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with input of bandlimited functions, the mean square error norm of quantization
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Chapter 1

Introduction

1.1 Quantization of signals

In signal processing, transmitted signals in analog form need to be converted

into digital form for storing, coding, and recovering purposes. This process of analog-

to-digital (A/D) conversion consists of two main steps: sampling and quantization.

In the sampling step, a given signal x is expressed as a linear combination over an

at most countable dictionary {en}n∈Λ with real or complex coefficients, i.e., x =∑
n∈Λ xnen (xn ∈ C or R). The expansion is said to be redundant if the choice of the

coefficient sequence {xn}n∈Λ is not unique. We shall refer to a coefficient sequence

{xn}n∈Λ as a sampling sequence. In order to be able to process the signal, one

needs to reduce the continuous range of the sampling sequence consisting of real or

complex numbers to a finite set. This step of signal processing is called quantization.

More precisely, quantization is a mapping process with a map Q such that Q : x→

x̃ =
∑

n∈Λ qnen, where, for each n ∈ Λ, qn is an element from a finite set A called

the quantization alphabet. The map Q is naturally called a quantizer. We see that

Q replaces the sampling sequence {xn}n∈Λ with {qn}n∈Λ in a linear manner; so we

refer to this manner of mapping as linear reconstruction. The natural question

arises: how different is the new expansion x̃ =
∑

n∈Λ qnen from the signal x? This

difference occurring in the quantization step is called quantization error, and it
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is measured by computing ‖x − x̃‖, where ‖ · ‖ is a suitable norm in the space

of signals. An optimal quantizer is the one that minimizes the quantization error

norm. Nevertheless, finding a good quantizer has been proved to be a nontrivial, yet

challenging, problem to the engineering community involved in signal processing.

For reasons of applicability, an audio signal f of interest is usually modelled

as a bandlimited function. This means that f is an L∞ function on R whose Fourier

transform f̂ (as a distribution) is compactly supported. For each 0 < T < 1, the

function f can be reconstructed from the sampling sequence {f(nT )}n∈Z as follows:

f(t) = T
∑
n∈Z

f(nT )g(t− nT ), (1.1.1)

where g is an appropriate smoothing kernel or sampling function. Applying a first

order Σ∆ scheme on f yields a function f̃T such that

f̃T (t) = T
∑
n∈Z

qT
n g(t− nT ), (1.1.2)

where each qT
n ∈ {−1, 1} . Standard analysis (see, e.g., [3],[7]) has shown that for

some absolute constant C > 0,

∥∥∥f − f̃T

∥∥∥
L∞
≤ CT.

However, numerical experiments suggest a better bound than T. More precisely, it

has been conjectured that there exists an absolute constant C > 0, independent of

f, such that

lim
K→∞

1

2K

∫
|t|≤K

∣∣∣f(t)− f̃T (t)
∣∣∣2 dt ≤ CT 3. (1.1.3)

This means the approximation error decays “on average” like T 3/2 [7]. We shall see

later that the basic bound T corresponds to the basic bound 1/N in Euclidean norm
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in the setting of finite frames for Rd where N is the frame size. This correspondence

suggests that there should be a better bound for the setting of finite frames as well.

We shall assume that the signal of interest is an element of the Euclidean

space Rd, and that the sampling coefficients are real numbers. We shall also focus

on structured dictionaries called frames.

1.2 Overview of the thesis and main results

We begin Chapter 2 by discussing material on frame theory. We discuss the

definition of frames in Hilbert spaces and prove some properties of frames in this

setting. Then we focus on finite frames for Euclidean space Rd. Some interesting

results dealing with finite unit norm tight frames are analyzed, based on the works

by Benedetto and Fickus [14] and by Zimmermann [20]. We pay attention to a

specific infinite family of frames called the harmonic frames. This family of frames

provides substantive structure, and it is used in Chapter 5 to provide examples

to illustrate the results on quantization error. The notion of the first order frame

variation, σ(F, p), is introduced, and it is generalized to define the nth order frame

variation, σn(F, p). We derive a general formula of σn(F, p) for harmonic frames.

We shall see that frame variation plays an important role in the basic quantization

error as it relates the dependency of the Σ∆ scheme with the properties of frames.

In Chapter 3, we discuss a classic quantization scheme called Pulse Code Mod-

ulation (PCM) and derive quantization error estimate associated to this scheme for

finite frames for Rd. We then provide the setting of this thesis, viz., the first order
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K-level Σ∆ scheme with step size δ. The quantizer map is defined algorithmically.

However, this makes it inconvenient to program numerical experiments using MAT-

LAB so we derive the general formula for this quantizer. Then we derive a basic

quantization error estimate based on the Σ∆ scheme. This is done in [16], where it

is proved that if F is a unit norm tight frame for Rd of cardinality N ≥ d, then the

K-level Σ∆ scheme with quantization step size δ gives quantization error

‖x− x̃‖ ≤ δd

2N
(σ(F, p) + 2),

where x is a given signal, x̃ is the quantized signal, and ‖·‖ is the d-dimensional

Euclidean 2-norm.

In Chapter 4, we first provide the background material from the theory of uni-

form distribution of sequences of real numbers [17]. In particular, we define uniform

distribution modulo 1, and state examples of real sequences with this property. We

then discuss the notion of discrepancy of a finite sequence and prove some basic

results on the bound of discrepancy. We provide two inequalities that improve the

bound of discrepancy and emphasize one of them, viz., the Erdös-Turán Inequality

which states the following: For any finite sequence x1, . . . , xN of real numbers and

any positive integer m, we have

DN ≤
6

m+ 1
+

4

π

m∑
h=1

(1

h
− 1

m+ 1

) ∣∣∣∣∣ 1

N

N∑
n=1

e2πihxn

∣∣∣∣∣ ,
where DN is the discrepancy of the sequence x1, . . . , xN . This inequality plays an

important role in our analysis of quantization error as it approximates discrepancy

in terms of an exponential sum which will be approximated further by a theorem

of van der Corput. This latter theorem states the following: If a and b are integers
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with a < b, and if f is a twice differentiable function on [a, b] with f ′′(x) ≥ ρ > 0

for all x ∈ [a, b] or f ′′(x) ≤ −ρ < 0 for all x ∈ [a, b], then∣∣∣∣∣
b∑

n=a

e2πif(n)

∣∣∣∣∣ ≤ (|f ′(b)− f ′(a)|+ 2)
( 4
√
ρ

+ 3
)
.

