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© Finite frames

a Sigma-Delta quantization
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Waveform Design

CAZAC waveforms

Definition of CAZAC waveforms

A K-periodic waveform u : Zx = {0,1,...,K — 1} — C is Constant
Amplitude Zero Autocorrelation (CAZAC) if,

forall k € Zg, |u[k]| =1, (CA)

and, form=1,..., K — 1, the autocorrelation
K—1
Aulml =1/K Z u[m+ K]ulk] is 0. (ZAC)
k=0

The crosscorrelation of u,v : Zx — Cis

K—1
Cuv[m] =1/K > ulm+ K|V[K]

k=0

‘enter
llications




Waveform Design

Properties of CAZAC waveforms

@ u CAZAC = u is broadband (full bandwidth).

@ There are different constructions of different CAZAC waveforms
resulting in different behavior vis a vis Doppler, additive noises,
and approximation by bandlimited waveforms.

@ u CA < DFTof uis ZAC off dc. (DFT of u can have zeros)
@ u CAZAC < DFT of uis CAZAC.
@ User friendly software: http://www.math.umd.edu/~jjb/cazac

Norbert Wlener Center
for Harmonic Analysis and Applications



Waveform Design

Examples of CAZAC Waveforms

K=75:u(x)=

(1,1,1,1,1,1, 62775, 7% 278 e2mits, 23 e2mits, €273,
6271'/% eZw/% 6271'1% 927”% 6271'1% 627”% 1 eZw/% 6271'/% 6271’/%’
6271'/15 eZ7rI3 6271'/3 eZﬂ'I eZ7rI3 6271'/3 1 6271'/5 927”5 6271'/5
327”5 1, 327”15 627”15 ez"”s 327”15 327”3 627”15 327”5 627”15
327”15,1,327”5,627”5,327”5,627”5 1 eZTrI3 627713 6271'12 627713
6271’/%,62#/%76271'/%,eZw/%,eZWI%, 6271'/5 627”5 6271'/12 627”16
1’ 927”% , 6271'1'%7 6271'1'%7 6271'1'%7 6271'/3 ’ 927”15 ’ 6271'111 6271'/15 627”15)

Norbert Wiener Center
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Waveform Design

Autocorrelation of CAZAC K =75

Commettion of Cument: Sequence {Langth: 761

az C 12 &8 ]

T T LTy R I T Ry R LI T R P I P R P Ty P L E T
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Waveform Design

Perspective

Sequences for coding theory, cryptography, and communications
(synchronization, fast start-up equalization, frequency hopping)
include the following in the periodic case:

@ Gauss, Wiener (1927), Zadoff (1963), Schroeder (1969), Chu
(1972), Zhang and Golomb (1993)

@ Frank (1953), Zadoff and Abourezk (1961), Heimiller (1961)

@ Milewski (1983)

@ Bjorck (1985) and Golomb (1992).

and their generalizations, both periodic and aperiodic, with some
being equivalent in various cases.

Norbert Wlener Center
larmonic Analysis and Applications



Waveform Design

Finite ambiguity function

Given K-periodic waveform, u : Zx — C let gj[k] = e~2"H/K,
@ The ambiguity function of u, A: Zx x Zx — C is defined as

K—1
Aum. |l = Cuue[m] =1/K > ulk + mjulk]e*™/¥.
k=0

@ Analogue ambiguity function for u < U, |jul|2 = 1, on R:

Au(t,y) = /A U(w — v/2)U(w + ~/2)e? 1= 7/2) gl
R

= / u(s + t)u(s)e® 7 ds.

NorbeIt Wlener Center
for Harmonic Analysis and Applications



Waveform Design

Rationale and theorem

Different CAZACs exhibit different behavior in their ambiguity plots,
according to their construction method. Thus, the ambiguity function
reveals localization properties of different constructions.

Theorem

Given K odd, ¢ = e*%', and ulk] = ¢¥°, k € Zx
@ 1 < k< K-—2oddimplies

!
|
&

Alm, k] = e™(K=K7*/K for m = %(K — k), and 0 elsewhere

® 2 < k< K—1evenimplies

A[m, k] = e™"@K=K*/K tor m = %(ZK — k), and 0 elsewhere

£

Norbert Wlener Center
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Waveform Design

Rationale and theorem

Theorem 1
Given N > 1. Let

N, N odd,
M:{ 2N, N even,

and let w be a primitive Mth root of unity. Define the Wiener waveform

u:Zy — Cby u(k) =wk, 0 < k < N—1.Then uis a CAZAC
waveform.

Norbert Wlener Center
for Harmonic Analysis and Applications



Waveform Design

Rationale and theorem

Theorem 2

Let j € Z. Define u; : Zy — C by uj(k) = €2™*/M where M = 2N if N
isevenand M = N if Nis odd. If N is even, then

e2mim/@N) " im 4+ n=0 mod N,
0, otherwise.

Ay (m, n) = {

If N is odd

_ [ e¥im /N 2jm+ n=0 mod N,
Ay (m,n) = { 0, otherwise.

Norbert Wlener Center
for Harmonic Analysis and Applications



Waveform Design

Rationale and theorem

Proof. Let N be even, and set u;(k) = e™°/N We calculate

N—1
1 )
Ay(m.n) = &> u(m+ k)u;(k)e*™kn/N
k=0
N—1 N—1
_ l e(m/N)(jmz+2]km+2kn _ em/m /N‘I Z eZw/k(jern)/N.
N
k=0 k:O
If jm+ n=0 mod N, then
4 N
- e,27rik(jm+n)/N —1.
N k=0
Otherwise, we have
N—1 i
1 o e@mi(jm+n)/N)N _ 4
N2 & = 1 = 0 Notbert Wienes Conter
k=0



Waveform Design

Rationale and theorem

Proof.(Continued) Let N be odd, and set u(k) = e2™*/N_ We

calculate
1 N1 _'
Ay(m.n) = & ui(m + k)u;(k)e>kn/N
k=0
1 - (2mi ) N)(jm?+2jkm-+kn) 27 ijm? /N - g2mik(2jm+n)/
= N e Jmt 42 — g?mi Z 2
k=0 -

If 2j/m+ n= 0 mod N, then
4 N
I wik(2jm+n)/N _
N > Pk =1.
k=0

Otherwise, we have

=

—1 ﬂ_-
g2rik(@jm+n) /N _ e2ri(2m+n)/N)N _ 4

- = U. Norbert Wiener Center
e(27rl(2m+n)/N —1 O for Harmonic Analysis and Applications
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Waveform Design

Rationale and theorem

Corollary

Let {u(k)}}-, be a Wiener CAZAC waveform as given in Theorem 1.
(In particular, w is a primitive M-th root of unity.)
If Nis even, then

2
Au(m,n):{ W™, m=—nmod N,

0, otherwise.

If N is odd, then

Au(m,n

- w™, m=—n(N+1)/2 mod N,
0, otherwise.

