## Frames and a vector-valued ambiguity function

#### John J. Benedetto and Jeffrey J. Donatelli

Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu



John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



### 2 Frames

3 Multiplication problem and  $A_p^1$ 

**5**  $A_p^d(u)$  for DFT frames





## Outline

### Problem and goal

#### 2 Frames

3 Multiplication problem and  $A_p^1$ 

**5**  $A_p^d(u)$  for DFT frames

### 6 Figure





## Background

- Originally, our problem was to construct libraries of phase-coded waveforms v parameterized by design variables, for communications and radar.
- A goal was to achieve diverse ambiguity function behavior of *v* by defining new classes of quadratic phase and number theoretic perfect autocorrelation codes *u* with which to define *v*.
- A realistic more general problem was to construct vector-valued waveforms *v* in terms of vector-valued perfect autocorrelation codes *u*. Such codes are relevant in light of vector sensor and MIMO capabilities and modeling.
- Example: Discrete time data vector *u*(*k*) for a *d*-element array,

$$k \mapsto u(k) = (u_0(k), \ldots, u_{d-1}(k)) \in \mathbb{C}^d.$$

We can have  $\mathbb{R}^N \to GL(d, \mathbb{C})$ , or even more general.

## General problem and STFT theme

- Establish the theory of vector-valued ambiguity functions to estimate v in terms of ambiguity data.
- First, establish this estimation theory by defining the discrete periodic vector-valued ambiguity function in a natural way.
- Mathematically, this natural way is to formulate the discrete periodic vector-valued ambiguity function in terms of the Short Time Fourier Transform (STFT).



## STFT and ambiguity function

#### Short time Fourier transform - STFT

• The narrow band cross-correlation ambiguity function of v, w defined on  $\mathbb R$  is

$$A(\mathbf{v},\mathbf{w})(t,\gamma) = \int_{\mathbb{R}} \mathbf{v}(\mathbf{s}+t) \overline{\mathbf{w}(\mathbf{s})} e^{-2\pi i \mathbf{s} \gamma} d\mathbf{s}.$$

- *A*(*v*, *w*) is the STFT of *v* with window *w*.
- The narrow band radar ambiguity function A(v) of v on  $\mathbb{R}$  is

$$\begin{aligned} \mathsf{A}(\mathsf{v})(t,\gamma) &= \int_{\mathbb{R}} \mathsf{v}(s+t)\overline{\mathsf{v}(s)}e^{-2\pi i s \gamma} ds \\ &= e^{\pi i t \gamma} \int_{\mathbb{R}} \mathsf{v}\left(s+\frac{t}{2}\right) \overline{\mathsf{v}\left(s-\frac{t}{2}\right)} e^{-2\pi i s \gamma} ds, \text{ for } (t,\gamma) \in \mathbb{R}^{2}. \end{aligned}$$

## Goal

- Let *v* be a phase coded waveform with *N* lags defined by the code *u*.
- Let *u* be *N*-periodic, and so *u* : Z<sub>N</sub> → C, where Z<sub>N</sub> is the additive group of integers modulo *N*.
- The discrete periodic ambiguity function  $A_p(u) : \mathbb{Z}_N \times \mathbb{Z}_N \longrightarrow \mathbb{C}$  is

$$A_{p}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} u(m+k)\overline{u(k)}e^{-2\pi i k n/N}$$

#### Goal

Given a vector valued *N*-periodic code  $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$ , construct the following in a meaningful, computable way:

- Generalized C-valued periodic ambiguity function
   A<sup>1</sup><sub>D</sub>(u) : Z<sub>N</sub> × Z<sub>N</sub> → C
- $\mathbb{C}^d$ -valued periodic ambiguity function  $A^d_p(u) : \mathbb{Z}_N \times \mathbb{Z}_N \longrightarrow \mathbb{C}^d$

The STFT is the *guide* and the *theory of frames* is the technology to the Applications obtain the goal.