In Chapter 5, we collect all the ingredients to give the detailed proof of the

theorem on improving the quantization error stated in [16]. We provide a new

construction which corrects errors observed in the original proof. One ingredient we

need in the proof is a result by Güntürk [7, 8]. This theorem allows us to construct

an analytic function with certain properties such that the values at the natural

numbers correspond to the terms of a given real sequence. We prove the special

case of this theorem, and give an explicit bound for the inequality not given in the

original theorem. The quantization error obtained in this chapter is an improvement

from the basic error estimate obtained in Chapter 3. In fact, our improvement goes

from order 1/N to one of order 1/N5/4−ε (ε > 0) for certain choices of frames,

where N denotes the cardinality of frame. We show further that with a certain

natural assumption, the order of the quantization error estimate can be improved to

1/N4/3. This order is better than the order obtained by Güntürk in [7] in the setting

of bandlimited functions. There he obtained a bound of order 1/N4/3−ε for ε > 0.

On the other hand, the bounds we obtain for these improved estimates depend on

the given signals. One of the main goals of our future research is to dispense with

this restriction.

The last section of Chapter 5 is devoted to examples to justify the results of

the theorems we have proved. We show various graphs of quantization error norms

5



which are plotted against the cardinality of the frames. We analyze some interesting

phenomena concerning the periodic pattern occurring in the shapes of these graphs.

1.3 New results

In this section we specifically describe our own contributions.

• In Chapter 2, we generalize the notion of the first order frame variation

σ(F, pN) to the nth order frame variation σn(F, pN), where F is a given frame

and pN is a permutation of the set {1, . . . , N} . We then prove the explicit

formulae of σn(Hd
N , p) for the harmonic frame Hd

N with respect to the iden-

tity permutation p (Theorem 2.4.5). Such formulae can be used in refined

quantization error estimates. We also prove a result (Theorem 2.4.6), which

is a consequence of the proof of Theorem 2.4.5, which gives relatively sharp

inequalities for some new trigonometric binomial sums.

• In Theorem 3.3.1 of Chapter 3, we prove the general formula of the quan-

tizer associated with first order Σ∆ quantization. Theorem 3.3.1 is crucial in

programming numerical experiments using MATLAB.

• In Chapters 2 and 4, we give details for difficult issues concerning frames,

uniform distribution, and discrepancy, which are not readily available in the

literature. For example see Proposition 2.3.6, Examples 4.1.2, 4.2.8, 4.4.9,

Theorem 4.2.5. In particular, we proved in Example 4.1.2 that the following
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sequence is u.d. mod 1:

0

1
,
0

2
,
1

2
,
0

3
,
1

3
,
2

3
, . . . ,

0

n
,
1

n
, . . . ,

n− 1

n
, . . . .

• In Chapter 5, noting that there was a gap in the original proof of Güntürk’s

theorem in [7] we provided a complete proof for an important special case.

Independently, Güntürk has given a complete proof in [8] and in a private

communication, the latter after seeing our work. We also compute an explicit

bound of the inequality occurring in the theorem, which will be useful in eval-

uating quantization error independent of signal. We also correct the proof of

Theorem 5.1.1 from the original one by providing a new intricate construc-

tion. Finally, we have constructed a new class of examples of quantization

error plots, showing and giving preliminary analysis of various periodic pat-

terns of the shape of graphs of the quantization error as a function of the frame

size.

1.4 Definitions and notation

We shall use the following definitions and notation.

• The Fourier transform is formally defined by

f̂(γ) =

∫
f(t)e−2πitγdt.

• We denote the characteristic function of a set E by 1E, i.e.,

1E(x) =


1 if x ∈ E,

0 otherwise.
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• For x ∈ R, we denote by bxc the floor function of x, which is the largest

integer that is not greater than x; and we denote by {x} the fractional part

x− bxc ∈ [0, 1) of x. We also denote by dxe the ceiling function of x, which is

the smallest integer that is at least x.
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Chapter 2

Frame Theory

2.1 Overview

The necessary condition for a sequence {en}∞n=1 of unit norm vectors to be

an orthonormal basis (ONB) for a Hilbert space H is that it satisfies Parseval’s

equation, that is,
∞∑

n=1

|〈x, en〉|2 = ‖x‖2 for all x ∈ H. (2.1.1)

A relaxation of this condition (specified later) leads to a generalization of the notion

of ONB, namely frames. If a sequence {en}∞n=1 of vectors is a frame for a Hilbert

space H then it spans H and yet it is not necessarily linearly independent. In other

words, in the case of frames, for each x ∈ H, there exists a sequence {xn}∞n=1 of real

or complex numbers such that

x =
∞∑

n=1

xnen. (2.1.2)

Because the frame elements are allowed to be linearly dependent, the coefficients

{xn}∞n=1 are not necessarily unique. We usually referred to this property as the

redundancy of frames and it is one of the main reasons why frames have been ex-

tensively used in signal processing. The notion of frames was introduced by Duffin

and Schaeffer in their 1952 paper [18]. The main subject of their study is non-

harmonic Fourier series, i.e., sequences of the type {eiλnx}n∈Z, where {λn}n∈Z is
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a family of real or complex numbers satisfying a uniform density condition. How-

ever, the potential of frames was not realized until 34 years later during the era of

wavelet theory, in a paper by Daubechies, Grossman and Meyer [19] (1986). Using

frames, they expanded functions f ∈ L2(R) in a similar manner as using orthonor-

mal bases. The mathematical framework of signal processing was set rigorously by

assuming the signal of interest referred by the authors as “incoming information”

to be an element of a Hilbert space H, particularly of H = L2(R). Parts of the

following materials on frames in Hilbert spaces are adapted from Chapters 3 and 5

of Christensen’s book [11].

2.2 Bessel sequences

Definition 2.2.1. A sequence {en}∞n=1 in H is said to be a Bessel sequence if there

exists a constant B > 0 such that

∀x ∈ H,
∞∑

n=1

|〈x, en〉|2 ≤ B ‖x‖2 . (2.2.1)

A number B satisfying condition (2.2.1) is called a Bessel bound for {en}∞n=1.