<

Norbert Wlener Center
for Harmonic Analysis and Applications



Waveform Design

Rationale and theorem

a. Let N be odd and let w = €2™/N_ Then, u(k) = w¥, 0 <k < N—1,
is a CAZAC waveform. By the Corollary, |A,(m, n)| = |w”’2| =1if
2m+ n = Ip »N for some I, , € Z and |Ay(m, n)| = 0 otherwise, i.e.,
Au(m,n) =0on Zy x Zy unless 2m + n = 0 mod N. In the case
2m+n = Ip N for some I, , € Z, we have the following phenomenon.

Norbert Wiener Center
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Waveform Design

Rationale and theorem

Example (Contlnued)

If0 < m< Y= and 2m + n = I ,N for some I, € Z, then n is odd;
and if 4 < m <N-1and2m+ n= Ipn,N for some Iy, € Z, then n
is even. Thus, the values (m, n) in the domain of the discrete periodic
ambiguity function A, for which A,(m, n) =0, appear as two parallel
discrete lines. The line whose domain is 0 < m < Y- has odd
function values n; and the line whose domain is N+‘ <m<N-1
has even function values n.

Norbert Wiener Center
for Harmonic Analysis and Applications



Waveform Design

Rationale and theorem

b. The behavior observed in (a) has extensions for primitive and
non-primitive roots of unity.

Let u: Zny — C be a Wiener waveform. Thus, u(k) = Wk,
0<k<N-1,andw = €>™I/M (j, M) = 1, where M is defined in
terms of N in Theorem 1. By the Corollary, for each fixed n € Zy, the
function A, (e, n) of m vanishes everywhere except for a unique value
my, € Zy for which |Ay(mp, n)| = 1.

Norbert Wiener Center

for Harmonic Analysis and Applications



Waveform Design

Rationale and theorem

Example (Continued)

The hypotheses of Theorem 2 do not assume that €>71/M s a
primitive Mth root of unity. In fact, in the case that €>7i/M is not
primitive, then, for certain values of n, A,(e, n) will be identically 0
and, for certain values of n, |A,(e, n)| = 1 will have several solutions.
For example, if N = 100 and j = 2, then, for each odd n, A,(e,n) =0
as a function of m. If N = 100 and j = 3, then (100, 3) = 1 so that
€%713/190 is 3 primitive 100th root of unity; and, in this case, for each
n € Zy there is a unique m, € Zy such that |A,(mp, n)] = 1 and
Au(m, n) = 0 for each m # my,.

Norbert Wiener Center

for Harmonic Analysis and Applications
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Wiener CAZAC ambiguity domain

K =100, j
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Wiener CAZAC ambiguity domain

K=75,j=1

80

Norbert Wiener Center
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Waveform Design

Wiener CAZAC ambiguity domain

K =101,/ = 50
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Waveform Design

Wiener CAZAC ambiguity domain

K =101,j = 51
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Waveform Design

Wiener CAZAC ambiguity domain

K =100, j
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Waveform Design

Wiener CAZAC ambiguity domain

K =100,/ = 98
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Waveform Design

Wiener CAZAC ambiguity domain

K =100,/ = 50
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© Finite frames
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Finite frames

Frames

Definition
A collection (en)nea in a Hilbert space H is a frame for H if there exist
0 < A < B < oo such that

Vx € H, AlIXIP <D [(x, en)? < BJx||*.
nen

The constants A and B are the frame bounds. If A = B, the frame is
an A-tight frame.

Norbert Wiener Center

for Harmonic Analysis and Applications



Finite frames

Frames

@ Bessel (analysis) operator L: H — £2(A)

Lx = ({x, en))

@ Synthesis operator L*, the Hilbert space adjoint of L
@ Frame operator S=L*L: H — H,

Sx = (x,en)en.

By the definition of frames, S satisfies Al < S < Bl.
@ Grammian operator G = LL* : £2(\) — £2(A).

<

Norbert Wlener Center
for Harmonic Analysis and Applications



Finite frames

Frames

Al < S < Blimplies that S is invertible and that B-1/ < S~" < A~ /.

Definition
Let F = {e,} be a frame, and let &, = S~'e,. F = {&,} is the dual
frame of F.

[} Z<X, en>én - 8_1 Z<X, en>én - 8_1 SX = X.
[} Z<X,fén>enzz<si1x, en>en: 8871X:X.
@ The frame operator of F is S~ since

> (x. 8 =5") (S'x.ee,=5"'85""x=S5""x.
@ > |(x,en)|?> = (S 'x,x). Then,

BYIx|2 < Y 1ix, en)P < A Ix|I2.
Norbert Wlener Center

ic Analysis an¢ Applications
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Frames

w//
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Finite frames

Frames

Let H be a Hilbert space.
{en}ne/\ g H |S A't|ght = S = AI,

where [ is the identity operator.

Proof. (=) If S=L*L=Al, thenvx ¢ H

Allx|[? Ax, x) = (Ax, x) = (SX, X)
(L*Lx, x) = {Lx, Lx)
— Lyl
= ) lx.e)?
ien

Norbert Wlener Center
for Harmonic Analysis and Applications



Finite frames

Frames

Proof. (<) If {e;}ien is A-tight, then Vx € H, A(x, x) is
Al =" lix,enf? = (x,enlei,x) = <Z<X7 e/>ef,X> = (Sx,x).
ieK ieK ieK

Therefore,
VxeH, {((S—Ahx,x)=0.

In particular, S — Al is Hermitian and positive semi-definite, so

vx,y € H, [((S—ANx,y)| < V(S —ADx,x){(S— Al)y,y) = 0.
Thus, (S — Al) =0, so, S= Al

Norbert Wlener Center
Harmonic Analysis and Applications



Finite frames

Frames

Theorem (Vitali, 1921)
Let H be a Hilbert space, {e,} C H, ||en|| = 1.

{en} is 1-tight & {e,} is an ONB.

Proof. If {e,} is 1-tight, then Yy € H
2 ="y, en)?
n

Since each |ley|| = 1, we have

1=l =) I{en€)l> =1+ D |{en el
k

k,k#n

= |(en, ex)]?=0=Vn#k, (e e)=0

k#n I':Ioarbert Wlener Center

Analysis ana Applications



Finite frames

Finite frames

Frames F = {e,}N_, for d-dimensional Hilbert space H, e.g., H = K9,
where K=C or K = R.
@ Any spanning set of vectors in K¢ is a frame for K.
o If {e,}N_, is a finite unit norm tight frame (FUNTF) for K¢, with
frame constant A, then A= N/d.
@ {ey}2_, is a Atight frame for K9, then it is a v/A-normed
orthogonal set.

Norbert Wiener Center

for Harmonic Analysis and Applications



Finite frames

Properties and examples of FUNTFs

@ Frames give redundant signal representation to compensate for
hardware errors, to ensure numerical stability, and to minimize
the effects of noise.

@ Thus, if certain types of noises are known to exist, then the
FUNTFs are constructed using this information.

@ Orthonormal bases, vertices of Platonic solids, kissing numbers
(sphere packing and error correcting codes) are FUNTFs.

@ The vector-valued CAZAC — FUNTF problem: Characterize
u: Zx — C9 which are CAZAC FUNTFs.

