c. Ψ−1(t2S2`u) = tS`Ψ
−1(u) for every u ∈ Rk

±; and

d. 〈Byx, x〉 = 〈2y,Ψ(x)〉 for every x ∈ Ṙk
± and every y ∈ Rk.

Proof. Clearly, Ψ(−x) = Ψ(x). We calculate the matrices of the partials.

∂Ψ(x)i
∂xj

=


xk ; i = j

xi ; j = k

0 ; else

and

∂Ψ−1(u)i
∂uj

=


(2uk)

−1/2 ; i = j

−ui(2uk)−3/2 ; j = k, i < k

0 ; else

Hence the Jacobian of Ψ at x is det
(
∂Ψ(x)i
∂xj

)
i,j

= xkk, and the Jacobian of Ψ−1 at

u = Ψ(x) is det
(
∂Ψ−1(u)i

∂uj

)
i,j

= (2uk)
−k/2 = x−kk . We now prove parts (c) and (d).

Ψ−1(t2S2`u) = Ψ−1(t2(t(u1 + 2`1uk, . . . , uk−1 + 2`k−1uk, uk))

= t(t2(u1 + 2`1uk/
√

2t2uk), . . . , t
2(uk−1 + 2`k−1uk/

√
2t2uk),

√
t2uk)

= tt(
u1√
2uk

+ `1

√
2uk, . . . ,

uk−1√
2uk

+ `k−1

√
2uk,
√
uk)

= tS`Ψ
−1(u).
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When k = 1, the preceding computation simply consists of the kth coordinate. Also,

〈Byx, x〉 = t(y1xk, . . . , yk−1xk,

k∑
i=1

yixi)

=
k−1∑
i=1

yixixk +
k∑
i=1

yixixk

= 2

[
(
k−1∑
i=1

yixixk) + yk(
1

2
x2
k)

]
= 〈2y,Ψ(x)〉.

Since Ψ and Ψ−1 are smooth, bijective self maps of Ṙk
+ with non-vanishing Jacobians,

they are diffeomorphisms. By considering −Ψ−1, we can see that Ψ : Ṙk
− → Ṙk

+ is

also a diffeomorphism.

The following function class will be useful in a number of proofs.

Definition 85. Define L2(Rk) to be the collection

{f ∈ L2(Rk) : supp f ⊆ {‖u1, . . . , uk−1‖ < C} × {c < ‖uk‖ < C}, 0 < c < C <∞}.

Lemma 86. Let 1+ = 1Ṙk+
. If h ∈ L2(Rk), then

1+(u)

(2uk)k/2
(h(Ψ−1(u)) + h(−Ψ−1(u)) ∈ L1 ∩ L2(Rk).

Proof. We first show that h(Ψ−1(·)) ∈ L2(Ṙk
+):

∫
Ṙk+
|h(Ψ−1(u))|2du =

∫
Ṙk+
|h(x)|2xkkdx

≤ ‖h‖2
L2(Rk) esssupx∈supph |xk|k

< ∞.
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We examine the support of h(±Ψ−1(·)). For almost all u with uk 6= 0:

h(±Ψ−1(u)) 6= 0 ⇒ ‖ u1√
2uk

, . . . ,
uk−1√

2uk
‖ < C and c <

√
2uk < C

⇔

√∑k−1
i=1 u

2
i

2uk
< C and

c2

2
< uk <

C2

2

⇔

√√√√k−1∑
i=1

u2
i < C2 and

c2

2
< uk <

C2

2
.

Hence, f(u) = 1+(u)[h(Ψ−1(u))+h(−Ψ−1(u))] ∈ L2(Rk) has support in the compact

set

{t(u1, . . . , uk−1) : ‖u1, . . . , uk−1‖ < C2} × {uk :
c2

2
< ‖uk‖ <

C2

2
}.

Thus, if we show that f(u)

(2uk)k/2
∈ L2(Rk), we will have proven the claim. We compute∫

Rk

|f(u)|2

(2uk)k
du <

2k

c2k
‖f‖L2(Rk) <∞.

The following lemma is a generalization of Lemma 4.4 in [29], which is about

functions in L2(R2). The preceding lemma is neither stated nor proven in [29],

but it is necessary to justify the proof of Lemma 4.4. Also, the hypotheses of the

following lemma in the case that k = 2 are slightly different that than the hypotheses

on Lemma 4.4 in [29]. The hypotheses in [29] allow for possible divergence of the

integrals and make certain lines in the proof purely formal calculations. Other than

those points, the proof of the following lemma closely mimics the proof of Lemma

4.4 in [29].

Lemma 87. Let 1+ = 1Ṙk+
. Let h ∈ L2(Rk). Then∫

Rk

∣∣∣∣∫
Rk
h(x)e2πi〈y,Ψ(x)〉dx

∣∣∣∣2 dy =

∫
Rk+
|h(x) + h(−x)|2dx

xkk
.
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Proof. By the properties of Ψ listed in Proposition 84,

∫
Rk
h(x)e2πi〈y,Ψ(x)〉dx =

(∫
Ṙk+

+

∫
Ṙk−

)
h(x)e2πi〈y,Ψ(x)〉dx

=

∫
Ṙk+
h(x)e2πi〈y,Ψ(x)〉dx+

∫
Ṙk+
h(−x)e2πi〈y,Ψ(−x)〉dx

=

∫
Ṙk+

[h(x) + h(−x)]e2πi〈y,Ψ(x)〉dx

=

∫
Ṙk+

[h(Ψ−1(u)) + h(−Ψ−1(u))]e2πi〈y,u〉 du

(2uk)k/2

=

∫
Rk

1+(u)

(2uk)k/2
[h(Ψ−1(u)) + h(−Ψ−1(u))]e2πi〈y,u〉du.(4.7)

Since 1+(u)

(2uk)k/2
[h(Ψ−1(u))+h(−Ψ−1(u))]e2πi〈y,u〉 ∈ L1∩L2(Rk) by Lemma 86, it follows

from Parseval’s equality that

‖(Eqn 4.7)‖2
L2(Rk) =

∫
Rk

∣∣∣∣∫
Rk

1+(u)

(2uk)k/2
[h(Ψ−1(u)) + h(−Ψ−1(u))]e2πi〈y,u〉du

∣∣∣∣2 dy
=

∫
Rk

∣∣∣∣ 1+(u)

(2uk)k/2
[h(Ψ−1(u)) + h(−Ψ−1(u))]

∣∣∣∣2 du
=

∫
Ṙk

∣∣h(Ψ−1(u)) + h(−Ψ−1(u))
∣∣2 du

(2uk)k/2

=

∫
Ṙk
|h(x) + h(−x)|2 x

k
kdx

x2k
k

=

∫
Ṙk
|h(x) + h(−x)|2 dx

xkk
.

Proposition 84 can be used to prove the equivalence the wavelet and meta-

plectic representations of the (TDS)k groups.

Theorem 88. Let u ∈ Ṙk
+ and extend the map Qf(u) = |2uk|−k/4f(Ψ−1(u)) as an

even function to Rk\{x1x2 . . . xk = 0}. This is a unitary map of L2
even(Rk) onto

itself that intertwines the representations π and µ.
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Proof. Let k > 1. Initially note that Q−1f(u) = |uk|k/2f(Ψ(u)). Let f ∈ L2
even(Rk).

We use the Jacobian calculation from Proposition 84 to determine that

‖Qf‖2
L2(Rk) =

∫
Rk
|Qf(u)|2du

= 2

∫
Rk+

1

(2uk)k/2
|f(Ψ−1(u))|2du

= 2

∫
Rk+
|f(x)|2dx

= ‖f‖2
L2(Rk).

As a surjective isometry Q is a unitary on L2
even(Rk). By Proposition 84.c and the

fact that the kth coordindate of a vector is fixed by multiplication by a shearing

matrix, we obtain

π(At,`,y)(Qf)(u) = tk/2e−2πi〈y,u〉(Qf)(tS−`u)

=
tk/2

|2tuk|k/4
e−2πi〈y,u〉f(Ψ−1(tS−`u))

=
tk/4

|2uk|k/4
e−2πi〈y,u〉f(t1/2S−`/2Ψ−1(u)).

We apply lines (4.3) and (4.4) and Proposition 84.d to obtain

Q(µ(At,`,y)f) =
1

|2uk|k/4
(µ(At,`,y)f)(Ψ−1(u))

=
tk/4

|2uk|k/4
e−iπ〈ByΨ−1(u),Ψ−1(u)〉f(t1/2S−`/2Ψ−1(u))

=
tk/4

|2uk|k/4
e−2πi〈y,u〉f(t1/2S−`/2Ψ−1(u))

= π(At,`,y)(Qf)(u),

as desired.

Finally, for H = (TDS)k, we characterize the φ which satisfy Eqn (4.1).

95



Theorem 89.

‖f‖2
L2(Rk) =

∫
(TDS)k

|〈f, µ(At,`,y)φ〉|2
dt

tk+1
dyd` for all f ∈ L2(Rk)

if and only if

2−k =

∫
Rk+
|φ(y)|2 dy

y2k
k

=

∫
Rk+
|φ(−y)|2 dy

y2k
k

(4.8)

0 =

∫
R2

+

φ(y)φ(−y)
dy

y2k
k

. (4.9)

Proof. The case k = 1 was proven in [39]. Let k > 1. Assume that for all f ∈ L2(Rk),

‖f‖2
L2(Rk) =

∫
(TDS)k

|〈f, µ(At,`,y)φ〉|2
dt

tk+1
dyd`.

Then, in particular, this holds for all f ∈ L∞∩L2(R2). Let f ∈ L∞∩L2(Rk) and set

h(x) = f(x)φ(t1/2S−`/2x). Since φ ∈ L2(Rk), h ∈ L∞ ∩ L2(Rk), we use Proposition

84 to obtain

‖f‖2
L2(Rk) =

∫
Rk−1

∫
Rk

∫ ∞
0

∣∣∣∣∫
Rk
h(x)e2πi〈y,Ψ(x)〉dx

∣∣∣∣2 dt

t(k/2)+1
dyd`

=

∫
Rk−1

∫ ∞
0

∫
Ṙk+
|h(x) + h(−x)|2dx

xkk

dt

t(k/2)+1
d`

=

∫
Rk−1

∫ ∞
0

∫
Ṙk+

(|h(x)|2 + 2<h(x)h(−x) + |h(−x)|2)
dx

xkk

dt

t(k/2)+1
d`

= A+B + C,

where

A =

∫
Rk−1

∫ ∞
0

∫
Ṙk+
|f(x)|2|(φ(t1/2S−`/2x)|2dx

xkk

dt

t(k/2)+1
d`

B =

∫
Rk−1

∫ ∞
0

∫
Ṙk+
|f(−x)|2|(φ(−t1/2S−`/2x)|2dx

xkk

dt

t(k/2)+1
d`

C = 2<
∫

Rk−1

∫ ∞
0

∫
Ṙk+
f(x)f(−x)φ(t1/2S−`/2x)φ(−t1/2S−`/2x)

dx

xkk

dt

t(k/2)+1
d`.
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Assume further that f vanishes on Ṙk
−. Then B = C = 0 and ‖f‖L2(Rk) = A. We

perform a change of variables

(t, `) 7→ y =



y1

y2

...

yk−1

yk


= t1/2S−`/2x =



t1/2(x1 − `1
2
xk)

t1/2(x2 − `2
2
xk)

...

t1/2(xk−1 − `k−1

2
xk)

t1/2xk


.