Lemma 2.2.2. Let {en}∞n=1 be a Bessel sequence in a Hilbert space H. Define the

associated Bessel map L : H → `2(N) by

x 7→ {〈x, en〉}∞n=1 .

Then L is a bounded (continuous) linear operator. Moreover, the corresponding

adjoint operator L∗ : `2(N)→ H is given by

{an}∞n=1 7→
∞∑

n=1

anen.
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Proof. We see that L is well defined since {en}∞n=1 is a Bessel sequence. Let B be a

Bessel bound for the sequence {en}∞n=1. Then for each x ∈ H,

‖Lx‖2 =
∞∑

n=1

|〈x, en〉|2 ≤ B ‖x‖2 .

So ‖Lx‖ ≤
√
B ‖x‖ . This shows that L is bounded. Let c ∈ `2(N) and define

SN =
∑N

n=1 c[n]en for each N ∈ N. Then for all integers N,M with N > M,

‖SN − SM‖2 = sup
‖x‖=1

∣∣∣ N∑
n=M+1

c[n]〈en, x〉
∣∣∣2

≤ sup
‖x‖=1

( N∑
n=M+1

|c[n]|2
)( N∑

n=M+1

|〈en, x〉|2
)

≤ B
N∑

n=M+1

|c[n]|2 .

The first equality is an equivalent way of expressing the norm in a Hilbert space, see

Remark 2.2.3. The second inequality follows from the Hölder Inequality. Now, since

c ∈ `2(N), it follows that the sequence
{∑n

k=1 |c[k]|
2
}∞

n=1
is Cauchy. We therefore

see from the above calculation that the sequence {Sn}∞n=1 is Cauchy, and hence

converges in H. To find the formula for the adjoint operator L∗, we let c ∈ `2(N),

and let x ∈ H. Then

〈x, L∗c〉 = 〈Lx, c〉 =
∞∑

n=1

(Lx)[n]c[n] =
∞∑

n=1

〈x, en〉c[n]

=
∞∑

n=1

〈x, c[n]en〉 = 〈x,
∞∑

n=1

c[n]en〉. (2.2.2)

The last equality follows from the continuity of the inner product, see Remark 2.2.3.

Since this is true for all x ∈ H, it follows from the Hahn-Banach Theorem that

L∗c =
∞∑

n=1

c[n]en.
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Remark 2.2.3. In the proof of Lemma 2.2.2, we have used an equivalent way of

expressing the norm in a Hilbert space. This can be shown as follows. Let y ∈ H.

Then the map ψy defined by ψyx = 〈x, y〉 is a bounded linear operator. From

Cauchy-Schwarz Inequality we have |ψyx| = |〈x, y〉| ≤ ‖y‖ ‖x‖ . Since the equality

holds if and only if x = ay for some scalar a, we see that ‖ψy‖ = ‖y‖ . Since

‖ψy‖ = sup‖x‖=1 |ψyx| = sup‖x‖=1 |〈x, y〉| , it follows that ‖y‖ = sup‖x‖=1 |〈x, y〉| .

The fact that ψy is bounded, and therefore continuous, allows the final equality in

(2.2.2).

We note that the proof of Lemma 2.2.2 remains the same if the order of the

sequence {en}∞n=1 has been changed. Hence we have the following corollary.

Corollary 2.2.4. If {en}∞n=1 is a Bessel sequence in H, then
∑∞

n=1 c[n]en converges

unconditionally for all c ∈ `2(N).

By Corollary 2.2.4 we see that it does not matter what index set we use to

index the series
∑∞

n=1 c[n]en since each reordering of the sequence {c[n]en}∞n=1 will

have the series converge to the same element. Hence we can use natural numbers as

the standard index set.

2.3 Frames in Hilbert spaces

We are now in a position to state the definition of frames.

Definition 2.3.1. A sequence {en}∞n=1 of elements in a Hilbert space H is said to
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be a frame for H if there exist constants 0 < A ≤ B <∞ such that

A ‖x‖2 ≤
∞∑

n=1

|〈x, en〉|2 ≤ B ‖x‖2 for all x ∈ H. (2.3.1)

The numbers A and B are called frame bounds. The optimal upper frame bound

is the infimum over all upper frame bounds and the optimal lower frame bound is

the supremum over all lower frame bounds. We note that the optimal bounds are

actually frame bounds. A frame is said to be A-tight if A = B, and is said to be

unit norm if ‖en‖ = 1 for all n. A frame is said to be exact if it ceases to be a frame

when one of the elements is removed from the sequence {en}∞n=1 .

Some basic examples of frames are as follows:

Example 2.3.2. Let {en}∞n=1 be an orthonormal basis for H.

(i) By repeating each element in {en}∞n=1 twice, we obtain

{fn}∞n=1 = {e1, e1, e2, e2, . . . }

which is a 2-tight frame. In fact, for each x ∈ H we have

∞∑
n=1

|〈x, fn〉|2 =
∞∑

n=1

|〈x, en〉|2 +
∞∑

n=1

|〈x, en〉|2

= ‖x‖2 + ‖x‖2 = 2 ‖x‖2 .

(ii) By repeating only e1, we obtain

{fn}∞n=1 = {e1, e1, e2, e3, . . . }

which is a frame with frame bounds A = 1 and B = 2. In fact, for each x ∈ H
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we have

‖x‖2 =
∞∑

n=1

|〈x, en〉|2 ≤ |〈x, e1〉|2 +
∞∑

n=1

|〈x, en〉|2

=
∞∑

n=1

|〈x, fn〉|2

≤
∞∑

n=1

|〈x, en〉|2 +
∞∑

n=1

|〈x, en〉|2

= ‖x‖2 + ‖x‖2 = 2 ‖x‖2 .

(iii) Let

{fn}∞n=1 =

{
e1,

1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, . . .

}
.

This is the sequence where each vector 1√
n
en is repeated n times. As such, it

is a 1-tight frame. In fact, for each x ∈ H we have

∞∑
n=1

|〈x, fn〉|2 =
∞∑

n=1

n

∣∣∣∣〈x, 1√
n
en〉

∣∣∣∣2 = ‖x‖2 .