Norbert Wiener Center

for Harmonic Analysis and Applications



Finite frames

Recent applications of FUNTFs

LERGES
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Recent applications of FUNTFs
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Recent applications of FUNTFs
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Recent applications of FUNTFs
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Recent applications of FUNTFs

discuss kissing numbers

NorbeIt Wlener Center
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Finite frames

Recent applications of FUNTFs

@ Robust transmission of data over erasure channels such as the
internet [Casazza, Goyal, Kelner, Kovacevic]

@ Multiple antenna code design for wireless communications
[Hochwald, Marzetta,T. Richardson, Sweldens, Urbanke]

@ Multiple description coding [Goyal, Heath, Kovacevic,
Strohmer,Vetterli]

@ Quantum detection [Bolcskei, Eldar, Forney, Oppenheim, Kebo,
Bl

@ Grassmannian "min-max” waveforms [Calderbank, Conway,
Sloane, et al., Kolesar, B]

Norbert Wlener Center
for Harmonic Analysis and Applications



Finite frames

DFT FUNTFs

@ N x d submatrices of the N x N DFT matrix are FUNTFs for C9.
These play a major role in finite frame X A-quantization.

! k%o k% Xk
N=8,d=5 —
\/g E 3 % ok ok
EE % % ok
* % * % %
koK k ok %
1 2wl 9mim2  2wim2  2mim€  2wimI
ZL"m:;(E’, 8. e 8. e 5 e 5. ¢ g)
)
M= Lwsmg 8.

@ Sigma-Delta Super Audio CDs - but not all authorities are fans.
Norbert Wiener Center
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Finite frames

Naimark Theorem

Let H be a Hilbert space, V C H a closed subspace, and

t={zeH:VyeV, (z,y) =0}

be its orthogonal complement. Then, for every x € H, there is a
unique y € V satisfying

Ix =yl = min{llx = y'|| : y" € V},

and a unique z € V* such that x = y + z.
The map Py : H — V, Pyx = y is the orthogonal projection on V.

If {vn} is an orthonormal basis for V, then Py can be expressed as

Vx e H, Pyx= Z(x, Vi) Vi,

n Norbert Wlener Center
for Harmonic Analysis and Applications



Finite frames

Naimark Theorem

Can we make tight frames for H = F¢ (F = R or C) with prescribed
redundancy?

Yes. Take an N x N unitary matrix U, and choose any d columns of it
to form an N x d matrix L. Then, L*L = I, which means, the rows of L
form a 1-tight frame for 9.

How about FUNTFs? )

Yes, we shall explain how to generate FUNTFs by using the frame
potential.

Norbert Wiener Center

for Harmonic Analysis and Applications



Finite frames

Naimark Theorem

If {e,}N_, is an A-tight frame for F9, and L is its Bessel map, then
L*L = Al, i.e., the set of the columns of L, {c1,...,cq} is a
V/A-normed orthogonal set in FN. Let V = span{cy, ..., ¢y}, and let
{Cds1,...,Cn} DE A v/A-normed orthogonal basis for V. Then, the

matrix
U=A"12[cs...cp]

is a unitary matrix, since its columns give an ONB for F9. Then, the
rows of U also give an ONB for F. Let & be the kth row of A'/2U.
Then,

@ {&} is a V/A-normed orthogonal basis for FV,
Q e = Pe,, where P: FN — [F9,
P(x[1],...x[N]) = (x[1], ..., x[d]).

Norbert Wlener Center
for Harmonic Analysis and Applications



Finite frames

Naimark Theorem

Theorem (Naimark)

Let H be a d-dimensional Hilbert space, {e,}_, be an A-tight frame
for H. Then there exists an N-dimensional Hilbert space H, and
orthogonal A-normed set {€,}"N_, C H such that

PHén =€

where Py is the orthogonal projection onto H.

Norbert Wiener Center

for Harmonic Analysis and Applications



Finite frames

Naimark Theorem

Let H be an N-dimensional Hilbert space. Let {e;}"; be an
orthonormal basis for H. Define the unit normed element

N
1
== e cH
=7 2

and the subspace
V = (span{¢})*.
Denote by Py the orthogonal projection from H onto V. Then,

(o)

is an N element FUNTF for the N — 1 dimensional space V. enter

N

i=1




Finite frames

Naimark Theorem

Proof. By Naimark Theorem, F = {Pye¢;} is a tight frame for V. We
now show that each element of F has the same length. Let {b,}N !
be an ONB for V. Then, {b,},: U {¢} is an ONB for H and

N—1
e = (&, @)+ ) (b, enb = (& e)+ Pye.
j=1

Note that by the definition of ¢, and using the fact that {e;} , is an
ONB for H, we have,

N
57 el = ; eja el - \/N
Hence, combining the above equations gives us,

1
1=|leill® = [ e€l® + || Pveil® = N | Pve|| At fimes Eones



Finite frames

Naimark Theorem

Proof. (Continued) Hence, combining the above equations gives us,

1
1=leil|® = |[(¢, e)¢l* + || Pveil|* = Nt | Pveil?
> 1 N-1
N2 gL _N=
IPveilP =1- 5 =~x
and taking the square root on both sides gives us,
N —1
Pyell =/ ——
|Pveil =/ =5

so we see that all elements of F have the same norm. By normalizing
each element, it now follows that,

N

N
V—g"ve
-1 , Norbert Wiener Center

i=1

for Harmonic Analysis and Applications

is a FUNTF for V.



Finite frames

Naimark Theorem

Proposition

Let d < N, and let H be an N-dimensional Hilbert space with
orthonormal basis {e;}" . Then, there exist N — d vectors of the
form,

1 N

such that the orthogonal complement of the span of those vectors is a
d dimensional vector space V, and

((ne)

is an N element FUNTF for V.

N

i=1

e Trene. center

for Harmonic Analysis and Applications



Finite frames

Naimark Theorem

We shall construct a 6 element FUNTF for R*. Let {€;}% , be the
standard ONB for R, and let

1
1
° 1
Z 1

1
1

1 6 1 3
:%;ei:\/_é 6o = — Z

— ot —t )k
W
T
1N
O‘J

Let V = Span{&, &}

‘enter
£ Jlications




Naimark Theorem

ey = Pyei=-e1—(&,e1) — (&2, €1) =61 — %51 + %52 = 0

1 1
& = Pvex=e—({,e)6 — (&2, 62)6 =62 — 651 I 652 = 0

‘enter
o olications




Naimark Theorem

k-
~1/3
A 1 1 2/3
& = Pves=e— (&, &)l — (@@= —gh+gl=| 7
0
L O n
= ol
0
/ 1 1 O
o = Pves=es— (606 — (G en)e = — gl —gla=| o
~1/3
L _1 3 .
‘enter

o olications



Naimark Theorem

o O o

€5 = Pves=e5— ({1,658 — (&2, 65)8 = €5 — %51 - %52 =| _1/3

1 1
€ = Pves=es— ({1,650 — (&2, 66)62 = €6 — 651 - 652 = _10 3

2/

‘enter
o olications




Finite frames

Naimark Theorem

By the previous proposition, F = {Pye;}¢ , is an equal normed tight
frame for V. We now rewrite the elements of F in terms of an orthonor-
mal basis for V. The set {¢1, &, €1, €3, €4, 65} is linearly independent,
and & and & are orthogonal. We use Gram Schmit to orthogonalize
this set. We obtain,

1 —1 0 )
-1 —1 0 )
1o 12l 1]lo|._ 110
e1*ﬁ 0 763*% 0 764*% 2 765*\/_5 )
0 0 —1 1
0 0 —1 —+1

and &1, & remain the same.