The matrix of mixed partials is

1
2
t−1/2(x1 − `1

2
xk)

1
2
t−1/2(x2 − `2

2
xk) . . . 1

2
t−1/2(xk−1 − `k−1

2
xk)

1
2
t−1/2xk

− t1/2xk
2

0 . . . 0 0

...
...

. . .
...

...

0 − t1/2xk
2

. . . 0 0

0 0 . . . − t1/2xk
2

0


.

So dtd` = 2k

t(k−2)/2xkk
dy and t−k =

x2k
k

y2kk
. Thus,

‖f‖2
L2(Rk) =

∫
Ṙk+

∫
Ṙk+
|f(x)|2|φ(y)|2dx

xkk

(
2k

xkk

)(
x2k
k

y2k
k

)
dy

=

∫
Ṙk+

∫
Ṙk+
|f(x)|2|φ(y)|2 2k

y2k
k

dxdy

= ‖f‖2
L2(Rk)

∫
Ṙk+
|φ(y)|2 2k

y2k
k

dy.

Similarly, now assume that f ∈ L∞ ∩ L2(Rk) is supported in R̈k
−. Then,

‖f‖2
L2(Rk) = B

=

∫
Ṙk+

∫
Ṙk−
|f(x)|2|φ(−y)|2 2k

y2k
k

dxdy

= ‖f‖2
L2(Rk)

∫
Ṙk+
|φ(−y)|2 2k

y2k
k

dy.
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Thus any reproducing function must satisfy (4.8). Now simply assume that f ∈

L∞ ∩ L2(Rk) and assume that φ satisfies (4.8). Then

‖f‖2
L2(Rk) = ‖f‖2

L2(R̈k+)
+ ‖f‖2

L2(R̈k−)
+ C,

which implies that C = 0. Also

0 = C = 2<
∫

Ṙk+

∫
Ṙk+
f(x)f(−x)φ(y)φ(−y)

2k

y2k
k

dydx. (4.10)

Assume that
∫

R̈k+
f(x)f(−x)dx 6= 0. If f is also real valued, then (4.10) implies

that <
∫

Ṙk+
φ(y)φ(−y) dy

y2kk
= 0. If f is purely imaginary, then (4.10) implies that

=
∫

Ṙk+
φ(y)φ(−y) dy

y2kk
= 0. Hence φ must satisfy (4.9).

Conversely, assume that f ∈ L∞ ∩ L2(Rk). By the preceding arguments,

∫
(TDS)k

|〈f, µ(At,`,y)φ〉|2
dt

tk+1
dyd` =

∫
Ṙk+
|f(x)|2dx

∫
Ṙk+
|φ(y)|2 2k

y2k
k

dy

+

∫
Ṙk−
|f(x)|2dx

∫
Ṙk+
|φ(−y)|2 2k

y2k
k

dy

+2<
∫

Ṙk+
f(x)f(−x)dx

∫
Ṙk+
φ(y)φ(−y)

2k

y2k
k

dy.

If φ satisfies (4.8) and (4.9), then

∫
(TDS)k

|〈f, µ(At,`,y)φ〉|2
dt

tk+1
dyd` =

(∫
Ṙk−

+

∫
Ṙk+

)
|f(x)|2dx+ 0 = ‖f‖2

L2(Rk).

Now let f be any arbitrary function in L2(Rk) where φ still satisfies (4.8) and (4.9).

Since L∞ ∩ L2(Rk) is dense in L2(Rk),we can chose a {fn} ⊂ L∞ ∩ L2(Rk) which

converges to f in L2(Rk). For any fn, fm, the difference fn−fm lies in L∞∩L2(Rk).

Hence

‖〈fn, µ((At,`,y)φ〉 − 〈fm, µ((At,`,y)φ〉‖2
L2((TDS)k) = ‖fn − fm‖2

L2(Rk) → 0
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as n,m→∞. Hence, {〈fn, µ(At,`,y)φ〉}n is a Cauchy sequence in L2((TDS)k). Also,

it follows from the Cauchy-Schwarz inequality over L2(Rk) that {〈fn, µ(At,`,y)φ〉}n

converges pointwise to 〈f, µ(At,`,y)φ〉. A sequence which is Cauchy in norm and

additionally converges pointwise also converges in norm to the pointwise limit. Thus,

‖f‖2
L2(Rk) = lim

n→∞
‖fn‖2

L2(Rk)

= lim
n→∞

∫
(TDS)k

|〈fn, µ(At,`,y)φ〉|2
dt

tk+1
dyd`

=

∫
(TDS)k

|〈f, µ(At,`,y)φ〉|2
dt

tk+1
dyd`,

as desired.

4.3.1 Building Reproducing Functions for (TDS)k

We would like to present some simple methods to build reproducing functions

for (TDS)k. We are inspired by [30], which contains the following two theorems.

Theorem 90. φ0 ∈ L2(R) is a reproducing function for R2 × {I} ≤ R2 o Sp(1,R)

if and only if φ0 ∈ L2(R) and ‖φ0‖ = 1. φ1 ∈ L2(R) is a reproducing function for

(TDS)1 ≤ R2 o Sp(1,R) if and only if φ1 ∈ L2(R) and∫ ∞
0

|φ1(x)|2dx
x2

=

∫ ∞
0

|φ1(−x)|2dx
x2

=
1

2
,

∫ ∞
0

φ1(x)φ1(−x)
dx

x2
= 0.

Theorem 91. Let φ0 ∈ L2(R) be a reproducing function for R2×{I} ≤ R2oSp(1,R)

and φ1 ∈ L2(R) be a reproducing function for (TDS)1 ≤ R2 o Sp(1,R). Then if

φ̃1(y) = yφ(y),

φ(x) =
1√
2

(φ0 ⊗ φ̃1)(x), x ∈ R2,

is a reproducing function for (TDS)2.
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We generalize this result to obtain the following theorem.

Theorem 92. Let φ0 ∈ L2(R) be a reproducing function for R2×{I} ≤ R2oSp(1,R)

and let φk−1 ∈ L2(Rk−1) be a reproducing function for (TDS)k−1. Then

φ(x) =
xk√

2
(φ0 ⊗ φk−1)(x), x ∈ Rk

is a reproducing function for (TDS)k.

Proof. By Theorem 90 φ0 satisfies ‖φ0‖ = 1 and φk−1 satisfies

1 = 2k−1

∫
Rk−1

+

|φk−1(x)|2 dx

x
2(k−1)
k−1

,

1 = 2k−1

∫
Rk−1

+

|φk−1(−x)|2 dx

x
2(k−1)
k−1

, and

0 = 2k−1

∫
Rk−1

+

φk−1(x)φk−1(−x)
dx

x
2(k−1)
k−1

.

So

2k
∫

Rk+
|φ(x)|2 dx

x2k
k

= 2k
∫

Rk+
| xk√

2
(φ0 ⊗ φk−1)(x)|2 dx

x2k
k

= 2k−1

∫
R
|φ0(x1)|2dx1

∫
Rk−1

+

|φk−1(x)|2 dx

x
2(k−1)
k−1

= 2k−1 · 1 · 1

2k−1

= 1.

Similarly, 2k
∫

Rk+
|φ(−x)|2 dx

x2k
k

= 1. Finally,∫
Rk+
φ(x)φ(−x)

dx

x2k
k

=
1

2

∫
R
φ0(x1)φ0(−x1)dx1

∫
Rk−1

+

φk−1(x)φk−1(−x)
dx

x
2(k−1)
k−1

=
1

2

(∫
R
φ0(x1)φ0(−x1)dx1

)
· 0

= 0.
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This leads to the following corollary.

Corollary 93. Let φ0 ∈ L2(R) be a reproducing function for R2 × {I} ≤ R2 o

Sp(1,R) and let φ1 ∈ L2(R) be a reproducing function for (TDS)1. Then

φ(x) =
1

2(k−1)/2

(
(⊗k−1

i=1 φ0)⊗ φ̃1

)
(x), x ∈ Rk,

where φ̃1(y) = yk−1φ1(y), is a reproducing function for (TDS)k.

We shall now now explicitly construct a class of functions which are reproduc-

ing functions for (TDS)1.

Theorem 94. Let f : R→ R be supported in some interval [0, b], b > 0 and satisfy∫
f 2(x)dx = 1

4
. For a > 0, define

φ(x) = x (f(x− a)− f(−x+ a+ 2b) + f(x+ a+ b) + f(−x− a− b)) .

Then φ is a reproducing function for (TDS)1.

Proof. By Theorem 90, it suffices to show that

0 =

∫ ∞
0

φ(x)φ(−x)
dx

x2
and

1

2
=

∫ ∞
0

|φ(x)|2dx
x2

=

∫ ∞
0

|φ(−x)|2dx
x2
.

We note that the following shifts have supports contained in

shift supp

f(· − a) [a, a+ b]

f(− ·+a+ 2b) [a+ b, a+ 2b]

f(·+ a+ b) [−a− b,−a]

f(− · −a− b) [−a− 2b,−a− b].
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So

∫ ∞
0

φ(x)φ(−x)
dx

x2
=

∫ a+b

a

f(x− a)φ(−x)
dx

x
−
∫ a+2b

a+b

f(−x+ a+ 2b)φ(−x)
dx

x

=

∫ a+b

a

f(x− a)f(−x+ a+ b)dx−
∫ a+2b

a+b

f(−x+ a+ 2b)f(x− a− b)dx

=

∫ a+b

a

f(x− a)f(−x+ a+ b)dx−
∫ a+b

a

f(−(u+ b) + a+ 2b)f((u+ b)− a− b)du

= 0.

Also,

∫ ∞
0

|φ(x)|2dx
x2

=

∫ ∞
0

f 2(x− a) + f 2(−x+ a+ 2b)dx

=
1

4
+

1

4

=
1

2
and

∫ ∞
0

|φ(−x)|2dx
x2

=

∫ ∞
0

f 2(−x+ a+ b) + f 2(x− a− b)dx

=
1

4
+

1

4

=
1

2
.

The restrictions on f are so light that we are able to grant φ certain properties.

Example 95.

• Let f(x) = 1[0, 1
4

], then f trivially satisfies the hypotheses of Theorem 94.

• If f = 1√
π

cos ·1[0,
π
2
], then a simple calculation shows that f may be used as

in Theorem 94.
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• If f ∈ C∞c (R) has support in [0, b] and is scaled so that
∫
f 2 = 1

4
, then the

resulting φ will also lie in C∞c .

4.4 Shearlets and the extended metaplectic group

Inspired by our work on the translation-dilation-shearing groups, whose very

names suggest something shearlet-like, we would like to connect the continuous

shearlet transform to a subgroup of Sp(2,R) in such a way that the methods of

section 4.3 may be applied. We hope that this novel approach will yield a natural

generalization of shearlets to higher dimension. To this end, we present the following

definition and proposition.