(iv) Let v1 = (1, 0), v2 = (−2/
√

5, 2), v3 = (4/
√

5, 1). By a direct computation, one

can show that {v1, v2, v3} is a 5-tight frame for R2. In fact, letting v = (a, b)

be a vector in R2, we have

3∑
n=1

|〈v, vn〉|2 = a2 + (− 2√
5
a+ 2b)2 + (

4√
5
a+ b)2 = 5(a2 + b2) = 5 ‖v‖2 .

Let {en}∞n=1 be a frame for a Hilbert space H. We define an operator S : H → H by

Sx = L∗Lx =
∞∑

n=1

〈x, en〉en.

We see that since {en}∞n=1 is a Bessel sequence, Corollary 2.2.4 implies that S is a

well-defined operator. The operator S is called the frame operator for {en}∞n=1 . We

prove some properties of the frame operator S in the following lemma.
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Lemma 2.3.3. Let {en}∞n=1 be a frame with frame bounds A,B. Then the following

hold:

(i) The frame operator S is bounded, invertible, self-adjoint, and positive.

(ii) The sequence {S−1en}∞n=1 is a frame with bounds B−1 and A−1; if A,B are

the optimal bounds for {en}∞n=1 , then the bounds B−1, A−1 are optimal for

{S−1en}∞n=1 . The frame operator for {S−1en}∞n=1 is S−1.

The sequence {S−1en}∞n=1 is called the (canonical) dual frame of {en}∞n=1 . Before

proving the lemma, we state two classical results from operator theory.

Lemma 2.3.4 (Neumann Theorem). Let X be a Banach space and let U : X →

X be a bounded operator. If ‖I − U‖ < 1, then U is invertible with

U−1 =
∞∑

n=1

(I − U)n.

Furthermore, ‖U−1‖ ≤ (1− ‖I − U‖)−1.

Lemma 2.3.5. Let H be a Hilbert space and let Uj : H → H (j = 1, 2, 3) be self-

adjoint operators with U3 ≥ 0. If U1 ≤ U2 and U3 commutes with U1 and U2, then

U1U3 ≤ U2U3. (By definition, two self-adjoint operators U ≤ W if 〈Ux, x〉 ≤ 〈Wx, x〉

for all x ∈ H.)

We are now ready to prove Lemma 2.3.3.

Proof of Lemma 2.3.3. (i) Since L and L∗ are bounded operator, the frame operator

S being the composition of these two operators is also bounded. Now since S∗ =

(L∗L)∗ = L∗(L∗)∗ = L∗L = S, the operator S is self-adjoint. By direct calculation
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we see that for each x ∈ H, 〈Sx, x〉 =
∑∞

n=1 |〈x, en〉|2 . So we can rewrite the frame

condition (2.3.1) in terms of S as

AI ≤ S ≤ BI (2.3.2)

This shows that for each x ∈ H, 〈Sx, x〉 ≥ A ‖x‖2 ≥ 0. So S is positive. By

subtracting BI and multiplying by B−1 through the inequality (2.3.2), we obtain

that 0 ≤ I −B−1S ≤ B−A
B
I. Therefore

∥∥I −B−1S
∥∥ = sup

‖x‖=1

∣∣〈(I −B−1S)x, x〉
∣∣ ≤ B − A

B
< 1,

which, by Lemma 2.3.4, shows that S is invertible.

(ii) We first show that {S−1en}∞n=1 is a Bessel sequence. Indeed, for each

x ∈ H,

∞∑
n=1

∣∣〈x, S−1en〉
∣∣2 =

∞∑
n=1

∣∣〈S−1x, en〉
∣∣2 ≤ B

∥∥S−1x
∥∥2 ≤ B

∥∥S−1
∥∥2 ‖x‖2 .

Hence the frame operator for {S−1en}∞n=1 is well defined. This frame operator acts

on x ∈ H by

∞∑
n=1

〈x, S−1en〉S−1en = S−1

∞∑
n=1

〈S−1x, en〉en = S−1SS−1x = S−1x.

This shows that the frame operator of {S−1en}∞n=1 is S−1. Now since the operator

S−1 commutes with both S and I, we can apply Lemma 2.3.5 and obtain that, upon

multiplying the inequality (2.3.2) with S−1,

B−1I ≤ S−1 ≤ A−1I.

This means for all x ∈ H,

B−1 ‖x‖2 ≤ 〈S−1x, x〉 =
∞∑

n=1

∣∣〈x, S−1en〉
∣∣2 ≤ A−1 ‖x‖2 .
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Thus {S−1en}∞n=1 is a frame for H with frame bounds B−1 and A−1. Now suppose

that A,B are optimal bounds for the frame {en}∞n=1 . Let C be the optimal upper

bound for the frame {S−1en}∞n=1 and assume that C < 1/A. Then since S−1 is

the frame operator for {S−1en}∞n=1 it follows that the frame {(S−1)−1S−1en}∞n=1 =

{en}∞n=1 has lower bound 1/C > A. This is a contradiction since A is the optimal

lower bound for {en}∞n=1 . Hence C = 1/A. We can show similarly that the optimal

lower bound for {S−1en}∞n=1 is 1/B.

Proposition 2.3.6. Let {en}∞n=1 be a frame for a Hilbert space H with frame bounds

A,B and with frame operator S. Then the following inequalities hold:

A ‖x‖ ≤ ‖Sx‖ ≤ B ‖x‖ for all x ∈ H.

Proof. Let x ∈ H. We shall prove the leftmost inequality first. By definition of

operator S, we have 〈Sx, x〉 =
∑∞

n=1 |〈x, en〉|2 . It follows from the Cauchy-Schwarz

Inequality and the frame condition (2.3.1) that

( ∞∑
n=1

|〈x, en〉|2
)2

= 〈Sx, x〉2 ≤ ‖Sx‖2 ‖x‖2 ≤ ‖Sx‖2 1

A

∞∑
n=1

|〈x, en〉|2 .

This implies

A

∞∑
n=1

|〈x, en〉|2 ≤ ‖Sx‖2 .

From the frame condition (2.3.1) we have
∑∞

n=1 |〈x, en〉|2 ≥ A ‖x‖2 , and so

A2 ‖x‖2 ≤ ‖Sx‖2 .