‘enter
£ Jlications




Naimark Theorem

Finite frames

The set B = {@1, €3, €4, €5} forms an ONB for V. We rewrite the frame
vectors F in terms of the orthonormal basis B and obtain,

1

v

G
0
0

N

[ef]s =

) [eé]B =

° 25ks-

) [eé]B =

oogvo

‘enter
plications



Finite frames

Naimark Theorem

The set B = {@1, €3, €4, €5} forms an ONB for V. We rewrite the frame
vectors F in terms of the orthonormal basis B and obtain,

0 0 0

0 0
els = 2 etls=1| _ 1 v[el]B: o
o= | & |-teda= | |otela= |

0 - -

6
{?[e,’-]e}, s a6 element FUNTF for R*.
1=

‘enter
o olications




Finite frames

The geometry of finite tight frames

@ The vertices of platonic solids are FUNTFs.

@ Points that constitute FUNTFs do not have to be equidistributed,
e.g., ONBs and Grassmanian frames.

@ FUNTFs can be characterized as minimizers of a frame potential
function (with Fickus) analogous to Coulomb’s Law.

Norbert Wlener Center
for Harmonic Analysis and Applications



Finite frames

Frame force and potential energy

F.89 " x 89"\ D —R?

P:8%1x 81\ D —R,
where P(a,b) = p(lla—b|)).  p/(x) = —xf(x)
@ Coulomb force
CF(a.b) = (a-b)/|la—b|°, f(x)=1/x°

@ Frame force

FF(a,b) = (a,b)(a—b), f(x)=1-x2/2

@ Total potential energy for the frame force

N N

TFP({XH}) = Z Z |<Xm7 Xn>|2 Norbert Wiener Center

Analysis and Applications
m=1 n=1



Finite frames

Characterization of FUNTFs

Theorem

Let N < d. The minimum value of TFP, for the frame force and N
variables, is N; and the minimizers are precisely the orthonormal
sets of N elements for RY.

Let N > d. The minimum value of TFP, for the frame force and N
variables, is N2 /d; and the minimizers are precisely the FUNTFs of N
elements for RY.

Problem
Find FUNTFs analytically, effectively, computationally.

Norbert Wlener Center
for Harmonic Analysis and Applications



Finite frames

Construction of FUNTFs

Suppose we want to construct a FUNTF for F9.

@ IfF =R, Let (x4, xo, ..., xy) denote a point in RN?, where each
xx € RY. The solutions of the following constrained minimization
problem are FUNTFs.

N N
minimize  TFP(X1, Xz, ... xn) = > _ > _[(Xm, Xn)[® (1)
subjectto  |[xp2=1, vYn=1,... N.

If we view TFP as a function from R into R, then it is twice
differentiable in each argument, so are the constraints. We can
solve this problem numerically, e.g., by using Conjugate Gradient
minimization algorithm.

o IfF = C, we let (Re(x1), Im(x1), ..., Re(xn), Im(xn)) denote a

point in RV view TFP as a function from R?M into R, and solve
. Norbert Wiener Center
(1) as in the real case. o Rarmonic Analais i Applictions



Sigma-Delta quantization

Outline

e Sigma-Delta quantization
@ Theory and implementation
@ Complex case
@ Pointwise comparison results
@ Number theoretic estimates

Norbert Wiener Center

for Harmonic Analysis and Applications



Xn

Given ug and {Xp}=1

Un=Un-1 +Xp=Qn
An= Qlun_q +xp)

Un=Un-1 +Xp=dn

Sigma-Delta quant (]
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Sigma-Delta quantization
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A quantization problem

Qualitative Problem Obtain digital representations for class X,
suitable for storage, transmission, recovery.
Quantitative Problem Find dictionary {e,} C X:

@ Sampling [continuous range K is not digital]

VXEX, X=) Xo€n, Xn€K.

© Quantization. Construct finite alphabet .4 and

Q: X—»{anen: gn € ACK}

such that |x, — gn| and/or ||x — Qx| small.

Fine quantization, e.g., PCM. Take g, € A close to given xp.
Reasonable in 16-bit (65,536 levels)digital audio. ‘enter
Coarse quantization, e.g., £A. Use fewer bits to exploit redundancy. |~




Sigma-Delta quantization
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Quantization

A% = {(-K+1/2)5,(~K+3/2)5,...,(=1/2)5,(1/2)6,...,(K—1/2)6}

6

(K-1/2)8

8 {

3%/2
8/2

3 {

u-axis |

2t

f(u)=u (-K+1/2)5

Norbert Wiener Center

for Harmonic Analysis and Applications

Q(u) = argmin{ju—q|: g € A%} = qu
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Replace x, < g, = arg{min |x, — q| : g € A%}. Then
x =95 N gue, satisfies

[Ix = x| < —IIZ —an)enll < 53 leenll

Not good!

Bennett’s white noise assumption

Assume that (n,) = (X, — gn) is a sequence of independent,

identically distributed random variables with mean 0 and variance %
Then the mean square error (MSE) satisfies

. d (d6)?
_ _ 32 2 _
MSE = E||x — X||© < > o TN

4

Norbert Wiener Center
for Harmonic Analysis and Applications
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A2 ={-1,1} and E;

Letx = (3,3

3. %), E7 = {(cos(#3%), sin(24))}7_,. Consider quantizers
with A = {—1

orbert Wiener Center

ror Harmonic Analysis and Applications



A2 ={-1,1} and E;
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A2 ={-1,1} and E;
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A2 ={-1,1} and E;
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Y A quantizers for finite frames

Let F = {en}N_, be a frame for R?, x € RY.

Define x, = (x, ep).

Fix the ordering p, a permutation of {1,2,..., N}.

Quantizer alphabet .45

Quantizer function Q(u) = arg{min|u —q| : g € A%}

Define the first-order ¥ A quantizer with ordering p and with the
quantizer alphabet A% by means of the following recursion.

Up—Up—1 = Xpin)—0n
g = QUp—1+ Xp(n))

where uyp =0andn=1,2,... N.

Norbert Wlener Center
for Harmonic Analysis and Applications
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Sigma-Delta quantization — background

@ History from 1950s.
@ Treatises of Candy, Temes (1992) and Norsworthy, Schreier,
Temes (1997).

@ PCM for finite frames and A for PWq:
Bolcskei, Daubechies, DeVore, Goyal, Glntlrk, Kovacevic, Thao,
Vetterli.

@ Combination of XA and finite frames:
Powell, Yilmaz, and B.

@ Subsequent work based on this XA finite frame theory:
Bodman and Paulsen; Boufounos and Oppenheim; Jimenez and
Yang Wang; Lammers, Powell, and Yilmaz.

@ Genuinely apply it.

Norbert Wlener Center
larmonic Analysis and Applications
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O000000@00000

Stability

The following stability result is used to prove error estimates.