Definition 96. The continuous shearlet group, (CSG)2, is

(CSG)2 = {Sa,`,y =

 S−`/2Aa 0

ByS−`/2Aa tS`/2A−1
a

 : a > 0, ` ∈ R, y ∈ R2},

where S` =

 1 `

0 1

, Aa =

 1 0

0 a−1/2

 = 1
a
Aa, and By =

 0 y2

y2 y1

 = B(y2y1)
.

Proposition 97. (CSG)2 is a Lie subgroup of Sp(2,R) of dimension 4.

Proof. Let Sa,`,y and Sã,˜̀,ỹ be arbitrary elements of (CSG)2. We first show that
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(CSG)2 ⊂ Sp(2,R).

tSa,`,yJSa,`,y =

 AatS−`/2 AatS−`/2By
0 tA−1

a S`/2


 0 I2

−I2 0

Sa,`,y

=

 −AatS−`/2By AatS−`/2
−tA−1

a S`/2 0


 S−`/2Aa 0

ByS−`/2Aa tS`/2A−1
a



=

 −AatS−`/2ByS−`/2Aa +AatS−`/2ByS−`/2Aa AatS−`/2tS`/2A−1
a

−tA−1
a S`/2S−`/2Aa 0


= J .

We now compute

Sa,`,ySã,˜̀,ỹ =

 S−`/2Aa 0

ByS−`/2Aa tS`/2A−1
a


 S−˜̀/2Aã 0

BỹS−˜̀/2Aã
tS˜̀/2A

−1
ã



=

 S−`/2AaS−˜̀/2Aã 0

ByS−`/2AaS−˜̀/2Aã + tS`/2A−1
a BỹS−˜̀/2Aã

tS`/2A−1
a

tS˜̀/2A
−1
ã



=

 S−`/2S−a1/2 ˜̀/2AaAã 0

(ByS−`/2Aa + tS`/2A−1
a Bỹ)S−˜̀/2Aã

tS`/2
tSa1/2 ˜̀/2A−1

a A−1
ã

 ,
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where (ByS−`/2Aa + tS`/2A−1
a Bỹ)S−˜̀/2Aã

=


 0 a−1/2y2

y2
−a−1/2`

2
y2 + a−1/2y1

+

 0 ỹ2

a1/2ỹ2
`
2
ỹ2 + a1/2ỹ1



 1 −ã−1/2 ˜̀

2

0 ã−1/2



=

 0 a−1/2y2 + ỹ2

y2 + a1/2ỹ2
−a−1/2`

2
y2 + a−1/2y1 + `

2
ỹ2 + a1/2ỹ1


 1 −ã−1/2 ˜̀

2

0 ã−1/2



=

 0 (aã)−1/2(y2 + a1/2ỹ2)

y2 + a1/2ỹ2
−(aã)−1/2

2
(`+ a1/2 ˜̀)(y2 + a1/2ỹ2) + (aã)−1/2(y1 + aỹ1 + a1/2`ỹ2)


= B

(
y1+aỹ1+a1/2`ỹ2

y2+a1/2ỹ2
)
S−(`+a1/2 ˜̀)

2

Aaã.

So Sa,`,ySã,˜̀,ỹ = Sa,`,y, where a = aã, ` = ` + a1/2 ˜̀ and y =
(
y1+aỹ1+a1/2`ỹ2

y2+a1/2ỹ2

)
. Thus

(CSG)2 is a Lie subgroup of Sp(2,R). The parameterization of (CSG)2 yields the

dimension.

As we did in Section 4.3, we shall again present three representations of

(CSG)2. We shall begin with a “wavelet representation,” which we shall also denote

with a ν.

Definition 98. Define the wavelet representation of (CSG)2 by

ν(Sa,`,y) = TyD(S`Aa)−1 .

Proposition 99. ν is a unitary representation of (CSG)2.

Proof. Each ν(Sa,`,y) is a unitary operator on L2(R2). In the proof of Proposition

97, we showed

Sa,`,ySã,˜̀,ỹ = Sa,`,y,
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where a = aã, ` = ` + a1/2 ˜̀ and y =
(
y1+aỹ1+a1/2`ỹ2

y2+a1/2ỹ2

)
. Thus, it suffices to show that

TyD(S`Aa)−1TỹD(S˜̀Aã)−1 = TyD(S`Aa)−1 . Commutation relations yield that

TyD(S`Aa)−1TỹD(S˜̀Aã)−1 = TyTS`AaỹD(S`Aa)−1D(S˜̀Aã)−1

= Ty+S`AaỹD(S`AaS˜̀Aã)−1

= T
(
y1+aỹ1+a1/2`ỹ2

y2+a1/2ỹ2
)
D(S

`+a1/2 ˜̀Aaã)−1 ,

as desired. Strong continuity follows from traits of the dilation and translation

operators.

We obtain the second representation by conjugating ν with F .

Definition 100. The unitary representation π of (CSG)2 is

π(Sa,`,y)f(u) = F ◦ ν(Sa,`,y) ◦ F−1f(u).

Finally, we consider the metaplectic representation of (CSG)2. For f ∈ L2(R2), it

follows from lines (4.3) and (4.4) that

µ(Sa,`,y)f(x) =

µ
 S−`/2Aa 0

0 tS`/2A−1
a

µ

 I 0

AatS−`/2ByS−`/2Aa I

 f

 (x)

= a1/4

µ
 I 0

AatS−`/2ByS−`/2Aa I

 f

 (A−1
a S`/2x)

= a1/4e−πi〈(Aa
tS−`/2ByS−`/2Aa)(A−1

a S`/2x),A−1
a S`/2x〉f(A−1

a S`/2x)

= a1/4e−πi〈
tS−`/2Byx,S`/2x〉f(A−1

a S`/2x)

= a1/4e−πi〈Byx,x〉f(A−1
a S`/2x).

We move on to presenting a Haar measure of (CSG)2.

106



Proposition 101. Let da, dy and d` be the Lebesgue measures over R+, R2 and R,

respectively. Then da
a3dyd` is a left Haar measure of (CSG)2.

Proof. Let f be integrable with respect to da
a3dyd`. We shall use the notation

f(a, `, y) = f(Sa,`,y).

Then

∫
(CSG)2

f(Sã,˜̀,ỹSa,`,y)
da

a3
dyd` =

∫
R

∫
R2

∫ ∞
0

f(ãa, ˜̀+ ã−1/2`, ỹ + S˜̀Aãy)
da

a3
dyd`

=

∫
R

∫
R2

∫ ∞
0

f(a, ˜̀+ ã−1/2`, ỹ + S˜̀Aãy)
da

ã

1

(a/ã)3
dyd`

=

∫
R

∫
R2

∫ ∞
0

f(a, ˜̀+ ã−1/2`, y)
da

a3 ã
2 dy

ã1/2
d`

=

∫
R

∫
R2

∫ ∞
0

f(a, `, y)
da

a3 ã
3/2 dy

ã1/2

d`

ã3/2

=

∫
(CSG)2

f(a, `, y)
da

a3
dyd`.

Also, in analog to line (4.5), define the mapping

Φ : R2 → R2 by x 7→
(

1
2
x2

2

x1x2

)
.

Also define

R̈2
± = {

(
x1

x2

)
: x2 6= 0,±x1 > 0}.

Proposition 102. The mapping Φ induces diffeomorphisms Φ : R̈2
± → R̈2

+ and is

such that Φ(−x) = Φ(x). Further, it satisfies

a. The Jacobian of Φ at x ∈ R̈2
± is JΦ(x) = −x2

2;

b. The Jacobian of Φ−1 : R̈2
+ → R̈2

+ at u = Φ(x) is JΦ−1(u) = −1
2u1

;
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c. Φ−1(Aa
tS`u) = A−1

a S`/2Φ−1(u) for every u ∈ R̈2
+; and

d. 〈Byx, x〉 = 2〈y,Φ(x)〉 for every x ∈ R̈2
± and every y ∈ R2.

Proof. By definition, Φ is even. Note that Φ−1(u) =
(
u2/
√

2u1√
2u1

)
. We now calculate

the matrices of the partials:

∂Φ(x)i
∂xj

=


x2 ; i = 3− j

x1 ; i = j = 2

0 ; else

and

∂Φ−1(u)i
∂uj

=



1
(2u1)1/2

; i = 3− j

−2u2

(2u1)3/2
; i = j = 2

0 ; else

.

Hence

JΦ(x) = det

(
∂Φ(x)i
∂xj

)
i,j

= −x2
2 and

JΦ−1(u) = det

(
∂Φ−1(u)i
∂uj

)
i,j

=
−1

2u1

.

We now prove parts (c) and (d):

Φ−1(Aa
tS`u) = Φ−1

(
au1

a1/2`u1 + a1/2u2

)
=

(u1+a1/2u2√
2au1√
2au1

)
=

( `
2

√
2u1 + u2√

2u1

a1/2
√

2u1

)
= A−1

a S`/2

( u2√
2u1√
2u1

)
= A−1

a S`/2Φ−1(u),
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and

〈Byx, x〉 = 〈

 0 y2

y2 y1

(x1

x2

)
,

(
x1

x2

)
〉

= 〈
(

x2y2

x1y2 + x2y1

)
,

(
x1

x2

)
〉

= x1x2y2 + x1x2y2 + x2
2y1

= 2〈
(
y1

y2

)
,

(
1
2
x2

2

x1x2

)
〉

= 2〈y,Φ(x)〉.

We now use these results to show that the wavelet and metaplectic repsenta-

tions of (CSG)2 are equivalent.

Theorem 103. Let u ∈ R̈2
+ and extend the map

Pf(u) =
1

|2u1|1/2
f(Φ−1(u))

as an even function to R2\{x1x2 = 0}. This is a unitary map of L2
even(R2) onto

itself that intertwines the representations π and µ.

Proof. Note that P−1f(x) = x2f(Φ(x)). Let f ∈ L2
even(R2). It follows from the

Jacobian calculation in Proposition 102 that

‖Pf‖2
L2(R2) =

∫
R2

|Pf(u)|2du

= 2

∫
R̈2

+

(
1

2u1

)
|f(Φ−1(u))|2du

= 2

∫
R̈2

+

|f(x)|2dx

= ‖f‖2
L2(R2).
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P is a unitary operator on L2
even(R2) since it is a surjective isometry. By Proposition

102, (4.3), (4.4) and Definition 100

π(Sa,`,y)(Pf)(u) = e−2πi〈y,u〉DAatS`(Pf)(u)

= a3/4e−2πi〈y,u〉(Pf)(Aa
tS`u)

= a3/4e−2πi〈y,u〉 1

|2au1|1/2
f(Φ−1(Aa

tS`u))

=
a1/4

|2u1|1/2
e−2πi〈y,u〉f(A−1

a (tS`/2)Φ−1(u))

=
a1/4

|2u1|1/2
e−πi(2〈y,Φ(Φ−1(u))〉)f(A−1

a (tS`/2)Φ−1(u))

=
a1/4

|2u1|1/2
e−πi〈ByΦ−1(u),Φ−1(u)〉f(A−1

a (tS`/2)Φ−1(u))

=
1

|2u1|1/2
(µ(Sa,`,y)f)(Φ−1(u))

= P(µ(Sa,`,y)f)(u).