Hence the leftmost inequality follows. Now we show the rightmost inequality. Let

c ∈ `2(N) and recall that L∗c =
∑∞

n=1 c[n]en. By an equivalent definition of norm in
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a Hilbert space, see Remark 2.2.3 and the Hölder Inequality, it follows that

‖L∗c‖ = sup
‖y‖=1

|〈L∗c, y〉| = sup
‖y‖=1

∣∣∣∣∣〈
∞∑

n=1

c[n]en, y〉

∣∣∣∣∣
= sup

‖y‖=1

∣∣∣∣∣
∞∑

n=1

c[n]〈en, y〉

∣∣∣∣∣ ≤ sup
‖y‖=1

∞∑
n=1

|c[n]〈en, y〉|

≤
( ∞∑

n=1

|c[n]|2
)1/2

sup
‖y‖=1

( ∞∑
n=1

|〈en, y〉|2
)1/2

≤
√
B ‖c‖ .

Hence ‖L∗‖ ≤
√
B. Now since S = L∗L it follows from a property of the adjoint

operator that

‖S‖ = ‖L∗L‖ = ‖L∗‖2 ≤ B.

Thus

‖Sx‖ ≤ ‖S‖ ‖x‖ ≤ B ‖x‖ ,

which is the rightmost inequality and hence the proof is complete.

Now we arrive at the main elementary theorem in frame theory. All applica-

tions of frames start with this so-called frame decomposition which shows that every

element in a Hilbert space can be represented as an infinite linear combination of

the frame elements.

Theorem 2.3.7 (Frame Decomposition). Let {en}∞n=1 be a frame for a Hilbert

space H with corresponding frame operator S. Then

x =
∞∑

n=1

〈x, S−1en〉en =
∞∑

n=1

〈x, en〉S−1en for all x ∈ H. (2.3.3)

Both of the series converge unconditionally for all x ∈ H.
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Proof. Let x ∈ H. Then we have from properties of the frame operator in Lemma 2.3.3

that

x = SS−1x =
∞∑

n=1

〈S−1x, en〉en =
∞∑

n=1

〈x, S−1en〉en.

The last equality follows from the fact that S−1 is self-adjoint. Now since {en}∞n=1 is

a Bessel sequence and {〈x, S−1en〉}∞n=1 ∈ `2(N), it follows from Corollary 2.2.4 that

the series converges unconditionally. Similarly, by composing S−1 with S we have

another way to represent the element x, that is,

x = S−1Sx =
∞∑

n=1

〈Sx, S−1en〉S−1en =
∞∑

n=1

〈x, SS−1en〉S−1en =
∞∑

n=1

〈x, en〉S−1en.

The penultimate equality follows from the fact that S is self-adjoint. Since {S−1en}∞n=1

is a Bessel sequence and {〈x, en〉}∞n=1 ∈ `2(N), it follows from Corollary 2.2.4 that

the series converges unconditionally. Hence the proof is complete.

2.4 Harmonic frames for Rd

The atomic decompositions in (2.3.3) are the first step towards a digital rep-

resentation. If the frame is tight with frame bound A, then from (2.3.2) we have

the frame operator S = AI, and therefore we see that both of the frame expansions

in (2.3.3) are equivalent, i.e., for each x ∈ H,

x =
1

A

∞∑
n=1

〈x, en〉en.

For convenience, we let K = R or K = C. When the Hilbert space H is Kd

and the cardinality of frame is finite, the frame is referred to as a finite frame for H.

In this case, there is a systematic method to check whether an arbitrary finite set

19



of vectors is a tight frame. Let {vn}Nn=1 be a set of N vectors in Kd We define the

associated matrix L to be the N × d matrix whose rows are the vn. The following

lemma, found in [20], allows us to determine whether {vn}Nn=1 forms a tight frame

for Kd.

Lemma 2.4.1. A set of vectors {vn}Nn=1 in Kd is a tight frame with frame bound A

if and only if its associated matrix L satisfies

L∗L = AId,

where L∗ is the conjugate transpose of L, and Id is the d×d identity matrix. Moreover

the frame {vn}Nn=1 is unit norm if and only if the diagonal of LL∗ equals (1,. . . ,1).

Proof. Let x = (x1, . . . , xd) ∈ Kd. Then by a straightforward calculation, we obtain

Lx = (〈x, v1〉, . . . , 〈x, vN〉) (2.4.1)

From (2.4.1) we obtain

N∑
n=1

|〈x, vn〉|2 = (Lx)∗ · (Lx) = x∗(L∗L)x. (2.4.2)

A set {vn}Nn=1 is an A-tight frame for Kd if and only if
∑N

n=1 |〈x, vn〉|2 = A ‖x‖2 =

x∗(AId)x for all x ∈ Kd. From (2.4.2) this is true if and only if x∗(AId)x = x∗(L∗L)x

for all x ∈ Kd; and this in turn is true if and only if AId = L∗L. To prove the second

part we observe that the frame {vn}Nn=1 is unit norm if and only if 1 = ‖vn‖2 =

〈vn, vn〉 =
∑d

j=1 vn(j)vn(j) for each 1 ≤ n ≤ N. We see that the last sum is exactly

the nth diagonal element of the matrix LL∗ for each 1 ≤ n ≤ N. Hence the result

follows.
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The following lemma determines the frame bound for a finite unit norm tight

frame in Kd. The first proof can be found in [20] where the author uses matrix prop-

erties, and the second in [14] where the authors use the definition of an orthonormal

basis.

Lemma 2.4.2. A unit norm tight frame for Kd with N elements has frame bound

A = N/d.

First proof. We denote the trace of a matrix M by Tr(M). It is straightforward to

show that Tr(MN) = Tr(NM) for all matrices M,N that can be multiplied. Using

this property and Lemma 2.4.1, we have

A =
1

d
Tr(L∗L) =

1

d
Tr(LL∗) =

1

d
N.

Second proof. Let {vn}Nn=1 be a unit norm tight frame for Kd with frame bound A.

Let {ej}dj=1 be an orthonormal basis for Kd. Then

Ad =
d∑

j=1

A ‖en‖2 =
d∑

j=1

N∑
n=1

|〈ej, vn〉|2 =
N∑

n=1

d∑
j=1

|〈ej, vn〉|2 =
N∑

n=1

‖vn‖2 = N.