Proposition

If the frame coefficients {x,}"_, satisfy
|x] < (K—=1/2)6, n=1,--- N,

then the state sequence {un}ﬁ=0 generated by the first-order XA
quantizer with alphabet A¢ satisfies |u,| <d/2,n=1,---  N.

@ The first-order A scheme is equivalent to

n n
Un:ZXp(]‘)—Zq]‘, n:1,--- 7N.
j=1 j=1

@ Stability results lead to tiling problems for higher order schemes.
Norbert Wiener Center

for Harmonic Analysis and Applications
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Error estimate

Let F = {e,,}N be a frame for RY, and let p be a permutation of
{1,2,...,N}. The variation o(F, p) is

Z l[€p(n) — Ep(n+1) -

Norbert Wiener Center
for Harmonic Analysis and Applications
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0000000008000

Error estimate

Let F = {e,}N_, be an A-FUNTF for RY. The approximation

d N
X=5 > GnBon)
n=1

generated by the first-order YA quantizer with ordering p and with the
quantizer alphabet Af( satisfies

Ix - %) < {ZFPL+ 1

N >,

4

Norbert Wiener Center

for Harmonic Analysis and Applications
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Harmonic frames

Zimmermann and Goyal, Kelner, Kovacevi¢, Thao, Vetterli.

Definition

H = C9. An harmonic frame {e,}"N_, for H is defined by the rows of
the Bessel map L which is the complex N-DFT N x d matrix with
N — d columns removed.

H =RY, d even. The harmonic frame {e,}"_, is defined by the
Bessel map L which is the N x d matrix whose nth row is

ey = \/g (coS(zLA/,),sin(QLNn),...,cos(zw(%z)n),sin(zw(%z)n)>

@ Harmonic frames are FUNTFs.
@ Let Ey be the harmonic frame for R? and let py be the identity
permutation. Then

4

VN, o(En,pn) < wd(d +1). Norbert Wiener Center

Analysis ana Applications
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Error estimate for harmonic frames

Theorem

Let Ey be the harmonic frame for RY with frame bound N/d.
Consider x € R, ||x|| < 1, and suppose the approximation X of x is
generated by a first-order XA quantizer as before. Then

a?(d+1)+d 6

— Xl < —.
I — 5 < REEIEE 2

@ Hence, for harmonic frames (and all those with bounded
variation),

Cq
MSEsa < e g §2.

@ This bound is clearly superior asymptotically to

(do)?
Norbert Wlener Center

MSEPCM - 12N . for Harmonic Analysis and Applications
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Y A and “optimal” PCM

The first order XA scheme achieves the asymptotically optimal
MSEpcym for harmonic frames.

The digital encoding
dé)?
MSEses = {3

in PCM format leaves open the possibility that decoding (consistent
nonlinear reconstruction, with additional numerical complexity this

entails) could lead to

).

==

“MSEp,,” < O(

Goyal, Vetterli, Thao (1998) proved

« opt » Cd 2 Norbert Wiener Center
MS E ~ —= (S for Harmonic Analysis and Applications
Peu N 2



Sigma-Delta quantization

Complex A - Alphabet

Let K € Nand ¢ > 0. The midrise quantization alphabet is

Al _{<m+%)5+in5:m——K,..-,K—L n——K,m’K}

; ; imiz)
. LY I ) ® ®
. . e |25 e * .
. LN IO ) . .
: ; ; Refz)
54 34 {] f] 134
=3 TmE T 2 2 z
. . LR B . .
. . P . .
. . L . . .

Norbert Wiener Center

for Harmonic Analysis and Applications

Figure: Aj for K = 34.



Sigma-Delta quantization

Complex A

The scalar uniform quantizer associated to A% is

05(a+/b)—5<%+ H +i{§J>7

where | x| is the largest integer smaller than x.
Forany z = a+ ibwith |a| < K and |b| < K, Q satisfies

zZ—Qs(2) < min |z - (|.
2-Qs(2) < min |z~ ¢

Let {x,}N_, C C and let p be a permutation of {1,..., N}. Analogous
to the real case, the first order XA quantization is defined by the
iteration

Up = Up—+ Xp(n) — qn,

Qn = Qs ( Un—1+ Xp(n) ) . Norbert Wiener Center

for Harmonic Analysis and Applications



Sigma-Delta quantization

Complex A

The following theorem is analogous to BPY

Theorem

Let F = {e,}N_, be a finite unit norm frame for C¢, let p be a
permutation of {1,..., N}, let |up| < §/2, and let x € CY satisfy
Ix]] < (K —1/2)6. The £A approximation error ||x — x|| satisfies

~ _ 6
I =X < VEIS ™ llp (o(F,p)3 + lunl + o]

where S~ is the inverse frame operator. In particular, if F is a
FUNTF, then

~ d 4]
I =51 < Vg (o(F.pg + onl + ol )

v
oot vvacuos Center

L3
for Harmonic Analysis and Applications
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Complex A

Let {Fn} be a family of FUNTFs, and py be a permutation of
{1,...,N}. Then the frame variation o(Fn, pn) is a function of N. If
o(Fn, pn) is bounded, then

[x —X|| =O(N~")as N — .

Wang gives an upper bound for the frame variation of frames for R,
using the results from the Travelling Salesman Problem.

Theorem YW

Let S = {v}}, C [-3, 3] with d > 3. There exists a permutation p
of {1,..., N} such that

N—1

> V) = Vgl < 2Vd+3N'~7 —2Vd + 3.

J=1

‘enter
o plications




Sigma-Delta quantization

Complex A

Let F = {ey}N_, be a FUNTF for R?, |up| < 6/2, and let x € RY satisfy
Ix]| < (K —1/2)é. Then, there exists a permutation p of {1,2,..., N}
such that the approximation error || x — x|| satisfies

Ix — X|| < v25d ((1 VAT 3N +Vd+ 3N-‘a)

This theorem guarantees that
Ix = X|| <O(N"7) as N — oo
for FUNTFs for R,

Norbert Wlener Center
for Harmonic Analysis and Applications



Sigma-Delta quantization

Complex XA - Algorithms

Algorithm YW

@ Start with a permutation py. If this permutation meets the upper
bound given in Theorem YW, we are done.

@ If p does not meet the bound, divide [—3, 3]% into 27 subcubes,
pick the nonempty subcubes (say {Cx}), and find permutations
(say {p«}) in these smaller subcubes (using Algorithm 7).

@ If a px does not meet the bound given in Theorem YW, divide Cy
further into smaller subcubes. Proceed in this way until the
bound in Theorem YW is met in each subcube.

© Let p be the union of these smaller permutations.

Norbert Wlener Center
for Harmonic Analysis and Applications



Sigma-Delta quantization

Complex XA - Algorithms

Algorithm 1
Let (xx)N_, be a FUNTF for C7.

Q Letki =1, y1 =Xy, J1 = {ki},
Q Let ky, = argmaxigy, ,|Re(Yn—1,Xk)|, Jn = Jn—1 U {kn},
Q Let yn = sign(Re(yn—1, Xi,))Xk,-

(vx)R_, is unitarily equivalent to (x¢)~_,, up to a multiplication of
frame elements by +1.