Definition 104. Define

L′2(Rk) = {f(x1, x2, . . . , xk) mapping Rk → C : f(x2, . . . , xk, x1) ∈ L2}

The next two lemmas are the workhorses needed to prove that (CSG)2 is

reproducing.

Lemma 105. Let 1+ = 1R̈2
+

. If h ∈ L′2(R2) then

1+(u)

2u1

[h(Φ−1(u)) + h(−Φ−1(u))] ∈ L1 ∩ L2(R2).

Proof. The proof is exactly like the proof of Lemma 86, but with Φ instead of Ψ, x1

and x2 swapped, u1 and u2 swapped, and R̈2
+ instead of Ṙ2

+.
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Lemma 106. Let h ∈ L′2(R2). Then∫
R2

∣∣∣∣∫
R2

h(x)e2πi〈y,Φ(x)〉dx

∣∣∣∣2 dy =

∫
R̈2

+

|h(x) + h(−x)|2dx
x2

2

.

Proof. By Proposition 102∫
R2

h(x)e2πi〈y,Φ(x)〉dx = (

∫
R̈2

+

+

∫
R̈2
−

)h(x)e2πi〈y,Φ(x)〉dx

=

∫
R̈2

+

h(x)e2πi〈y,Φ(x)〉dx+

∫
R̈2

+

h(−x)e2πi〈y,Φ(−x)〉dx

=

∫
R̈2

+

[h(x) + h(−x)]e2πi〈y,Φ(x)〉dx

=

∫
R̈2

+

[h(Φ−1(u)) + h(−Φ−1(u))]e2πi〈y,u〉 du

2u1

=

∫
R2

1+(u)

2u1

[h(Φ−1(u)) + h(−Φ−1(u))]e2πi〈y,u〉du (4.11)

Since the integrand is in L1 ∩ L2(R2), we may apply Parseval’s equality to obtain

‖Eqn(4.11)‖2
L2(R2) =

∫
R2

∣∣∣∣∫
R2

1+(u)

2u1

[h(Φ−1(u)) + h(−Φ−1(u))]e2πi〈y,u〉du

∣∣∣∣2 dy
=

∫
R2

|1+(u)

2u1

[h(Φ−1(u)) + h(−Φ−1(u))]|2du

=

∫
R̈2

+

|h(Φ−1(u)) + h(−Φ−1(u))|2 du

(2u1)2

=

∫
R̈2

+

|h(x) + h(−x)|2 x
2
2dx

(x2
2)2

=

∫
R̈2

+

|h(x) + h(−x)|2dx
x2

2

.

We show that (CSG)2 is reproducing and characterize the reproducing func-

tions.

Theorem 107. If φ ∈ L2(R2), then

‖f‖2
L2(R2) =

∫
(CSG)2

|〈f, µ(Sa,`,y)φ〉|2
da

a3
dyd` for all f ∈ L2(R2)
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if and only if

1

4
=

∫
R̈2

+

|φ(y)|2dy
y4

2

=

∫
R̈2

+

|φ(−y)|2dy
y4

2

(4.12)

0 =

∫
R̈2

+

φ(y)φ(−y)
dy

y4
2

. (4.13)

Proof. Assume that for all f ∈ L2(R2),

‖f‖2
L2(R2) =

∫
(CSG)2

|〈f, µ(Sa,`,y)φ〉|2
da

a3
dyd`.

Then, in particular, this holds for all f ∈ L∞ ∩ L′2(R2). Let f ∈ L∞ ∩ L′2(R2) and

set h(x) = f(x)φ(A−1
a S`/2x). Since φ ∈ L2(R2), h ∈ L1 ∩ L′2(R2). Thus, we obtain

‖f‖2
L2(R2) =

∫
R

∫
R2

∫ ∞
0

∣∣∣∣∫
R2

h(x)e2πi〈y,Φ(x)〉dx

∣∣∣∣2 da

a5/2
dyd`

=

∫
R

∫ ∞
0

∫
R̈2

+

|h(x) + h(−x)|2dx
x2

2

da

a5/2
d`

=

∫
R

∫ ∞
0

∫
R̈2

+

(|h(x)|2 + 2<h(x)h(−x) + |h(−x)|2)
dx

x2
2

da

a5/2
d`

= A+B + C,

where

A =

∫
R

∫ ∞
0

∫
R̈2

+

|f(x)|2|(φ(A−1
a S`/2x)|2dx

x2
2

da

a5/2
d`

B =

∫
R

∫ ∞
0

∫
R̈2

+

|f(−x)|2|(φ(−A−1
a S`/2x)|2dx

x2
2

da

a5/2
d`

C = 2<
∫

R

∫ ∞
0

∫
R̈2

+

f(x)f(−x)φ(A−1
a S`/2x)φ(−A−1

a S`/2x)
dx

x2
2

da

a5/2
d`.

Assume further that f vanishes on R̈2
−. Then B = C = 0 and ‖f‖L2(R2) = A. We

perform a change of variables

(a, `) 7→ y = (y1, y2) = A−1
a S`/2x = (x1 +

`

2
x2, a

1/2).
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The matrix of mixed partials is 0 1
2
a−1/2x2

x2

2
0

 .

So dad` = 1
1
4
a−1/2x2

2
dy1dy2 = 4a1/2

x2
2
dy1dy2 and a−2 =

x4
2

y42
. Thus,

‖f‖2
L2(R2) =

∫
R̈2

+

∫
R̈2

+

|f(x)|2|φ(y)|2dx
x2

2

(
4

x2
2

)(
x4

2

y4
2

)
dy

=

∫
R̈2

+

∫
R̈2

+

|f(x)|2|φ(y)|2 4

y4
2

dxdy

= ‖f‖2
L2(R2)

∫
R̈2

+

|φ(y)|2 4

y4
2

dy.

Similarly, now assume that f ∈ L∞ ∩ L′2(R2) is supported in R̈2
−. Then,

‖f‖2
L2(R2) = B

=

∫
R̈2

+

∫
R̈2
−

|f(x)|2|φ(−y)|2 4

y4
2

dxdy

= ‖f‖2
L2(R2)

∫
R̈2

+

|φ(−y)|2 4

y4
2

dy.

Thus any reproducing function must satisfy (4.12). Now simply assume that f ∈

L∞ ∩ L′2(R2) and assume that φ satisfies (4.12). Then

‖f‖2
L2(R2) = ‖f‖2

L2(R̈2
+)

+ ‖f‖2
L2(R̈2

−)
+ C,

which implies that C = 0. Also

0 = C = 2<
∫

R̈2
+

∫
R̈2

+

f(x)f(−x)φ(y)φ(−y)
4

y4
2

dydx. (4.14)

Assume that
∫

R̈2
+
f(x)f(−x)dx 6= 0. If f is also real valued, then (4.14) implies

that <
∫

R̈2
+
φ(y)φ(−y)dy

y42
= 0. If f is purely imaginary, then (4.14) implies that

=
∫

R̈2
+
φ(y)φ(−y)dy

y42
= 0. Hence φ must satisfy (4.13).
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Conversely, assume that f ∈ L′2(R2). By the preceding arguments,

∫
(CSG)2

|〈f, µ(Sa,`,y)φ〉|2
da

a3
dyd` =

∫
R̈2

+

|f(x)|2dx
∫

R̈2
+

|φ(y)|2 4

y4
2

dy

+

∫
R̈2
−

|f(x)|2dx
∫

R̈2
+

|φ(−y)|2 4

y4
2

dy

+2<
∫

R̈2
+

f(x)f(−x)dx

∫
R̈2

+

φ(y)φ(−y)
4

y4
2

dy.

If φ satisfies (4.12) and (4.13), then

∫
(CSG)2

|〈f, µ(Sa,`,y)φ〉|2
da

a3
dyd` =

(∫
R̈2
−

+

∫
R̈2

+

)
|f(x)|2dx+ 0 = ‖f‖2

L2(R2).

Now let f be any arbitrary function in L2(R2) where φ still satisfies (4.12) and (4.13).

Since L∞ ∩ L′2(R2) is dense in L2(R2), we can chose a {fn} ⊂ L∞ ∩ L′2(R2) which

converges to f in L2(R2). For any fn, fm, the difference fn−fm lies in L∞∩L′2(R2).

Hence

‖〈fn, µ(Sa,`,y)φ〉 − 〈fm, µ(Sa,`,y)φ〉‖2
L2((CSG)2) = ‖fn − fm‖2

L2(R2) → 0

as n,m→∞. Hence, {〈fn, µ(Sa,`,y)φ〉}n is a Cauchy sequence in L2((CSG)2). Also,

it follows from the Cauchy-Schwarz inequality over L2(R2) that {〈fn, µ(Sa,`,y)φ〉}n

converges pointwise to 〈f, µ(Sa,`,y)φ〉. A sequence which is Cauchy in norm and

additionally converges pointwise also converges in norm to the pointwise limit. Thus,

‖f‖2
L2(R2) = lim

n→∞
‖fn‖2

L2(R2)

= lim
n→∞

∫
(CSG)2

|〈fn, µ(Sa,`,y)φ〉|2
da

a3
dyd`

=

∫
(CSG)2

|〈f, µ(Sa,`,y)φ〉|2
da

a3
dyd`,

as desired.
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4.5 Conclusion

Dahlke et al. created shearlet analogs for L2(Rd), d > 2 in [31] and [32].

One paper deals with anisotropic dilations, which generalize the parabolic scaling

matrix, and one paper uses isotropic dilations. They work from the perspective of

co-orbit space theory and obtain a different generalization of the shearing matrix. It

is curious because no intuitive generalization of the shearing matrix, other than the

one employed in Section 4.3, yields a reproducing subgroup. We plan on using co-

orbit space theory to analyze each (TDS)k in order to find discrete, implementable

transformations. The generalization of the Translation-Dilation-Shearing group in

Section 4.2 may be used to analyze multidimensional data and images. We are

currently working to find the appropriate definition of (CDS)k for k > 2, generalizing

the results of Section 4.4. Finally, we would like to completely characterize the

dimensions of the reproducing subgroups of R4oSp(2,R). The results of this chapter

successfully integrate shearlet theory into the theory created by Cordero, DeMari,

Nowak and Tabacco and hopefully will lay the foundation of new transforms in

various applied fields.
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Chapter 5

Grassmannian fusion frames

5.1 Introduction

When data is transmitted over a communication line, the received message

may be corrupted by noise and data loss. As an oversimplified example, if I send

you the message 1729, you could receive the noisy message 1728 or nothing at all.

Representing data in a way that is resilient to such problems is clearly desirable.

Expressing data using a redundant frame provides some protection, but some frames

work better than others. Goyal et al. proved that a normalized frame is optimally

robust against (o.r.a.) noise and one erasure if the frame is tight. Furthermore, a

normalized frame is o.r.a multiple erasures if it is Grassmannian ([96], [7]).

Definition 108. For F = R or C, define

F (N,FM) = {{ei}Ni=1 ⊂ FM : ‖ei‖ = 1 for all 1 ≤ i ≤ N and {ei} is a frame for FM}.