Now we introduce harmonic frames for Rd. This family of frames has a Fourier-

based structure, and it provides good examples that we shall use later in Chapter 5.

The definition of the harmonic frame Hd
N = {en}N−1

n=0 , N > d, depends on whether

the dimension d is even or odd.

If d ≥ 2 is even, let

en =

√
2

d

[
cos

2πn

N
, sin

2πn

N
, cos

2π2n

N
, sin

2π2n

N
, . . . , cos

2π d
2
n

N
, sin

2π d
2
n

N

]
(2.4.3)

for n = 0, 1, . . . , N − 1.
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If d > 1 is odd, let

en =

√
2

d

[
1√
2
, cos

2πn

N
, sin

2πn

N
, cos

2π2n

N
, sin

2π2n

N
, . . . , cos

2π d−1
2
n

N
, sin

2π d−1
2
n

N

]
(2.4.4)

for n = 0, 1, . . . , N − 1.

We shall now show that Hd
N , as defined above, is a unit norm tight frame

for Rd. From the identity cos2 θ + sin2 θ = 1, it follows immediately that en is unit

norm for each 0 ≤ n ≤ N − 1. To verify that Hd
N is a tight frame, we have options

either to apply Lemma 2.4.1 or to verify the definition directly. In this case it

turns out that the latter option is easier. We verify only the case when d is even.

The case when d is odd will be similar. So let d be even, let N > d, and take

x = (a1, b1, . . . , a d
2
, b d

2
) ∈ Rd. We want to show that

N−1∑
n=0

|〈x, en〉|2 =
N

d
‖x‖2 . (2.4.5)

We have

d

2

N−1∑
n=0

|〈x, en〉|2 =
N−1∑
n=0

( d/2∑
j=1

aj cos
2πnj

N
+ bj sin

2πnj

N

)2

=
N−1∑
n=0

( d/2∑
j=1

√
a2

j + b2j sin
(2πnj

N
+ φj

))2

=
N−1∑
n=0

d/2∑
j=1

(a2
j + b2j) sin2

(2πnj

N
+ φj

)
+

N−1∑
n=0

∑
j 6=k

√
a2

j + b2j

√
a2

k + b2k sin
(2πnj

N
+ φj

)
sin

(2πnk

N
+ φk

)
.

Now by using the identities

sin2 θ = (1− cos 2θ)/2 and 2 sin θ sinψ = cos(θ − ψ)− cos(θ + ψ)
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and interchanging the sums, the right-hand side quantity equals

d/2∑
j=1

(a2
j + b2j)

N−1∑
n=0

(
1

2
− 1

2
cos

(2π2nj

N
+ 2φj

))

+
1

2

∑
j 6=k

√
a2

j + b2j

√
a2

k + b2k

N−1∑
n=0

cos
(2π2n

N
(j − k) + φj − φk

)
−1

2

∑
j 6=k

√
a2

j + b2j

√
a2

k + b2k

N−1∑
n=0

cos
(2π2n

N
(j + k) + φj + φk

)
.

By using the identity
N−1∑
n=0

cos
(2πnj

N
+ α

)
= 0,

which holds for each integer j that is not divisible by N and for each α ∈ R, the

sums above simplify to

N

2

d/2∑
j=1

(a2
j + b2j) =

N

2
‖x‖2 .

Since this is equal to d
2

∑N−1
n=0 |〈x, en〉|2 , we obtain (2.4.5).

Definition 2.4.3. Let k, d, and N be integers such that 1 ≤ k < N and 2 ≤ d < N.

Let FN = {en}Nn=1 be a frame for Rd. Let pN be a permutation of {1, 2, . . . , N}. We

define the variation of order k of the frame FN with respect to pN as

σk(FN , pN) :=
N−k∑
n=1

‖∆kepN (n)‖,

where ∆k denotes the kth order difference defined recursively by ∆epN (n) = epN (n)−

epN (n+1) and ∆kepN (n) = ∆(∆k−1epN (n)) for all k ≥ 2.

Frame variation is the quantity that reflects the “interdependencies” among

frame elements. More precisely, if a frame F has low variation with respect to a

permutation p, then the frame elements will not oscillate too much in that ordering
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[15]. We shall see in Chapter 3 that the notion of frame variation plays an important

role in refining quantization error. Families of frames that have bounded frame

variation will result in a better quantization error. Harmonic frames are an example

of such a family of frames. In fact, one can compute the frame variation of harmonic

frames explicitly.

Lemma 2.4.4. Let a sequence {en}∞n=1 of vectors in R2 be defined by en = (cosnθ, sinnθ)

for some θ ∈ [0, 2π]. We have, for each integer k ≥ 1,

‖∆ken‖ =

(
2 sin

θ

2

)k

.

Proof. By induction one can show that the kth order difference is equivalent to the

following:

∀k = 1, 2, . . . , ∆ken =
k∑

j=0

(−1)j

(
k

j

)
en+j. (2.4.6)

With another application of induction, one can show that

‖∆ken‖2 = 2
k∑

j=0

(−1)j

(
2k

k + j

)
cos jθ −

(
2k

k

)
. (2.4.7)

Now we shall use induction to show that the last step is equal to 2k(1− cos θ)k.