Norbert Wlener Center
for Harmonic Analysis and Applications



—0.7228
0.37772
—0.75132
0.81978
—0.65436
—0.99649
0.99664
—0.70853
0.093379
0.05196
—0.91746
0.84169
0.52699
0.78632
0.99884
0.7079
—0.39328
0.62502
—0.49371
0.1665
0.95312

0.69106
0.92592
0.65994
0.57267
0.75618
—0.083726
0.081908
—0.70568
0.99563
0.99865
—0.39784
0.53996
—0.84987
—0.61782
0.048212
—0.70631
—0.91942
—0.78061
—0.86962
—0.98604
0.30258

Sigma-Delta quantization

The rows of this matrix form a
FUNTF for R2 with N = 21
elements. We calculated this
FUNTF by solving

>3 o 1

m=1 n=1
X2 =1, V¥n.

minimize

subject to

Norbort chncr Center
Harmonic Analysis and Applications
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Complex A

Numbering of the Frame elements Renumbering of the frame elements

Norbert Wiener Center

for Harmonic Analysis and Applications
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Complex A

Grammian of the Frame Grammian of the permuted Frame

Frame Variation of the original frame = 24.4779
Frame Variation of the new frame = 2.56091

2y/d+3N'"-3 —2y/d+3 =16.0218

Norbert Wiener Center

for Harmonic Analysis and Applications



Sigma-Delta quantization

Comparison of 1-bit PCM and 1-bit XA

Let x € CY, ||x|| < 1.
® gpcm(x) is the sequence to which x is mapped by PCM.

@ gsa(x) is the sequence to which x is mapped by TA.
°

d
errpem(X) = [IX — 5L grem(x)]]

d
errza(x) = [Ix — HL gea(x)]]

Fickus question: We shall analyze to what extent
errya(X) < errpem(x) beyond our results with Powell and Yilmaz.

Norbert Wlener Center

ic Analysis snd Appli
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Comparison of 1-bit PCM and 1-bit XA

Theorem

Let x € CY satisfy 0 < ||x|| < 1, and let F = (e,)N_, be a FUNTF for
C9. Then,
errpem(X) > ap+ 1 — x|

where

lIx]]=1

N
aF = inf %;|Re(<x,en>)|+|Im(<x,e,,>)|—1 >0.

Norbert Wlener Center
larmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Proof. First, note that Re(Q(a + ib)(a — ib)) = |a| + |b|. Next,

errpCM(X) = ||X_%ZQ(<Xven>)e"”
n=1
> ||x—ﬂL§N30<<xe>><e x|
= N||X||2 o y “n n,
N

d
> x|l WZI%(O@ en))| + [Im((x, en))| — 1
|Re({x, en))| + |Im({x, en))]
= —|Ix
NZ I IxI
> ar+1—||x]. Moo Henon Conter
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Comparison of 1-bit PCM and 1-bit XA

Theorem (BPY)

Let ||x|| < 1, (en)N_, be a FUNTF for RY. Then

d N—1
errsa(x) < N (1 r nz_; |len — en+1||> .

|
| A\

Theorem (BOT)

Let F = {e,}N_, be a finite unit norm frame for C9, let p be a
permutation of {1,..., N}, let |up| < §/2, and let x € C satisfy
Ix]] < (K —1/2)6. The £A approximation error ||x — x|| satisfies

~ _ )
Ix =Xl < V2IIS™ lop(o(F. p)5 + lluwl + o),

where S~ is the inverse frame operator for F. ‘enter




Sigma-Delta quantization

Comparison of 1-bit PCM and 1-bit XA

Let {Fy = (el)N_,} be a family of FUNTFs satisfying:

N—-1
IM such that VN, > |le} —el.4|| < M,

n=1

e.g., harmonic frames. Then errya(x) < d(/‘;fvﬂ)_

On the other hand, we just showed that

errpem(X) > ap, +1—|[Ix[][ =1 —[|x]|

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Definition
A frame F is robust to 1-erasure if for any x € F, F\{x} is a frame.
FUNTFs are robust to 1-erasure.

Proof. Let F be a FUNTF for CY, and let F_, = ®\{x} for a fixed
x € F. Then, for every y,

Yoo = Yol -0

pEF_x pEF

= DI~ LR

(§-1) e

Therefore, F_isaframewith A=Y —1, B= 1.

Y

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Let {vx: k=1,...,n} € C9{0}, and 2221 [Ilvell = |l 2221 V|-
Then,
3w e CY such that Vk =1,...,n, vk = w.

Proof.
n n n 2 n
S i)y =D wllP = (Z ||Vk||> = lvlllivill,
K,i=1 k=1 k=1 K,i=1
which is possible only if (vk, v;) = ||vk||||vi|| for every k and /. Then
VW#£0=>vw=vVv, Vk,I=1,....n

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Let F = (e,)N_, be a FUNTF for CY with distinct elements, and with

the property
ek€F and |\ =1=Xex¢F.

Then af > 0.

Proof. For every nand || x| = 1, |(x, en)| < 1, s0

Re((x. en)| > |Re((x. e, [Im((x.en)| > [Im((x.e)E. (@)
d N
afF = ||)£T|1L1 N Z |Re(<X7 en>)| + |Im(<x7 en>)| —1 (3)

= it NZIRe ((x. en))| — [Re((x, &)1

+Im((x, €n))| = |Im({x, en))[? > O.

Norbert Wlener Center
larmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

By compactness of {x € C% : ||x|| = 1}, either ar > 0, or there is an
Xo, || Xo|| = 1 such that

N
0=ar=)_|Re((xo, en))|~|Re((x0, &n))I+|Im((xo, €n))|—|Im({xo, €n)) .

n=1
In the latter case, we must have
vn=1,...,N, |Re({(xo,en))| =0 or1 and|Im((x,en)) =0 or1
by (2). Then, since
1> [(x0, €n)[? = |Re((Xo, €n)) | + |Im((x0, €n))I?,

either |Re((xo, en))| = 0 or |Im({xo, €n))| = 0 or both. Hence,

Norbert Wlener Center
Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

(X0, en)| = [Re((Xo, en))| + |Im((Xo, €n))| (4)
Then, (3) and (4) imply

N

N N
D l(x,en)| = g 1%l =1 > (X0, en)en.
n=1

n=1

Then, by the previous Lemma, there is a w such that (xo, e,)e, = w if
(X0, €n) # 0. Then, all e, that are not orthogonal to xo are equal up to
a multiplication by a A, |A| = 1. But, by the hypothesis, there is only
one such frame element nonorthogonal to xp. Erasing this element,
remaining vectors would not span C¢, i.e., F would not be robust.
Contradiction.

Therefore, ar > 0.
Norbert Wiener Center

for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Let {Fy = (e))N_,} be a family of FUNTFs for C? such that

N—1
IM>0 YN>0 > ey —efq | <M.

n=1
Then,

Ve>0 INg >0 VYN>Ny errZA(X) < errPCM(X)

for every 0 < ||x|| <1 —e. (each err depends on N).