The maximal frame correlation is

M∞({ei}Ni=1) = max
1≤i<j≤N

{|〈ei, ej〉|}.

A sequence of unit norm vectors {ui}Ni=1 ⊆ FM is called a Grassmannian frame if it

is a solution to

min
{ei}∈F (N,FM )

{M∞({ei}Ni=1)}.
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If N = M , the Grassmannian frames are precisely the orthonormal bases for

FM . If N = 3 and M = 2, the 2-dimensional vectors representing the cubic roots

of unity are a Grassmannian frame. However, the vectors representing the fourth

roots of unity do not form a Grassmannian frame for N = 4 and M = 2. Since

|〈(1, 0), (−1, 0)〉| = 1, the fourth roots of unity actually have the maximum possible

maximal frame correlation. The following theorem is proven in a number of classical

texts, see [96] for one proof and citations of other methods.

Theorem 109. Let {ei}Ni=1 be a normalized frame for FM . Then

M∞({ei}Ni=1) ≥

√
N −M
M(N − 1)

(5.1)

Equality holds in (5.1) if and only if {ei} is an equiangular tight frame. How-

ever, equality can only hold for certain N and M . Bodmann and Paulsen proved

a functorial equivalence between real equiangular frames and α-regular 2-graphs,

where α depends on N and M [20]. An α-regular 2-graph is a particular type of

hypergraph. This correspondence can be used to characterize when equiangular

frames exist. Other than the case N = M + 1, there are very few known pairs

(N,M) which yield equiangular frames and, further, there are many pairs (N,M)

for which it has been proven that no equiangular frames exist. When equiangular

frames do not exist, it can be complicated to construct Grassmannian frames.

Definition 110. For 1 ≤ m ≤M , setG(M,m) to be the collection of m dimensional

subspaces of FM . As a manifold, G(M,m) = O(M)/(O(m) × O(M − m)), where

O(M) denotes elements of the R orthogonal group or the C unitary group. G(M,m)

is also an algebraic projective variety.
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G(M,m) is called a Grassmannian. The Grassmannian packing problem is the

problem of finding N points in G(M,m) so that the minimal distance between any

two of them is as large as possible. Finding Grassmannian frames is equivalent to

solving the Grassmannian packing problem for G(M, 1). It is natural to ask what

analytic structures one obtains by considering the Grassmannian packing problem

for m > 1.

Fusion frames, originally called frames of subspaces, were introduced by Casazza

and Kutyniok in [22]. There are many potentially exciting applications of fusion

frames, in areas such as coding theory [19], distributed sensing [23], and neurology

[91].

Definition 111. A fusion frame for FM is a finite collection of subspaces {Wi}Ni=1

in FM such that there exist 0 < A ≤ B <∞ satisfying

A‖x‖2 ≤
N∑
i=1

‖Pix‖2 ≤ B‖x‖2,

where Pi is an orthogonal projection onto Wi. If A = B, we say that the fusion

frame is tight.

For two subspaces Wi,Wj ⊂ FM of equal dimension m, define the chordal

distance

dist(Wi,Wj) = [m− tr(PiPj)]
1/2,

where Pi is an orthogonal projection onto Wi. A tight fusion frame consisting of

equal dimensional subspaces with equal pairwise chordal distances is an equi-distance

tight fusion frame.
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Similar to (1.3), a fusion frame is tight with bound A if and only if

N∑
i=1

Pi = AIM . (5.2)

Fusion frames may either be viewed as generalizations of frames or special types

of frames. In the former sense, we are merely replacing the projections (modulo a

constant multiples) of vectors x ∈ H (on line (1.2)) onto the subspace spanned by

each frame vector with projections onto spaces of dimensions possibly higher than

1. In the latter sense, we may see a fusion frame as a frame with sub-collections

of frame vectors which group in nice ways. As is common in the literature, nice

is an oversimplification of some very deep properties. In fact, splitting frames into

such sub-collections is related to the (in)famous Feichtinger Conjecture. A fusion

frame is o.r.a. against noise if it is tight ([77]), a tight fusion frame is o.r.a. one

subspace erasure if the dimensions of the subspaces are equal ([19]), and a tight

fusion frame is o.r.a. multiple subspace erasures if the subspaces have equal chordal

distances. An equi-distance tight fusion frame is a solution to the Grassmannian

packing problem ([77]). The following definition does not exist in the literature but

seems quite natural.

Definition 112. A fusion frame {Wi}Ni=1 for RM consisting of d-dimensional sub-

spaces shall be called a Grassmannian fusion frame if it is a solution to the Grass-

mannian packing problem for N points in G(M,m).

We would like to construct such objects. The idea is very simple and makes

use of Hadamard matrices.
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5.2 Hadamard matrices

The first Hadamard matrices were discovered by Sylvester in 1867 ([97]). In

1893, Hadamard first defined and started to characterize Hadamard matrices, which

have the maximal possible determinant amongst matrices with entries from {±1}

([61]).

Definition 113. A Hadamard Matrix of order n is an n× n matrix H with entries

from {±1} such that H(tH) = nIn.

In the original paper by Hadamard, it was proven that Hadamard matrices

must have order equal to 2 or a multiple of 4. It is still an open conjecture as to

whether Hadamard matrices exist for every dimension divisible by 4. However, there

are many constructions of Hadamard matrices, which use methods from number the-

ory, group cohomology and other areas of math. Horadam’s book [71] is an excellent

resource. One class of Hadamard matrices are formed from Walsh functions.

Definition 114. The Walsh functions ωj : [0, 1]→ {±1} ⊂ R, j ≥ 0, are piecewise

constant functions which have the following properties:

1. ωj(0) = 1 for all j ≥ 0,

2. ωj has precisely j sign changes (zero crossings), and

3. 〈ωj, ωk〉 = δjk.

Walsh functions have been used for over 100 years by communications engi-
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neers to minimize cross talk. The first four Walsh functions are

ω0 = 1[0,1]

ω1 = 1[0,1/2) − 1[1/2,1]

ω2 = 1[0,1/4) − 1[1/4,3/4) + 1[3/4,1]

ω3 = 1[0,1/4) − 1[1/4,1/2) + 1[1/2,3/4) − 1[3/4,1].

By sampling the first 2n Walsh functions at the points k
2n

, one obtains a Hadamard

matrix; that is

Wn =

(
ωj

(
k

2n

))
0≤j,k<2n

is a 2n× 2n Hadamard matrix. There is a speedy algorithm, the Fast Hadamard (or

Walsh) Transform, for multiplying a vector by such a matrix.

5.3 Construction

The idea behind the new construction of the Grassmannian fusion frames is

very simple. We remove the first i rows of a Hadamard matrix H to obtain a

submatrix H ′. The columns of H ′ will then be partitioned into spanning sets for

subspaces. Since the elements of the matrix are ±1, the computations should be

simplified and the resulting (fusion) frame should be easy to implement. It is well-

known (see, for example, [71]) that any Hadamard matrix can be normalized so that

first row consists solely of 1s.

Theorem 115. Let H be a 2n×2n Hadamard matrix indexed by 0, . . . , 2n−1 which
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has been normalized so that the first row consists solely of 1s. Then

{ek =
1√

2n − 1
(H(j, k))1≤j≤2n−1 : 0 ≤ k ≤ 2n − 1}

is a Grassmannian frame for F2n−1.

Proof. For any 0 ≤ k1, k2 ≤ 2n − 1,

〈H(j, k1))0≤j≤2n−1, H(j, k2))0≤j≤2n−1〉 = 2nδk1,k2 and

〈H(k1, j))0≤j≤2n−1, H(k2, j))0≤j≤2n−1〉 = 2nδk1,k2 .

Thus 〈ek1 , ek2〉 = 1
2n−1

(2nδk1,k2 − 1), and the collection is equiangular. We now show

that the ek do indeed form a frame. Let x ∈ F2n−1 be arbitrary. We verify that

(1.3) holds. Let

L =

(
1√

2n − 1
(H(j, k))

)
0≤k≤2n−1,1≤j≤2n−1

.

Then, by the orthogonality of the columns,

2n−1∑
k=0

〈x, ek〉ek = ∗LLx =
2n

2n − 1
x.

We follow it up with the construction of a class of Grassmannian fusion frames.

Theorem 116. Let Wn be the 2n × 2n Walsh-Hadamard matrix indexed by

0, . . . , 2n − 1. Then

{
Wk = span

{
(Wn(j, k))2≤j≤2n−1, (Wn(j, k + 2n−1))2≤j≤2n−1

}
: 0 ≤ k ≤ 2n−1

}
is a tight Grassmannian fusion frame for F2n−2.
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Proof. Since

Wn(0, k) = 1 for 0 ≤ k ≤ 2n − 1

Wn(1, k) =


1 for 0 ≤ k ≤ 2n−1 − 1

−1 for 2n−1 ≤ k ≤ 2n − 1

,

For any 0 ≤ k1, k2 ≤ 2n − 1, 〈Wn(j, k1))2≤j≤2n−1,Wn(j, k2))2≤j≤2n−1〉

=


2n − 2 k1 = k2

−2 for 0 ≤ k1, k2 ≤ 2n−1 − 1 or 2n−1 ≤ k1, k2 ≤ 2n − 1

0 else.

Thus, for each 0 ≤ k ≤ 2n−1,

{
1√

2n − 2
(Wn(j, k))2≤j≤2n−1,

1√
2n − 2

(Wn(j, k + 2n−1))2≤j≤2n−1

}

is an orthonormal basis for Wk, and Pk = ∗LkLk, where

Lk =

(
1√

2n − 2
(Wn(j, k + i))

)
i=0,4,1≤j≤2n−1

.

For 0 ≤ k1, k2 ≤ 2n−1 − 1,

tr(Pk1Pk2) = tr(∗Lk1Lk1(
∗Lk2Lk2))

= tr(∗Lk1(
−2

2n − 2
I2)Lk2)

=
−2

2n − 2
tr(∗Lk1Lk2)

=
−2

2n − 2
(
−2

2n − 2
+
−2

2n − 2
)

=
2

(2n−1 − 1)2
.

Thus the Wk have pairwise equal chordal distance. We now show that the Wk do
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indeed form a frame by verifying that (5.2) holds. Let x ∈ F2n be arbirary. Then,(
2n−1−1∑
k=0

Pk

)
x =

2n−1∑
k=0

〈x, 1√
2n − 2

(Wn(j, k))2≤j≤2n−1〉
1√

2n − 2
(Wn(j, k))2≤j≤2n−1

=
2n

2n − 2
x.

5.4 Future Work

Removing the first 3 rows of a Walsh-Hadamard matrix does not yield an equi-

distance fusion frame. However, there has been recent work done to numerically

find optimal Grassmannian packings ([41]) which works well in some dimensions.