It is easy to verify the formula for k = 1. Assume the formula holds for some k > 1,

i.e.,

2
k∑

j=0

(−1)j

(
2k

k + j

)
cos jθ −

(
2k

k

)
= 2k(1− cos θ)k. (2.4.8)

We want to show that the formula holds for k + 1, i.e.,

2
k+1∑
j=0

(−1)j

(
2k + 2

k + 1 + j

)
cos jθ −

(
2k + 2

k + 1

)
= 2k+1(1− cos θ)k+1. (2.4.9)
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The left side of (2.4.9) is

2
k+1∑
j=0

(−1)j

[(
2k + 1

k + j

)
+

(
2k + 1

k + j + 1

)]
cos jθ −

(
2k + 1

k + 1

)
−

(
2k + 1

k

)

= 2
k+1∑
j=0

(−1)j

[(
2k

k + j

)
+

(
2k

k + j − 1

)
+

(
2k

k + j + 1

)
+

(
2k

k + j

)]
cos jθ

−
(

2k

k

)
−

(
2k

k + 1

)
−

(
2k

k

)
−

(
2k

k − 1

)
= 22

k+1∑
j=0

(−1)j

(
2k

k + j

)
cos jθ − 2

(
2k

k

)
+ 2

k+1∑
j=0

(−1)j

(
2k

k + j − 1

)
cos jθ

+ 2
k+1∑
j=0

(−1)j

(
2k

k + j + 1

)
cos jθ −

(
2k

k + 1

)
−

(
2k

k − 1

)

= 2k+1(1− cos θ)k − 2
k∑

j=−1

(−1)j

(
2k

k + j

)
cos(j + 1)θ

− 2
k+2∑
j=1

(−1)j

(
2k

k + j

)
cos(j − 1)θ − 2

(
2k

k + 1

)

= 2k+1(1− cos θ)k − 2 cos θ
k∑

j=0

(−1)j

(
2k

k + j

)
cos jθ

+ 2 sin θ
k∑

j=0

(−1)j

(
2k

k + j

)
sin jθ − 2 cos θ

k+2∑
j=1

(−1)j

(
2k

k + j

)
cos jθ

− 2 sin θ
k+2∑
j=1

(−1)j

(
2k

k + j

)
sin jθ

= 2k+1(1− cos θ)k − Sk cos θ − Sk cos θ + 2 cos θ

(
2k

k

)
(

where Sk = 2
k∑

j=0

(−1)j

(
2k

k + j

)
cos jθ

)

= 2k+1(1− cos θ)k − 2 cos θ

(
Sk −

(
2k

k

))
= 2k+1(1− cos θ)k − 2 cos θ · 2k(1− cos θ)k

= 2k+1(1− cos θ)k+1

and this is the right side of (2.4.9). Now using the identity that 1 − cos θ =
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2 sin2(θ/2), we have the result.

Theorem 2.4.5. For each integer k ≥ 1, and each integer N > 2, if p is the identity

permutation of {1, . . . , N} then

σk(H
2
N , p) = (N − k)2k sink

( π
N

)
,

σk(H
d
N , p) =


(N − k)

(
2
d

)1/2
(
A(k,N, d)− d+1

2

(
2k
k

))1/2

if d is even,

(N − k)
(

2
d

)1/2
(

1
2

+ A(k,N, d− 1)− d
2

(
2k
k

))1/2

if d is odd,

where

A(k,N, d) =
k∑

j=0

(−1)j

(
2k

k + j

)
sin

((d+ 1)πj

N

)
csc

(πj
N

)
.

Proof. From Lemma 2.4.4 we have

σk(H
2
N , p) =

N−k−1∑
n=0

‖∆ken‖ =
N−k−1∑

n=0

(
2 sin

(1

2
· 2π
N

))k

= (N − k)2k sink
( π
N

)
.

To prove the second formula for d even, we let en be defined as in (2.4.3). Then

from formulae (2.4.6)–(2.4.8), we obtain

d

2

∥∥∆ken

∥∥2
=

d/2∑
`=1

[( k∑
j=0

(−1)j

(
k

j

)
cos(n+ j)

2π`

N

)2

+

( k∑
j=0

(−1)j

(
k

j

)
sin(n+ j)

2π`

N

)2
]

=

d/2∑
`=1

22k sin2k
(π`
N

)
= 22k

d/2∑
`=1

sin2k
(π`
N

)
=

d/2∑
`=1

[
2

k∑
j=0

(−1)j

(
2k

k + j

)
cos

2πj`

N
−

(
2k

k

)]

= 2
k∑

j=0

(−1)j

(
2k

k + j

) d/2∑
`=1

cos
2πj`

N
− d

2

(
2k

k

)

= A(k,N, d)−
k∑

j=0

(−1)j

(
2k

k + j

)
− d

2

(
2k

k

)

= A(k,N, d)− d+ 1

2

(
2k

k

)
. (2.4.10)
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The last two equalities follow from two well-known summing identities. Combining

equation (2.4.10) with the definition of σk(H
d
N , p), we have the result. For the case

when d is odd we use the definition of en defined in (2.4.4) and proceed similarly as

in the above argument.

Also, by using the same method as in the proof of Theorem 2.4.5, we have the

following theorem.

Theorem 2.4.6. Let θ be a real number and let N, d be positive integers. Then we

have the following:

(i)
N∑

n=1

(−1)n+1

(
2N

N + n

)
sin(d+ 1

2
)nθ

sin nθ
2

≤
(
d+

1

2

)(
2N

N

)
,

(ii)

N∑
n=1

(−1)n+1

(
2N

N + n

)
sin(ndθ) cot

(nθ
2

)
≤ d

(
2N

N

)
+ 22N−1 sin2N

(dθ
2

)
≤ d

(
2N

N

)
+

(dθ)2N

2
,

(iii)

(2d+1)

bN/2c∑
n=0

(
2N

N + 2n

)
+(−1)d+1

bN/2c∑
n=0

(
2N

N + 2n+ 1

)
= 4N

⌈
d

2

⌉
+

(
d+

1

2

)(
2N

N

)
,

(iv)
bN/2c∑
n=0

(
2N

N + 2n

)
= 4N−1 +

1

2

(
2N

N

)
,

(v)
bN/2c∑
n=0

(
2N

N + 2n+ 1

)
= 4N−1,
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(vi)
N∑

n=0

(
2N

N + n

)
=

1

2

[
4N +

(
2N

N

)]
.