### 2 Frames

3 Multiplication problem and  $A_{\rho}^{1}$ 

**5**  $A_p^d(u)$  for DFT frames

### 6 Figure





## **FUNTFs**

• A sequence  $F = \{E_j\}_{j=1}^N \subseteq \mathbb{C}^d$  is a *frame* for  $\mathbb{C}^d$  if

$$\exists A, B > 0$$
 such that  $\forall u \in \mathbb{C}^d$ ,  $A \|u\|^2 \leq \sum_{j=1}^N |\langle u, E_j \rangle|^2 \leq B \|u\|^2$ .

. .

- *F* is a *tight frame* if A = B; and *F* is a *finite unit-norm tight frame* (FUNTF) if A = B and each  $||E_j|| = 1$ .
- Theorem: If  $\{E_j\}_{j=0}^{N-1}$  is a FUNTF for  $\mathbb{C}^d$ , then

$$\forall u \in \mathbb{C}^d, \quad u = \frac{d}{N} \sum_{j=0}^{N-1} \langle u, E_j \rangle E_j.$$

 Frames give redundant signal representation to compensate for hardware errors, to ensure numerical stability, and to minimize the effects of noise.

## **Recent applications of FUNTFs**

- Robust transmission of data over erasure channels such as the internet [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications [Hochwald, Marzetta, T. Richardson, Sweldens, Urbanke]
- Multiple description coding [Goyal, Heath, Kovačević, Strohmer, Vetterli]
- Quantum detection [Bölcskei, Eldar, Forney, Oppenheim, Kebo, B]
- Grassmannian "min-max" waveforms [Calderbank, Conway, Sloane, et al., Kolesar, B]

## **DFT FUNTFs**

Let N > d and form an  $N \times d$  matrix using any d columns of the  $N \times N$  DFT matrix  $(e^{2\pi i j k/N})_{i,k=0}^{N-1}$ . The rows of this  $N \times d$  matrix, up to multiplication by  $\frac{1}{\sqrt{d}}$ , form a FUNTF for  $\mathbb{C}^d$ .  $N = 8, d = 5 \qquad \frac{1}{\sqrt{5}} \begin{bmatrix} * & * & \cdot & \cdot & * & * & * \\ * & * & \cdot & \cdot & * & * & * \\ * & * & \cdot & \cdot & * & * & * \\ * & * & \cdot & * & * & * & * \\ * & * & \cdot & * & * & * & * \\ * & * & \cdot & * & * & * & * \\ * & * & \cdot & * & * & * & * \\ * & * & \cdot & * & * & * & * \end{bmatrix}$  $x_m = \frac{1}{5} \left( e^{2\pi i \frac{m}{8}}, e^{2\pi i m\frac{2}{8}}, e^{2\pi i m\frac{5}{8}}, e^{2\pi i m\frac{5}{8}}, e^{2\pi i m\frac{6}{8}}, e^{2\pi i m\frac{7}{8}} \right)$  $m = 1, \dots, 8.$ 

#### 2 Frames

3 Multiplication problem and  $A_p^1$ 

#### 

**5**  $A_p^d(u)$  for DFT frames

## 6 Figure





## **Multiplication problem**

• Given 
$$u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$$
.

• If 
$$d = 1$$
 and  $e_n = e^{2\pi i n/N}$ , then

$$A_{\rho}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \langle u(m+k), u(k) \boldsymbol{e}_{nk} \rangle.$$

#### Multiplication problem

To characterize sequences  $\{E_k\} \subseteq \mathbb{C}^d$  and multiplications \* so that

$$\mathcal{A}_{p}^{1}(u)(m,n)=rac{1}{N}\sum_{k=0}^{N-1}\langle u(m+k),u(k)*\mathcal{E}_{nk}
angle\in\mathbb{C}$$

is a meaningful and well-defined *ambiguity function*. This formula is clearly motivated by the STFT.