However, in other dimensions the convergence is incredibly slow. The algorithm uses

a random initial configuration. Perhaps by seeding the algorithm with a Hadamard

submatrix, the convergence would accelerate. On the other hand, removing the first

4 rows of a Walsh-Hadamard matrix does yield an equi-distance fusion frame. The

proof is very similar to the proof of Theorem 116 in the preceding section. We

conjecture that removing the first 2k rows from Wn, n > k will always yield an

equi-distance fusion frame. Finally, we would like develop an algorithm for a fast

implementation of the Walsh-Hadamard-generated fusion frames utilizing the Fast

Hadamard Transform.
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Chapter 6

p-adic wavelets

6.1 Introduction

Kurt Hensel introduced the p-adic numbers Qp, p prime, in 1897 motivated by

the connections between algebraic field theory for numbers and for functions ([68]).

The p-adic numbers still play a big role in algebraic number and function theory

([74]), but there is a growing movement to incorporate p-adic numbers into pure and

applied analysis. The strange topology of Qp seems ideal to model quantum physical

phenomena (see, for example, [73]). There even seems to be a relation between

distance in a p-adic model and genetic code degeneracy ([44]). A good physical

model will contain some sort of differentiation. One cannot define a derivative

on p-adic function spaces, but the p-adics are locally compact abelian groups, so

there exists a Haar measure. Thus, one can define pseudo-differential operators over

the p-adics. It ends up that p-adic wavelets diagonalize certain pseudo-differential

operators ([2], [92]).

Up until now, all p-adic wavelet systems have been formed using dilations by p.

However, there is no reason to believe that other matrix dilations could not be used.

Furthermore, it is well known (see, for example [36]) that a wavelet basis formed

from a real multiresolution analysis (MRA) generated by dilations by a matrix A

contains | detA| − 1 generating wavelets. Thus, we would like to generate an MRA
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with a p-adic matrix A for which | detA|2 = 2.

6.2 Preliminaries

6.2.1 p-adic numbers

We begin by defining a valuation.

Definition 117. Let F be a field. A valuation | · | is a map | · | : F→ R satisfying :

1. |α| ≥ 0 for a α ∈ F, and |α| = 0 if an only if α = 0,

2. For all α, β ∈ F, |αβ| = |α||β|, and

3. For all α, β ∈ F, |α + β| ≤ |α|+ |β|.

A valuation is called non-Archimedian if it satisfies the strong triangle inequality ;

that is, for all α, β ∈ F

|α + β| ≤ max{|α|, |β|}.

Two valuations | · |1, | · |2 are said to be equivalent if there exists a positive real

number s such that for all α ∈ F, |α|2 = |α|s1.

We now define the p-adic valuation.

Definition 118. Given a prime p, every non-zero rational number r may be written

uniquely as pim/n, where gcd (m,n) = 1 and p - m,n. The p-adic absolute value

|·|p is a valuation on Q defined as

|r|p =


0 if r = 0

p−i if r 6= 0
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The p-adic numbers Qp are Q analytically completed with respect to the p-adic

absolute value.

The p-adic valuation is non-Archimedian, and, thus, Qp has an interesting

topology. For example, every ball is both topologically closed and open, and any

two balls are either nested or disjoint. Over Q, all of the valuations are known; this

is one of a handful of results in number theory known as Ostrowski’s theorem.

Theorem 119. Every non-trivial valuation of Q is equivalent to either a p-adic

valuation or the Euclidean absolute value.

The proof of Ostrowski’s theorem is quite simple, given certain elementary

facts of valuation theory, which we will not state here.

For every prime p, the additive group of Qp is a locally compact abelian group

which contains the compact open subgroup Zp. The group Zp is the set {α ∈

Qp

∣∣∣|α|p ≤ 1}, the unit ball in Qp. Equivalently, Zp is the subgroup generated by

1. It is well-known ([90]) that since Qp is a locally compact abelian group with a

compact open subgroup, it has a Haar measure normalized so that the measure of

Zp is 1. For simplicity, we shall denote this measure by dx. The metric on Qp is

induced by the valuation.

Every p-adic rational number x may be expanded

x =
∞∑
k=K

αkp
k,

where |x|p = p−K and for all K ≤ k < ∞, αk ∈ {0, 1, . . . , p − 1}. Notice that the
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series

1

1− p
=
∞∑
k=0

pk

converges. Thus, for each prime p,

−1 =
p− 1

1− p
=
∞∑
k=0

(p− 1)pk.

Definition 120. For any x =
∑∞

k=K αkp
k ∈ Qp, we define the fractional part of x,

{x} =
∑−1

k=K αkp
k, where the sum is formally 0 if K ≥ 0 and the integer part of x,

[x] =
∑∞

k=0 αkp
k. We also define the set

Ip = {x ∈ Qp : {x} = x}.

Ip is a set of coset representatives for Qp/Zp. Since Zp is open, Ip is discrete.

This set will be very useful in the work that follows because Qp has no discrete

subgroup. We mention the p-adic valuation of elements of finite algebraic extensions,

which we shall use to analyze eigenvalues.

Definition 121. If α is the root of a monic, irreducible polynomial xn+an−1x
n−1 +

. . .+ a0 ∈ Qp[x], we define |α|p = n
√
|ao|p.

Also, for any k ≥ 1, Qk
p is a vector space over Qp. We shall denote the norm

with single bars, rather than double bars, and define it as

Definition 122. For any t(x1, x2, . . . , xk) ∈ Qk
p, the norm is

|t(x1, x2, . . . , xk)|p = max
1≤i≤k

{|xi|p}.
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6.2.2 p-adic wavelets

There are two main function theories over the p-adics. One deals with functions

Qp → C and the other with Qp → Qp. We shall only deal with the former theory.

The latter differs dramatically from the former. For example, p-adic valued functions

have no Haar measure, but there is differentiation. For an analytic treatment of both

function theories, see [73].

In 2002, Kozyrev published the first example of a p-adic wavelet ([76])

{DpjTae
{p−1kx}

1Zp(x) = p−j/2e{p
−1k(pjx−a)}

1Zp(p
jx−a) : k = 1, 2, . . . , p−1, j ∈ Z, a ∈ Ip}.

Since Qp does not have a discrete subgroup, he translated by a discrete set of coset

representatives. This approach is typical, not only in p-adic wavelet analysis, but

also in Gabor theory over locally compact abelian groups ([54]). Also notice the

sign of the exponent of the constant that comes out during dilation

Dpf(x) = p−1/2f(px),

in contrast to the real case. This is due to the p-adic valuation.

After Kozyrev’s publication, Shelkovich and Skopina created a p-adic MRA

theory ([92]), and Benedetto and Benedetto introduced p-adic wavelet set theory

([15], [10]). We shall be concerned with p-adic MRA. We now define a p-adic MRA,

generalized for this thesis.

Definition 123. Let A ∈ GL(k,Qp). If the p-adic valuations of the eigenvalues are

all strictly greater than 1 and | detA|p ∈ N then A is an expansive p-adic matrix.
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Definition 124. Let A ∈ GL(k,Qp) be an expansive p-adic matrix. A collection of

closed spaces Vj ⊂ L2(Qk
p) is called a multiresolution analysis (MRA) for L2(Qk

p) if

the following hold:

a. Vj ⊂ Vj+1 for all j ∈ Z,

b.
⋃
j∈Z Vj is dense in L2(Qp),

c.
⋂
j∈Z Vj = {0},

d. f(·) ∈ VJ ⇔ f(A·) ∈ Vj+1 for all j ∈ Z, and

e. there exists a function φ ∈ V0, called the scaling function, such that the system

{φ(· − a) : a ∈ Ikp } is an orthonormal basis for V0.

The structure is very similar to an MRA over Rk. Notice that by definition,

the functions {| detA|1/2p φ(Ajx − a) : a ∈ Ikp } form an orthonormal basis for Vj.

Mimicking real MRA, for each j ∈ Z, we define wavelet spaces Wj by

Vj+1 = Vj ⊕Wj.

It then follows from Definition 124.b-d that

L2(Qk
p) =

⊕
j∈Z

Wj.

Thus, if ψ ∈ W0 is such that {ψ(x − a) : a ∈ Ikp } is an orthonormal basis for W0,

then

{| detA|1/2ψ(Ajx− a) : j ∈ Z, a ∈ Ikp }
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is an orthonormal (wavelet) basis for L2(Qk
p) We call such a ψ a (p-adic) wavelet

function. It follows from Definition 124.a,d that a scaling function φ must satisfy

φ =
∑
a∈Ikp

αaφ(A · −a)

for some αa ∈ C. We call such a function refinable. Assume that the Ikp translations

of φ ∈ L2(Qk
p) form an orthonormal set and that φ is refinable. Then define

Vj = span{φ(A · −a) : a ∈ Ikp }.

Clearly, parts (d) and (e) of Definition 124 are satisfied. In the real case, the

refinability of φ would also give us (a). However, that is not true in the p-adic case

because Ikp does not form a group. In order for (a) to be true, φ(· − b) must be

refinable for each b ∈ Ikp .

The number of wavelet functions needed to create an orthonormal basis cor-

responding to an MRA is equal to | detA| − 1, where the bars represent whichever

valuation one is working with. The only previously known wavelet bases for L2(Q2
2)

required 3 wavelet generators. We would like to construct an MRA for L2(Q2
2) using

a matrix A for which | detA|2 = 2. We now have the tools we need to construct

this new MRA. We shall construct the MRA in Section 6.3. We shall also present a

wavelet for this MRA in 6.4. Finally, in Section 6.5, we review future directions for

the research.
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6.3 MRA construction

Let

A =

 1 −1

1 1


−1

=

 1
2

1
2

−1
2

1
2

 ,

the inverse of the well-known quincunx matrix. In [52], a multiresolution analysis

was presented for L2(R2) which used dilations by the quincunx. Since | detA−1| = 2,

there was only one wavelet generator. However, its support was a fractal, the twin

dragon fractal. In contrast, we shall see that the MRA for L2(Q2
2) associated to this

matrix corresponds to a wavelet with a simple support, namely, Z2
2.

The inverse of the quincunx matrix is expansive since the eigenvalues 1±i
2

have

2-adic valuation
√

2 > 1. Furthermore,

| detA|2 =

∣∣∣∣12
∣∣∣∣
2

= 2,

so we hope to obtain an MRA with a single generating wavelet. We first prove a

lemma that will be useful in computations which will follow later in the thesis.

Lemma 125. Let x1, x2 ∈ Q2.

• If |x1|2 > |x2|2 then |x1 + x2|2 = |x1 − x2|2 = |x1|2;

• If |x1|2 < |x2|2 then |x1 + x2|2 = |x1 − x2|2 = |x2|2; and

• If |x1|2 = |x2|2 then |x1+x2|2 ≤ 1
2
|x1−x2|2 = 1

4
|x1|2 or |x1−x2|2 ≤ 1

2
|x1+x2|2 =

1
4
|x1|2.

Proof. Set 2−Ki = |xi|2 for i = 1, 2. There exist αk ∈ {0, 1} and βk ∈ {0, 1} such
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that

x1 = 2K1 +
∞∑

k=K1+1

αk2
k and

x2 = 2K2 +
∞∑

k=K2+1

βk2
k.

Since −1 =
∑∞

k=0 2k,

−x2 = 2K2 +
∞∑

k=K2+1

(1 +
k∑

j=K2+1

βj)2
k.