Proof. errya(x) < W forany N and ||x|| < 1. Then,

Ve >0 3INy suchthat VO < ||x||<1—¢ and VYN > Np,

d ( 1+M ) Norbert Wiener Center

errzA(X) S N S & S 1 _ ||XH S errPCM(x)u.HarmonlLAnalyS\sannApplvcanons
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Comparison of 1-bit PCM and 1-bit XA

Let Fy = (eN)N_,,N=d,d +1,... be a family of FUNTFs. If there is
a positive uniform lower bound for (ar, ), then we can replace the
conclusion of Theorem 1 by the assertion that

INo > 0, VN > Ny and V0 < ||x|| < 1 errsa(x) < errpcu(X).

The families (Fy) such that af, — 0 are the pathological cases that
we describe in the following Theorem.

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Let Fy = (el)N_,,N=d,d +1,... be a family of FUNTFs for C?. If
ar, — 0, then there is || xo]| = 1 such that

. N\| N 2<
VE>O, |I Card{n€{1""’N}'|<X0’en>| |<X0>en>| _5}

e N =1.

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Proof.
g N
> inf — M| —1>0.
aFNin)!W:‘IN;KX’enH >0
Let x, ||xv]| = 1 be the point where 3> |(x, el)| attains its mini-
mum. Then,
jim & =1
apy, — 0= Enoo NZ|<XN7en>| =
n=1
Note that
d P N
el = S oo el < dlixu =l (5)

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Proof.
By compactness, (xy) has a convergent subsequence. Without loss
of generality, assume that limy_, ., xy = Xo. Letting N — oo in (5), we

obtain
Jm 5 Z [(x0. €0)] =

Let

?\I = {n: 1""’N: |<X07erl;l>| - |<X07erl;l>|2 < 8},

S = {n=1,....N:|(xo,eM)| — [(x0, eN)?> > ¢}.
Then,

£ N E £
de cardBy, < EZ (%0, €M) —1 = lim cardBy, 0= ”m cardAy 1

N N N—oo N _ﬁ&bert (Mener Center

n:1 ic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Definition
A function e : [a, b] — CY is of bounded variation (BV) if there is a
K >0suchthatforeverya<ti<b<---<ty<b,

N—1

3 llelts) - e(tnsr)l| < K.

n=1

The smallest such K is denoted by |e|gy, and defines a seminorm for
the space of BV functions.

Norbert Wiener Center

for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Theorem 2

Lete:[0,1] — {x € Co: ||x|| = 1} be continuous function of bounded
variation such that Fy = (e(n/N))N_, is a FUNTF for C? for every N.
Then,

INo > 0 such that YN > Ny and V0 < || x| < 1

errya(X) < errpem(x).
Moreover, a lower bound for Ny is d(1 + |e|gy)/(vVd — 1).

Norbert Wlener Center
larmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Proof.
Let ef = e(n/N). If x| = 1, then &3V |Re((x,eM))| +
lIm(({x,eN))| —1 > ag, > 0. Second,

N
- lim (%Zme«x, e(n/N)? + |m((x. e(n/N)>)|2>

1
d [ (1Re((x.e(t)| + im((x. e(0)
~Re((x, e(t))]2 - lIm((x, e(t) ) dt.

Norbert Wiener Center
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Comparison of 1-bit PCM and 1-bit XA

Proof.
The integrand in (6) cannot be equal to zero for every t, since other-

wise we would have that
vt, |Re({(x,e(t))) =0or1and |Im({x,e(t))) =0or1.
But, because
1> |(x, e(t))? = |Re((x, e(t))|? + |Im((x, e(1)))[?,
either |Re((x, e(t)))| = 0 or |Im(({x, e(t)))| = 0 or both. Hence,
[{(x,e(t))|=0or1.

Since x # 0, there should exist a t* such that |(x, e(f*))| = 1 which
implies that there is a |Ao|] = 1 such that x = Xpe(t*), and that
(x,e(t)) = 0 for every t such that e(t) # Xe(t*) for some |A\| =

But this contradicts the continuity of e. Therefore, the mtegmrgm@@gr Eanilas
is not zero at every point. B



Sigma-Delta quantization

Comparison of 1-bit PCM and 1-bit XA

Proof. . _ _ _
Moreover, since the integrand is continuous,

)
/0 |Re((x, e(t))|+/Im((x, e(1)))|—| Re((x, e(t)))|*~|Im((x, &(t)))|? dt > 0

for each x, ||x|| = 1. Then, by the compactness of the unit sphere,

)
a:=d inf / |Re((x, e(t))|+/Im((x, e(1)))|—| Re((x, e(t)))[?~|Im((x, e(t),

IxII=1Jo
Clearly, limy_ o arf, = a. Therefore, we conclude that
38 >0 suchthat errpem(x)>afr, +1—|x||>68+1—|x]|
for every 0 < ||x|| < 1, and for every N > 0.

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Proof.
Third, Eﬁﬂ llen — ent1]l < |elsy =: M. Therefore, by Theorem (BOT),
we have

errsa(x) < %(1 + M)

for every N. Then, fore = g3,

INp > 0 such that VN > Ny and V0 < ||x|| < 1

d
errZA( ) N(1 +M)<,6'<CVFN+1 —||X|| <errPCM(X)

Norbert Wlener Center
Harmonic Analysis and Applications
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Comparison of 1-bit PCM and 1-bit XA

Example (Roots of unity frames for R?)
el = (cos(2wn/N), sin(2rn/N)).

Here, e(f) = (cos(2nt), sin(2xt)),
M = |e|Bv =2, lima,.-N = 2/7T.

Example (Real Harmonic Frames for R?)
cos(2wn/N),sin(2rn/N), ..., cos(2rkn/N), sin(2rkn/N)).

ol = (
In this case, e(t) = ﬁ(cos(&rt), sin(2rt),...,cos(2rkt), sin(2mkt)),

M= lelay = 2m\/ 1 30, k2.

Norbert Wlener Center
larmonic Analysis and Applications
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Comparison in multibit case

For an integer b> 1, let § = 2'-?and K = 6. The midrise
quantization alphabet is

A5={(m+%)5+in6:m:—Ky...,K—L n=-K,...,K},

and the associated scalar uniform quantizer with step size ¢ is given

> . 1 a .| b
Qa(a+/b):5<§+ bJ + bJ).

© Multibit PCM uses the simple rule g, = Q({x, e,))
@ Multibit 1st order XA uses the iterative sequence:

U, = Up—1+ <X7 €n) — qn
Norbert Wlener Center
qn — Q(<X7 en> + un_1) for Harmonic Analysis and Applications
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Comparison in multibit case

Let {Fy = (e))N_,} be a family of FUNTFs for C? such that

N—1
IM >0 suchthat ¥N, Y [le} —ell,4[| < M.

n=1

Then,
Ve >0 3Ny suchthat YN > Ny and V0 < ||x|| < g —€

errya(X) < errpey(X).

at the same bit rate.

Proof.
0< x| <d/2=Vn, [(x,en)| <6/2= Q((x,e,)) =+6/2Lid.Itis
Norbert Wiener Center

not hard to show that 1-bit quantized coefficients of 5= x are fmenc s - ssicavens
5 'Qs((x, en)). The result follows from the 1-bit case Theorem 1.



Sigma-Delta quantization

Comparison in multibit case

Lete:[0,1] — {x . ||x|| = 1} be continuous and of BV such that
Fn = (e(n/N))N_, is a FUNTF for R for every N. Then,

IN, such that V0 < ||x|| < g and VN > Ny

errya(X) < errpem(x).