for Harmonic Analysis and Application

There is a natural way to address the multiplication problem motivated by the fact that  $e_m e_n = e_{m+n}$ . To this end, we shall make the *ambiguity function assumptions*:

- $\exists \{E_k\}_{k=0}^{N-1} \subseteq \mathbb{C}^d$  and a multiplication \* such that  $E_m * E_n = E_{m+n}$  for  $m, n \in \mathbb{Z}_N$ ;
- $\{E_k\}_{k=0}^{N-1} \subseteq \mathbb{C}^d$  is a tight frame for  $\mathbb{C}^d$ ;
- $*: \mathbb{C}^d \times \mathbb{C}^d \longrightarrow \mathbb{C}^d$  is bilinear, in particular,

$$\left(\sum_{j=0}^{N-1} c_j E_j\right) * \left(\sum_{k=0}^{N-1} d_k E_k\right) = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} c_j d_k E_j * E_k.$$



- Let {*E<sub>j</sub>*}<sup>*N*-1</sup> ⊆ ℂ<sup>*d*</sup> satisfy the three ambiguity function assumptions.
- Given  $u, v : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$  and  $m, n \in \mathbb{Z}_N$ .
- Then, one calculates

$$u(m) * v(n) = \frac{d^2}{N^2} \sum_{j=0}^{N-1} \sum_{s=0}^{N-1} \langle u(m), E_j \rangle \langle v(n), E_s \rangle E_{j+s}.$$



### 2 Frames

- 3 Multiplication problem and  $A_p^1$
- **5**  $A_p^d(u)$  for DFT frames

## 6 Figure

7 Epilogue



# $A_{\rho}^{1}(u)$ for DFT frames

- Let {E<sub>j</sub>}<sup>N-1</sup> ⊆ C<sup>d</sup> satisfy the three ambiguity function assumptions.
- Further, assume that  $\{E_j\}_{j=0}^{N-1}$  is a DFT frame, and let *r* designate a fixed column.
- Without loss of generality, choose the first *d* columns of the  $N \times N$  DFT matrix.
- Then, one calculates

$$E_m * E_n(r) = \frac{d^2}{N^2} \sum_{j=0}^{N-1} \sum_{s=0}^{N-1} \langle E_m, E_j \rangle \langle E_n, E_s \rangle E_{j+s}(r).$$
  
=  $\frac{e_{(m+n)r}}{\sqrt{d}} = E_{m+n}(r).$ 

- Thus, for DFT frames, ∗ is componentwise multiplication in C<sup>d</sup> with a factor of √d.
- In this case  $A^1_p(u)$  is well-defined for  $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$  by

$$\begin{aligned} A_p^1(u)(m,n) &= \frac{1}{N} \sum_{k=0}^{N-1} \langle u(m+k), u(k) * E_{nk} \rangle \\ &= \frac{d}{N^2} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} \langle E_j, u(k) \rangle \langle u(m+k), E_{j+nk} \rangle. \end{aligned}$$



< < >> < <</p>

## Remark

- In the previous DFT example, \* is intrinsically related to the "addition" defined on the indices of the frame elements, viz.,  $E_m * E_n = E_{m+n}$ .
- Alternatively, we could have  $E_m * E_n = E_{m \bullet n}$  for some function
  - :  $\mathbb{Z}_N \times \mathbb{Z}_N \longrightarrow \mathbb{Z}_N$ , and, thereby, we could use frames which are not FUNTFs.
- Given a bilinear multiplication \* : C<sup>d</sup> × C<sup>d</sup> → C<sup>d</sup>, we can find a frame {E<sub>j</sub>}<sub>j</sub> and an index operation with the E<sub>m</sub> \* E<sub>n</sub> = E<sub>m•n</sub> property.
- If 

   is the multiplication for a group, possibly non-abelian and/or infinite, we may reverse the process and find a FUNTF and bilinear multiplication \* with the E<sub>m</sub> \* E<sub>n</sub> = E<sub>m•n</sub> property.