Assume that |x1|2 > |x2|2, then K2 ≥ K1 + 1. So

|x1 + x2|2 =

∣∣∣∣∣2K1 +

K2−1∑
k=K1+1

αk2
k + (1 + αk)2

K2 +
∞∑

k=K2+1

(αk + βk)2
k

∣∣∣∣∣
2

= |x1|2,

and

|x1 − x2|2 =

∣∣∣∣∣2K1 +

K2−1∑
k=K1+1

αk2
k + (1 + αk)2

K2 +
∞∑

k=K2+1

(αk + (1 +
k∑

j=K1+1

βj))2
k

∣∣∣∣∣
2

= |x1|2.

By symmetry, if |x1|2 < |x2|2 then

|x1 + x2|2 = |x1 − x2|2 = |x2|2.

Now assume that |x1|2 = |x2|2. Then

|x1 + x2|2 =

∣∣∣∣∣(1 + αK1+1 + βK2+1)2K1+1 +
∞∑

k=K1+2

(αk + βk)2
k

∣∣∣∣∣
2

= |x1|2
2

for αK1+1 = βK2+1

≤ |x1|2
4

for αK1+1 6= βK2+1.
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Similarly,

|x1 − x2|2 =

∣∣∣∣∣(2 + αK1+1 + βK2+1)2K1+1 +
∞∑

k=K1+2

(αk + 1 +
k∑

j=K2+1

βj)2
k

∣∣∣∣∣
2

= |x1|2
2

for αK1+1 6= βK2+1

≤ |x1|2
4

for αK1+1 = βK2+1.

We wish to find a candidate for a scaling function from which we can build an

MRA.

Proposition 126.

Z2
2 = A−1Z2

2 t
(
A−1Z2

2 +

(
0

1

))
,

where t represents disjoint union.

Proof. We decompose Z2
2 into

Z2
2 = S1 t S2 t S3 t S4,

where

S1 = {
(
x1

x2

)
∈ Z2

2 : |x1|2 = |x2|2 = 1}

S2 = {
(
x1

x2

)
∈ Z2

2 : |x1|2 = 1, |x2|2 < 1}

S3 = {
(
x1

x2

)
∈ Z2

2 : |x2|2 = 1, |x1|2 < 1} and

S4 = {
(
x1

x2

)
∈ Z2

2 : |x1|2, |x2|2 < 1}.

It follows from simple parity arguments that

A−1S1 t A−1S4 ⊆ S4, A−1S2 t A−1S3 ⊆ S1.
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Also, S1 +
(

0
1

)
= S2 and S4 +

(
0
1

)
= S3. We shall now prove that

AS1 ⊆ S2 t S3 and AS4 ⊆ S1 t S4.

Assume that x ∈ S1 then Ax = 1
2

(
x1+x2

−x1+x2

)
. It follows from Lemma 125 that one of

|1
2
x1 + 1

2
x2|2 and | − 1

2
x1 + 1

2
x2|2 is 1

2
|1
2
x1|2 = 1 and one is ≤ 1

4
|1
2
x1|2 = 1

2
. Either

way, Ax ∈ S2 t S3. Thus , S1 = A−1S2 t A−1S3.

Now assume that x ∈ S4. If either |x1|2, |x2|2 < 1
2

or if |x1|2 = |x2|2 = 1
2
, then

it follows from Lemma 125 that∣∣∣∣12x1 +
1

2
x2

∣∣∣∣
2

,

∣∣∣∣−1

2
x1 +

1

2
x2

∣∣∣∣
2

< 1.

If instead |x1|2 < |x2|2 = 1
2

or |x2|2 < |x1|2 = 1
2

then∣∣∣∣12x1 +
1

2
x2

∣∣∣∣
2

=

∣∣∣∣−1

2
x1 +

1

2
x2

∣∣∣∣
2

= 1.

Thus, AS4 ⊆ S1 t S4, which implies that S4 = A−1S1 t A−1S4. Hence, A−1Z2
2 =

S1 t S4. Furthermore,

A−1Z2
2 +

(
0

1

)
= (S1 t S4) +

(
0

1

)
= (S1 +

(
0

1

)
) t (S4 +

(
0

1

)
)

= S2 t S3.

Define

φ(x) = 1Z2
2
(x)

and

Vj = span{φ(Ajx− a) : a ∈ I2
2} for j ∈ Z. (6.1)
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We shall show that φ and the Vj form a multiresolution analysis.

Proposition 127. Let Vj be defined as in (6.1). For all j ∈ Z, Vj ⊆ Vj+1.

Proof. The proposition is equivalent to the statement

φ(Ajx− a) ∈ span{φ(Aj+1x− b) : b ∈ I2
2}

for all j ∈ Z and a ∈ I2
2 . Further, it suffices to prove this statement for the case

j = 0. The remaining cases will follow from the substitution x 7→ Ajx. It follows

from Proposition 126 that φ satisfies the refinement equation

φ(x) = φ(Ax) + φ(Ax+

(
1/2

1/2

)
).

Furthermore, φ is Z2
2-periodic. Let a ∈ I2

2 . Then

φ(x− a) = φ(Ax− Aa) + φ(Ax− Aa+

(
1/2

1/2

)
)

= φ(Ax− {Aa}) + φ(Ax− {Aa−
(

1/2

1/2

)
}).

We now make note of an important lemma.

Lemma 128. For each x ∈ Q2
2, there exists N ∈ Z such that

|ANx|2 = 1.

Proof. We first employ a (real) linear algebra trick to compute ANx. Namely, we

view A as a dilation and rotation. We write

A =
1√
2

 cos(π
4
) sin(π

4
)

sin(−π
4
) cos(π

4
)

 .
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So

Ak = 2−k/2

 cos(kπ
4

) sin(kπ
4

)

sin(−kπ
4

) cos(kπ
4

)

 .

In particular, if k is even,

Ak =



2−4jI ; if k = 8j

2−(4j+1)

 0 1

−1 0

 ; if k = 8j + 2

2−(4j+2)

 −1 0

0 −1

 ; if k = 8j + 4

2−(4j+3)

 0 −1

1 0

 ; if k = 8j + 6

.

Hence, if k ∈ Z and x ∈ Q2
2,

|A2kx|2 = 2k|x|2. (6.2)

Set N to satisfy 2−N/2 = |x|2.

Corollary 129. ⋃
N∈Z

ANZ2
2 = Q2

2.

Proof. The corollary immediately follows from the lemma.

The following proposition is a generalization of a similar theorem in [3], which

itself is an extension of a theorem well known in real wavelet theory [38].

Proposition 130. Let ϕ ∈ L2(Q2
2). Define the spaces Vj, j ∈ Z be defined as

span{ϕ(Ajx − a) : a ∈ I2
2}, j ∈ Z. Also assume that ϕ(· − b) ∈ ∪j∈ZVj for any
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b ∈ Q2
2. Then ⋃

j∈Z

Vj is dense in L2(Q2
2)

if and only if ⋃
i∈Z

supp ϕ̂(A−j·) = Q̂2
2.

Proof. The proof is exactly like the proof of theorem 2.4 in [3] with Qp replaced

with Q̂2
2, Ip replaced with I2

2 , and p−j replaced with Aj.

Corollary 131. For φ = 1Z2
2

and Vj defined as in (6.1),

∪j∈ZVj = L2(Q2
2).

Proof. It follows from the Z2
2-periodicity of φ and Corollary 129 that the hypotheses

of Proposition 130 are satisfied.

We are almost done showing that φ and the Vj form an MRA.

Proposition 132. Let Vj be defined as in (6.1). Then

⋂
j∈Z

Vj = {0}.

Proof. Let f ∈ ∩j∈ZVj. Thus, for each j ∈ Z, there exists {cj,a}a∈I22 satisfying

f(x) =
∑
a∈I22

cj,aφ(Ajx− a).

Fix y ∈ Q2
2. By line (6.2) in the proof of Lemma 128, if |y|2 = 2−

N
2 , then |ANx|2 = 1.

Also note that |Ay|2 ≤ 2|y|2. Making use of line (6.2) again, we note that if M is

even and M < N then

|AMy|2 = 2
M
2 |y|2 = 2

M−N
2 < 1.
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If M = 2K + 1 and M < N − 1 then

|AMy|2 ≤ 2|A2Ky|2 = 2K+1−N
2 < 1.

Thus, if M < N , then AMx ∈ Z2
2, which implies that |AMy − a|2 > 1 for all a ∈ I2

2 ,

a 6= 0. So φ(AMy− a) = 0 for all M < N and a ∈ I2
2\{0}, while φ(AMy) = 1 for all

M < N . Thus, f(x) = cM,0 for each M < N . Similarly for another point y′, there

exists N ′ ∈ Z satisfying |AN ′y′|2 = 1, implying that f(y′) = cM,0 for all M < N ′. By

considering small enough M , we obtain f(y) = f(y′). Since y and y′ were arbitrary,

f is constant. The only constant function in L2(Q2
2) is the 0 function, as desired.

The following lemma is implicit in many other works on p-adic wavelet theory.

Lemma 133. If V0 is defined as in (6.1), then {φ(· − a) : a ∈ I2
2} is an orthonormal

basis for V0.

Proof. Since I2
2 is a set of coset representatives for Q2

2/Z2
2, for distinct a, b ∈ I2

2

suppφ(· − a) ∩ suppφ(· − b) = ∅.

We use a Haar measure normalized so that the measure of Z2
2 is 1. Thus, {φ(· − a) :

a ∈ I2
2} is an orthonormal set. Since V0 is the closed span of {φ(· − a) : a ∈ I2

2}, the

claim is proven.

We are finally prepared to prove that φ and the Vj form a MRA.

Theorem 134. Let φ = 1Z2
2
. Further define

A =

 1
2

1
2

−1
2

1
2

 and

Vj = span{φ(Ajx− a) : a ∈ I2
2}, j ∈ Z.
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Then {Vj} is a multiresolution analysis for L2(Q2
2) and φ is a scaling function for

this MRA.

Proof. Using the lettering from Definition 124, (a) follows from Proposition 127, (b)

follows from Corollary 131, (c) follows from Proposition 132, (d) follows from the

definition of the Vj and (e) follows from Lemma 133.

6.4 Wavelet construction

We define the function ψ(x) = φ(Ax)− φ(Ax−
(

1/2
1/2

)
). We would like to show

that ψ is a wavelet corresponding to the MRA in Theorem 134. We make note that

φ(Ax) =
1

2
(φ(x) + ψ(x)) (6.3)

φ(Ax−
(

1/2

1/2

)
) =

1

2
(φ(x)− ψ(x)). (6.4)

Lemma 135. Let a, b ∈ I2
2 . If A(b− a) or A(b− a) +

(
1/2
1/2

)
is in Z2

2, then a = b.

Proof. If A(b − a) ∈ Z2
2 then b − a ∈ Z2

2 since A−1Z2
2 ⊂ Z2

2. As I2
2 is a set of coset

respresentativies of Q2
2/Z2

2, a = b. If

A(b− a) +

(
1/2

1/2

)
= A(b− a+

(
1/2

1/2

)
) ∈ Z2

2,

then b− a+
(

0
1

)
∈ Z2

2 and thus a = b.