Proof.
0<|Ix|| <d/2=Vn, [(x,en)| <d6/2= Q((x,en) =£/2Lid.

It is not hard to show that 1-bit quantized coefficients of 6~ 'x are
57 1Qs({x, en)). The result follows from the 1-bit case Theorem 2.

Norbert Wlener Center
for Harmonic Analysis and Applications
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Comparison of 2-bit PCM and 1-bit XA

Red: errpem(X) < errsa(x), Green: errpem(x) = errZA@& peftilnex Conjen



Sigma-Delta quantization

Comparison of 2-bit PCM and 1-bit XA

81st Roots of 1 frame, 2bit PCM vs 1bit £A

Red: errpem(X) < errsa(x), Green: errpem(x) = errZA@eﬁfzﬁfﬁgﬁigﬁiﬁ



Sigma-Delta quantization

Comparison of 2-bit PCM and 1-bit XA

101st Roots of 1 frame, 2bit PCM vs 1bit A

Red: errpem(X) < errsa(x), Green: errpem(x) = errZA@eﬁfzﬁfﬁgﬁigﬁiﬁ
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Comparison of 3-bit PCM and 1-bit XA

81st Roots of 1 frame, 3bit PCM vs 1bit £A

- “le =N

Red: errpem(X) < errsa(x), Green: errpem(x) = errZA@& peftilnex Conjen
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Comparison of 3-bit PCM and 1-bit XA
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Red: errpem(X) < errsa(x), Green: errpem(x) = errZA@?ﬁ{Emyefﬁigﬁiﬁ
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Comparison of 3-bit PCM and 1-bit XA

Red: errpem(X) < errsa(x), Green: errpem(x) = errZA@& peftilnex Conjen
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Comparison of 3-bit PCM and 2-bit XA

81st Roots of 1 frame, 3bit PCM vs 2bit £A

Red: errpem(X) < errsa(x), Green: errpem(x) = errZAwﬁiﬂx\QﬁEﬁiSﬁgﬁ
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Comparison of 3-bit PCM and 2-bit XA

101st Roots of 1 frame, 3bit PCM vs 2bit A

—

)
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ert Wiener Center

monic Analysis an Applications

Red: errpem(X) < errsa(x), Green: errpey(x) = errzal ajb
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Comparison of 3-bit PCM and 2-bit XA

201st Roots of 1 frame, 3bit PCM vs 2bit ZA

Red: errpem(X) < errsa(x), Green: errpem(x) = errmé&;)?i%?i}i?ﬁi%ﬁiﬁii
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Even — odd

Approx. Error
5/N

— 5N

10 g

107F

.
10° 10' 10° 10° 10*
Frame size N

Figure: log-log plot of ||x — Xu||.
9 g-logp H NH Norbert Wiener Center

for Harmonic Analysis and Applications
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Even — odd

En = {el}N_,, e} = (cos(2rn/N),sin(2rn/N)). Let x = (1,,/2).

n=1>
_d NN N _ N
X = E Xy en, X, = (X,e,).

Let xy be the approximation given by the 1st order XA quantizer with
alphabet {—1, 1} and natural ordering.

Norbert Wiener Center

for Harmonic Analysis and Applications
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Improved estimates

En = {e)}N_,, Nth roots of unity FUNTFs for R?, x € R2,
x|l < (K = 1/2)6.

. d
Quantize  x = NZ: xNel, = (x, el

using 1st order A scheme with alphabet A%

dlog N

If N'is even and large then || x — x|| < Bx“ggr

If N is odd and large then A2 < ||x — X|| < B, @19 2,

@ The proof uses a theorem of Gintirk (from complex or harmonic
analysis); and Koksma and Erdds-Turan inequalities and van der
Corput lemma (from analytic number theory). Norbert Wiener Center

for Harmonic Analysis and Applications
@ The Theorem is true for harmonic frames for RY.
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Proof of Improved Estimates theorem

@ If Nis even and large then | x — X| < B, 229N,
If Nis odd and large then A% < ||x — x|| < B, @097,

@ VN, {eN}N_, is a FUNTF.

N—2
= d NN 4N N N N AN
X=X = 5 Zvn(fn —fi1) + Vo fyog + Uney
n=1
N N _ N NN N N Up
7 n
fa = €n — €ni1s Vn:ZUj7 Un:T

@ | To bound v}'.

Norbert Wiener Center

for Harmonic Analysis and Applications
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Koksma Inequality

Definition

The discrepancy Dy of a finite sequence xi, ..., xy of real numbers is
N

Dy = Dn(X1, .., XN) = SUPp<aip<t |3 2onet Lja.gy({Xn}) — (B — @),

where {x} = x — | x].

| A\

Theorem(Koksma Inequality)

g:[—1/2,1/2) — R of bounded variation and
{wititr € [=1/2,1/2) =

Zg wj) )dt' < Var(g)Disc ({wj}/f’:1).

NI—‘

<

W|th g( t) — t and w/ = H]N’ ‘V,’;" S n(SDiSC ({EJN}jn:1 ) . Norbert Wlener Center

for Harmonic Analysis and Applications




Sigma-Delta quantization

Erdés-Turan Inequality

K i
3C > 0,9K. Dise({B)})_,) < c( SIS Ay )
k=1 n=1

To approximate the exponential sum.

Norbert Wiener Center

for Harmonic Analysis and Applications
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Approximation of Exponential Sum

Giintlirk’s Proposition (1)
VN,3Xy € Bq/y suchthat ,vn=0,...,N

0
Xn(n) = ul + chz,

> Ch € Z

and, Vt,

Bernstein’s Inequality (2)

|
NS
—
~
~—
|
N

If x € Bq, then || x(]|c < Q"|X||o0

Norbert Wlener Center
for Harmonic Analysis and Applications



Sigma-Delta quantization

Approximation of Exponential Sum

(1)+(2)

24

t X5 - 4 (%)| < Bz

@ Bo={TeAR) : suppT C[-Q,Q]}
o MQ:{hEBQ =
L>(R) and all zeros of h" on [0, 1] are simple}

@ We assume
Jh € Mg suchthat VN and V1 < n<N, h(n/N) = x}.

Norbert Wlener Center
Harmonic Analysis and Applications
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Van der Corput Lemma

@ Let a, b be integers with a < b, and let f satisfy f/ > p > 0 on
[a,b]or f" < —p<0onlab]. Then

\néezmn) < <|f’(b) —f'(a)| +2)(% +3>,

4

@ V0 < a < 1,3N, such that YN > N,,,

J
’ Z g2mikuy
n=1

< BN+ B Y=~ 4B~

NorbeIt Wlener Center
for Harmonic Analysis and Applications
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Choosing appropriate « and K

Putting o = 3/4, K = N'/* yields

3N 'such that YN > N, Disc({'l],’)’ {,:1> < By—

24

vn=1,....N, |[vN| < B«6Nilog N

Norbert Wlener Center
for Harmonic Analysis and Applications
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y i

Norbert Wiener Center

for Harmonic Analysis.and Applications

Norbert Wiener Center
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