# $A_{\rho}^{1}(u)$ for cross product frames

- Take \* : C<sup>3</sup> × C<sup>3</sup> → C<sup>3</sup> to be the cross product on C<sup>3</sup> and let {*i*, *j*, *k*} be the standard basis.
- i \* j = k, j \* i = -k, k \* i = j, i \* k = -j, j \* k = i, k \* j = -i,  $i * i = j * j = k * k = 0. \{0, i, j, k, -i, -j, -k, \}$  is a tight frame for  $\mathbb{C}^3$  with frame constant 2. Let  $E_0 = 0, E_1 = i, E_2 = j, E_3 = k, E_4 = -i, E_5 = -j, E_6 = -k.$
- The index operation corresponding to the frame multiplication is the non-abelian operation  $\bullet: \mathbb{Z}_7 \times \mathbb{Z}_7 \longrightarrow \mathbb{Z}_7$ , where  $1 \bullet 2 = 3, 2 \bullet 1 = 6, 3 \bullet 1 = 2, 1 \bullet 3 = 5, 2 \bullet 3 = 1, 3 \bullet 2 = 4, 1 \bullet 1 = 2 \bullet 2 = 3 \bullet 3 = 0, n \bullet 0 = 0 \bullet n = 0, 1 \bullet 4 = 0, 1 \bullet 5 = 6, 1 \bullet 6 = 2, 4 \bullet 1 = 0, 5 \bullet 1 = 3, 6 \bullet 1 = 5, 2 \bullet 4 = 3, 2 \bullet 5 = 0$ , etc.
- The three ambiguity function assumptions are valid and so we can write the cross product as

$$u \times v = u * v = \frac{1}{2^2} \sum_{s=1}^{6} \sum_{t=1}^{6} \langle u, E_s \rangle \langle v, E_t \rangle E_{s \bullet t}.$$

• Consequently,  $A_{\rho}^{1}(u)$  can be well-defined.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

## Vector-valued ambiguity function $A_p^d(u)$

- Let {E<sub>j</sub>}<sup>N-1</sup> ⊆ C<sup>d</sup> satisfy the three ambiguity function assumptions.
- Given  $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$ .
- The following definition is clearly motivated by the STFT.

#### Definition

$$A^d_p(u):\mathbb{Z}_N imes\mathbb{Z}_N\longrightarrow\mathbb{C}^d$$
 is defined by

$$A_{p}^{d}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} u(m+k) * \overline{u(k)} * \overline{E_{nk}}.$$

Norbert Wiener Center w Harmonic Analysis w Applications

### 2 Frames

- 3 Multiplication problem and  $A_p^1$
- **5**  $A_p^d(u)$  for DFT frames
- 6 Figure
- 7 Epilogue



# STFT formulation of $A_p(u)$

The discrete periodic ambiguity function of *u* : Z<sub>N</sub> → C can be written as

$$A_{p}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \langle \tau_{m} u(k), F^{-1}(\tau_{n} \hat{u})(k) \rangle,$$

where  $\tau_{(m)}u(k) = u(m+k)$  is translation by *m* and  $F^{-1}(u)(k)) = \check{u}(k)$  is Fourier inversion.

- As such we see that  $A_{\rho}(u)$  has the form of a STFT.
- We shall develop a vector-valued DFT theory to *verify* (not just *motivate*) that  $A_p^d(u)$  is an STFT in the case  $\{E_k\}_{k=0}^{N-1}$  is a DFT frame for  $\mathbb{C}^d$ .

#### Definition

Given  $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$ , and let  $\{E_k\}_{k=0}^{N-1}$  be a DFT frame for  $\mathbb{C}^d$ . The *vector-valued discrete Fourier transform* of *u* is

$$\forall n \in \mathbb{Z}_N, \quad F(u)(n) = \hat{u}(n) = \sum_{m=0}^{N-1} u(m) * E_{mn},$$

where \* is pointwise (coordinatewise) multiplication.