We need to prove another lemma before proving the final theorem.
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Lemma 136. Define

U1 = {Ab ∈ I2
2 : b ∈ I2

2},

U2 = {Ab+

(
0

1

)
∈ I2

2 : b ∈ I2
2},

U3 = {Ab+

(
1/2

1/2

)
∈ I2

2 : b ∈ I2
2}, and

U4 = {Ab+

(
−1/2

1/2

)
∈ I2

2 : b ∈ I2
2}.

Then I2
2 = U1 t U2 t U3 t U4.

Proof. We begin by making a comment about notation. For any prime p it is

impossible (see, for example [73]) to define a partial order structure on Qp such that

• 1 ≥ 0 ≥ −1,

• if a, b ≥ 0, then a+ b ≥ 0, and

• if an ≥ 0 for all n ∈ N and limn→∞ an = a, then a ≥ 0

all hold. However, in order to prove this lemma, we shall use the symbols “<”

and “≤.” When those symbols appear, they will be used between 2-adic numbers

which are also non-negative dyadic rational numbers. The symbols should then be

interpreted as coming from the canonical strict total and total orderings placed on

the non-negative dyadic rational numbers as a subset of the real numbers.

Assume that a =
(
a1

a2

)
∈ I2

2 . We analyze when A−1a, A−1(a −
(

0
1

)
), A−1(a −(

1/2
1/2

)
) and A−1(a−

(−1/2
1/2

)
) lie in I2

2 .

A−1a =

(
a1 − a2

a1 + a2

)
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lies in I2
2 if and only if a2 ≤ a1 and 0 ≤ a1 + a2 < 1. Similarly,

A−1(a−
(

0

1

)
) =

(
a1 − a2 + 1

a1 + a2 − 1

)
lies in I2

2 if and only if a1 < a2 and 1 ≤ a1 + a2 < 2,

A−1(a−
(

1/2

1/2

)
) =

(
a1 − a2

a1 + a2 − 1

)
lies in I2

2 if and only if a2 ≤ a1 and 1 ≤ a1 + a2 < 2, and

A−1(a−
(
−1/2

1/2

)
) =

(
a1 − a2 + 1

a1 + a2

)
lies in I2

2 if and only if a1 < a2 and 0 ≤ a1 + a2 < 1. Thus,

U1 = {a ∈ I2
2 : a2 ≤ a1 and 0 ≤ a1 + a2 < 1},

U2 = {a ∈ I2
2 : a1 < a2 and 1 ≤ a1 + a2 < 2},

U3 = {a ∈ I2
2 : a2 ≤ a1 and 1 ≤ a1 + a2 < 2}, and

U4 = {a ∈ I2
2 : a1 < a2 and 0 ≤ a1 + a2 < 1},

which implies that I2
2 = U1 t U2 t U3 t U4.

We introduce the following notation. Let

Ũ1 = {b ∈ I2
2 : Ab ∈ U1},

Ũ2 = {b ∈ I2
2 : Ab+

(
0

1

)
∈ U2},

Ũ3 = {b ∈ I2
2 : Ab+

(
1/2

1/2

)
∈ U3}, and

Ũ4 = {b ∈ I2
2 : Ab+

(
−1/2

1/2

)
∈ U4}.

Note that Ũ1 ∩ Ũ2, Ũ3 ∩ Ũ4 = ∅, but the other pairwise intersections are not empty.

Thus, unlike the Ui, the Ũi are not disjoint. However,

I2
2 ⊂ Ũ1 ∪ Ũ2 ⊂ Ũ1 ∪ Ũ2 ∪ Ũ3 ∪ Ũ4. (6.5)
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Theorem 137. ψ = φ(A·)−φ(A ·−
(

1/2
1/2

)
) is a wavelet corresponding to the MRA in

Theorem 134. That is, {ψ(·−a) : a ∈ I2
2} is an orthonormal basis for W0 = V1	V0.

Proof. We first show that {ψ(· − a) : a ∈ I2
2} is an orthonormal set. We compute

for a, b ∈ I2
2 , using Z2

2-periodicity of φ,

2〈ψ(x− a), ψ(x− b)〉 = |detA|2〈ψ(x− a), ψ(x− b)〉

= | detA|2〈φ(Ax−Aa)− φ(Ax− (Aa+
(

1/2
1/2

)
)), φ(Ax−Ab)− φ(Ax− (Ab+

(
1/2
1/2

)
))〉

= 〈φ(x−Aa), φ(x−Ab)− φ(x− (Ab+
(

1/2
1/2

)
))〉

+〈φ(x− (Aa+
(

1/2
1/2

)
)),−φ(x−Ab) + φ(x− (Ab+

(
1/2
1/2

)
))〉

= 〈φ(x−Aa), φ(x−Ab)− φ(x− (Ab+
(

1/2
1/2

)
)) + φ(x−Ab)− φ(x− (Ab+

(
1/2
1/2

)
))〉

= 2〈φ(x−Aa), φ(x−Ab)− φ(x− (Ab+
(

1/2
1/2

)
))〉

= 2〈φ(x), φ(x−A(b− a))− φ(x− (A(b− a) +
(

1/2
1/2

)
))〉

=


2 if b = a

0 if b 6= a

by Lemma 135. Hence {ψ(· − a) : a ∈ I2
2} is an orthonormal set. We now show that

ψ(x− a) ∈ V ⊥0 for each a ∈ I2
2 . We compute for a, b ∈ I2

2 , using the Z2
2-periodicity

of φ,

|detA|2〈ψ(x− a), φ(x− b)〉

= |detA|2〈φ(Ax−Aa)− φ(Ax− (Aa+
(

1/2
1/2

)
)), φ(Ax−Ab) + φ(Ax− (Ab+

(
1/2
1/2

)
))〉

= 〈φ(x−Aa), φ(x−Ab) + φ(x− (Ab+
(

1/2
1/2

)
))〉

+〈φ(x− (Aa+
(

1/2
1/2

)
)),−φ(x−Ab)− φ(x− (Ab+

(
1/2
1/2

)
))〉

= 〈φ(x−Aa), φ(x−Ab) + φ(x− (Ab+
(

1/2
1/2

)
))− φ(x−Ab)− φ(x− (Ab+

(
1/2
1/2

)
))〉

= 0,
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as desired. We finally claim that if f ∈ V1, f ∈ V ⊥0 and f ⊥ ψ(·−a) for each a ∈ I2
2 ,

then f = 0. Assume that f ∈ V1. Then there exists {ca} ∈ `2(I2
2 ) such that we may

use Lemma 136 as well as lines (6.3) and (6.4) to expand f as

f(x) =
∑
a∈I22

caφ(Ax− a)

=
∑
b∈Ũ1

cAbφ(Ax−Ab) +
∑
b∈Ũ2

cAb+(0
1)
φ(Ax− (Ab+

(
0
1

)
)) +

∑
b∈Ũ3

c
Ab+(1/2

1/2)
φ(Ax− (Ab+

(
1/2
1/2

)
)) +

∑
b∈Ũ4

c
Ab+(−1/2

1/2 )φ(Ax− (Ab+
(
−1/2
1/2

)
))

=
1
2

∑
b∈Ũ1

cAb(φ(x− b) + ψ(x− b)) +
1
2

∑
b∈Ũ2

cAb+(0
1)

(φ(x− b) + ψ(x− b))

+
1
2

∑
b∈Ũ3

c
Ab+(1/2

1/2)
(φ(x− b)− ψ(x− b)) +

1
2

∑
b∈Ũ4

c
Ab+(−1/2

1/2 )(φ(x− b)− ψ(x− b))

If f ∈ V ⊥0 , then for all a ∈ I2
2 , 0 = 〈f, φ(· − a)〉, which implies that

0 =
∑
b∈Ũ1

cAb〈φ(x− b) + ψ(x− b), φ(x− a)〉+
∑
b∈Ũ2

cAb+(0
1)
〈φ(x− b) + ψ(x− b), φ(x− a)〉

+
∑
b∈Ũ3

c
Ab+(1/2

1/2)
〈φ(x− b)− ψ(x− b), φ(x− a)〉

+
∑
b∈Ũ4

c
Ab+(−1/2

1/2 )〈φ(x− b)− ψ(x− b), φ(x− a)〉

=



cAa for a ∈ Ũ1 ∩ Ũ c
3 ∩ Ũ c

4

cAa + c
Aa+(1/2

1/2)
for a ∈ Ũ1 ∩ Ũ3

cAa + c
Aa+(−1/2

1/2 ) for a ∈ Ũ1 ∩ Ũ4

cAa+(0
1)

for a ∈ Ũ2 ∩ Ũ c
3 ∩ Ũ c

4

cAa+(0
1)

+ c
Aa+(1/2

1/2)
for a ∈ Ũ2 ∩ Ũ3

cAa+(0
1)

+ c
Aa+(−1/2

1/2 ) for a ∈ Ũ2 ∩ Ũ4

c
Aa+(1/2

1/2)
for a ∈ Ũ3 ∩ Ũ c

1 ∩ Ũ c
2

c
Aa+(−1/2

1/2 ) for a ∈ Ũ4 ∩ Ũ c
1 ∩ Ũ c

2
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By line (6.5), these cases exhaust all of the a ∈ I2
2 . Hence,

f(x) =
∑

b∈Ũ1∩(Ũ3∪Ũ4)

cAbψ(x− b) +
∑

b∈Ũ2∩(Ũ3∪Ũ4)

cAb+(0
1)
ψ(x− b).

If further, f ⊥ ψ(· − a) for all a ∈ I2
2 , then

0 =
∑

b∈Ũ1∩(Ũ3∪Ũ4)

cAb〈ψ(x− b), ψ(x− a)〉+
∑

b∈Ũ2∩(Ũ3∪Ũ4)

cAb+(0
1)
〈ψ(x− b), ψ(x− a)〉

=


cAa for a ∈ Ũ1 ∩ (Ũ3 ∪ Ũ4)

cAa+(0
1)

for a ∈ Ũ2 ∩ (Ũ3 ∪ Ũ4)

.

Hence f is identically 0.

Thus, {DAnTaψ : n ∈ Z, a ∈ I2
2} is an orthonormal basis for L2(Q2

2) generated

by a single wavelet.

6.5 Future work

It has been proven that the Haar MRA is the only MRA that exists for L2(Qp)

under dilation by p ([3]). One possible choice for the scaling function of such an

MRA is 1Zp . The known MRAs for L2(Qk
p) are tensor products of the 1-dimensional

systems. It follows from the definition of the Qk
p metric that

⊗k
i=1 1Zp = 1Zkp , which

for p = 2 and k = 2 was the scaling function used in this thesis. It remains to be

seen if there exists a p-adic MRA for which 1Zkp cannot be a scaling function. We

would like to construct MRAs using different dilations in order to try to answer this

problem.

Benedetto and Bendetto initiated the study of local field wavelet sets, which

included the construction of p-adic wavelet sets ([10], [15]). We are also interested in
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constructing wavelet sets associated to this new dilation. Unlike in the real setting,

p-adic wavelet set wavelets are already “smooth,” so there is no need to smooth

them as we did in Chapters 2 and 3.
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