## Vector-valued Fourier inversion theorem

- Inversion process for the vector-valued case is analogous to the 1-dimensional case.
- We must define a new multiplication in the frequency domain to avoid divisibility problems.
- Define the weighted multiplication (\*):  $\mathbb{C}^d \times \mathbb{C}^d \longrightarrow \mathbb{C}^d$  by  $u(*)v = u * v * \omega$  where  $\omega = (\omega_1, \ldots, \omega_d)$  has the property that each  $\omega_n = \frac{1}{\#\{m \in \mathbb{Z}_N: mn=0\}}$ .
- For the following theorem assume *d* << *N* or *N* prime.

#### Theorem - Vector-valued Fourier inversion

The vector valued Fourier transform *F* is an isomorphism from  $\ell^2(\mathbb{Z}_N)$  to  $\ell^2(\mathbb{Z}_N, \omega)$  with inverse

$$\forall m \in \mathbb{Z}_N, \quad F^{-1}(m) = u(m) = \frac{d}{N} \sum_{n=0}^{N-1} \hat{u}(n) * E_{-mn} * \omega.$$

N prime implies F is unitary.

# $A_p^d(u)$ as an STFT

- Given  $u, v : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$ , and let  $\{E_k\}_{k=0}^{N-1}$  be a DFT frame for  $\mathbb{C}^d$ .
- $u * \overline{v}$  denotes pointwise (coordinatewise) multiplication with a factor of  $\sqrt{d}$ .
- We compute

$$A_p^d(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} (\tau_m u(k)) * \overline{F^{-1}(\tau_n \hat{u})(k)}.$$

 Thus, A<sup>d</sup><sub>p</sub>(u) is compatible with point of view of defining a vector-valued ambiguity function in the context of the STFT.

### 2 Frames

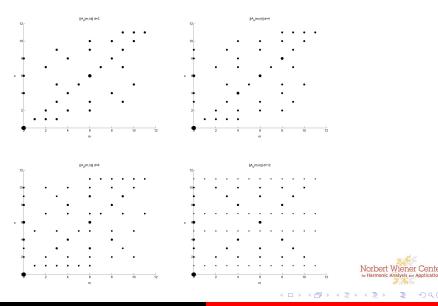
- 3 Multiplication problem and  $A_p^1$
- **5**  $A_p^d(u)$  for DFT frames

## 6 Figure





Intensity  $||A_u^d(m, n)||$  for d = 3, 4, 6, 12 where  $u : \mathbb{Z}_N \to \mathbb{C}^d$  is a Wiener CAZAC



John J. Benedetto and Jeffrey J. Donatelli

Frames and a vector-valued ambiguity function

### 2 Frames

3 Multiplication problem and  $A_p^1$ 

**5**  $A_p^d(u)$  for DFT frames

### 6 Figure







- If (G, •) is a finite group with representation ρ : G → GL(C<sup>d</sup>), then there is a frame {E<sub>n</sub>}<sub>n∈G</sub> and bilinear multiplication,
   \*: C<sup>d</sup> × C<sup>d</sup> → C<sup>d</sup>, such that E<sub>m</sub> \* E<sub>n</sub> = E<sub>m•n</sub>. Thus, we can develop A<sup>d</sup><sub>ρ</sub>(u) theory in this setting.
- Analyze ambiguity function behavior for (phase-coded) vector-valued waveforms *v* : ℝ → ℂ<sup>d</sup>, defined by *u* : ℤ<sub>N</sub> → ℂ<sup>d</sup> as

$$v = \sum_{k=0}^{N-1} u(k) \mathbb{1}_{[kT,(k+1)T)},$$

in terms of  $A_{p}^{d}(u)$ . (See Figure)