Proof. By retracing the steps of proof of Theorem 2.4.5 beginning from the third

equality of (2.4.10), we have

22N

d∑
`=1

sin2N
(`θ

2

)
=

d∑
`=1

[
2

N∑
n=0

(−1)n

(
2N

N + n

)
cos(n`θ)−

(
2N

N

)]

= 2
N∑

n=0

(−1)n

(
2N

N + n

) d∑
`=1

cos(n`θ)− d
(

2N

N

)

=
N∑

n=0

(−1)n

(
2N

N + n

) [
sin(d+ 1

2
)nθ

sin nθ
2

− 1

]
− d

(
2N

N

)

=
N∑

n=1

(−1)n

(
2N

N + n

)
sin(d+ 1

2
)nθ

sin nθ
2

+ (2d+ 1)

(
2N

N

)

−
(
d+

1

2

)(
2N

N

)
=

N∑
n=1

(−1)n

(
2N

N + n

)
sin(d+ 1

2
)nθ

sin nθ
2

+
(
d+

1

2

)(
2N

N

)
. (2.4.11)

By letting θ = π and noting that

d∑
`=1

sin2N π`

2
=

⌈
d

2

⌉
,

we obtain (iii). We observe that

d

4d+ 2
≤ dd/2e

2d+ 1
≤ d+ 2

4d+ 2
.

Thus,

lim
d→∞

dd/2e
2d+ 1

=
1

4
.

Dividing both sides of (iii) by 2d+ 1 and letting d→∞ we obtain (iv). To obtain

(v), we substitute (iv) back in (iii) and solve for (v). The equality (vi) is obtained
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by adding (iv) and (v). Inequality (i) follows by noting that the left-hand side of

(2.4.11) is nonnegative. We obtain inequality (ii) by expanding

sin
(
d+

1

2

)
nθ = sin(dnθ) cos

nθ

2
+ cos(ndθ) sin

nθ

2
,

and using 2.4.8.

Remark 2.4.7. (a) We remark that the inequalities (i) and (ii) in Theorem 2.4.6

are quite sharp for certain choices of θ, d, and N. For example, for θ = 2π/7,

d = 1, and N = 6, the left side of inequality (i) is about 1385.817677, while

the right side is 1386. With the same values of θ, d, and N the left side of

inequality (ii) is about 923.9088384, while the right side is about 924.0911613.

(b) The combinatoric sum identities (iii)-(vi) also have a direct proof using some

properties of binomial coefficients.
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Chapter 3

Sigma-Delta (Σ∆) Quantization

3.1 Overview

In this chapter, we shall discuss two schemes of quantization. The first one,

called Pulse Code Modulation or PCM, is considered perhaps the most basic scheme

of quantization. This scheme quantizes a signal of interest by replacing each coef-

ficient of the signal expansion with the element of a given discrete set (alphabet)

that is closest in distance to the coefficient. We shall discuss the PCM of finite

frame expansions of signals in Rd and shall derive a quantization error associated to

this technique [16]. The second scheme of quantization, called Sigma-Delta (Σ∆)

quantization, was introduced by Inose, Yasuda and Murakami in 1962 [23]. This

scheme is widely used in quantizing signals because of its robustness against circuit

imperfections, and it can provide high accuracy A/D conversion [3, 9, 25, 26]. We

shall see that this scheme uses feedback loops in the sense that the elements of a

quantized sequence keep being fed back into the scheme to produce new quantized

coefficients. This exploitation of feedback loops “generates a quantized signal that

oscillates between levels, keeping its average equal to the average input” [24]. We

shall use basic analysis to derive the quantization error associated to the Σ∆ quan-

tization. As such, we shall see that, in the setting of redundant signal expansions,

this quantization scheme outperforms PCM with respect to faster decay in quan-
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tization error. However, if the signal is expanded over an orthonormal basis, then

PCM turns out to be the optimal quantizer since it minimizes the Euclidean norm

of quantization error. More precisely, let x be a signal of interest in Rd, and let

{en}Nn=1 be an orthonormal basis for Rd. (It follows necessarily that d = N .) Then

there exist unique c1, . . . , cN ∈ R such that

x =
N∑

n=1

cnen.

Let q1, . . . , qN be the quantized coefficients obtained from PCM algorithms and let

x̃ =
∑N

n=1 qnen. Then by a property of orthonomal bases, we have

‖x− x̃‖2 =
N∑

n=1

(cn − qn)2.

Since PCM determines qn, an element of the given alphabet, in such a way that

|cn − qn| is the minimum for each 1 ≤ n ≤ N, we see that ‖x− x̃‖ is the minimum

as well.

3.2 Pulse Code Modulation (PCM)

Let {en}Nn=1 be a unit norm tight frame for Rd. Then from Chapter 2, we have

the expansion for each x ∈ Rd by

x =
d

N

N∑
n=1

xnen, xn = 〈x, en〉. (3.2.1)

Definition 3.2.1. Let δ > 0. The 2d1/δe-level PCM quantizer with step size δ
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replaces each xn ∈ R in the frame expansion (3.2.1) with

qn = qn(x) =



δ
(
dxn/δe − 1/2

)
if |xn| < 1,

δ
(
d1/δe − 1/2

)
if xn ≥ 1,

−δ
(
d1/δe − 1/2

)
if xn ≤ −1.

(3.2.2)

Proposition 3.2.2. Let δ > 0, and let ‖·‖ be the d-dimensional Euclidean 2-norm.

Let x ∈ Rd and let x̃ be the quantized expansion given by 2d1/δe-level PCM. If

‖x‖ ≤ 1 then the quantization error ‖x− x̃‖ satisfies

‖x− x̃‖ ≤
(d

2

)
δ.

Proof. First we write

x̃ =
d

N

N∑
n=1

qnen, (3.2.3)

where qn is obtained from PCM for each 1 ≤ n ≤ N. Then, from the Cauchy-Schwarz

Inequality, we have for each 1 ≤ n ≤ N, that

|xn| = |〈x, en〉| ≤ ‖x‖ ‖en‖ ≤ 1.

For each 1 ≤ n ≤ N we have xn/δ ≤ dxn/δe < xn/δ + 1, so that

−δ
2

= xn − δ
(xn

δ
+ 1

)
+
δ

2
< xn − qn = xn − δ

⌈xn

δ

⌉
+
δ

2
≤ xn − δ ·

xn

δ
+
δ

2
=
δ

2
.

Hence, for each 1 ≤ n ≤ N,

|xn − qn| ≤
δ

2
. (3.2.4)

From (3.2.3) and (3.2.4) we have

‖x− x̃‖ =
d

N

∥∥∥∥∥
N∑

n=1

(xn − qn)en

∥∥∥∥∥ ≤ (δ
2

)( d

N

) N∑
n=1

‖en‖ =
(d

2

)
δ.

Thus, the proof is complete.
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3.3 Sigma-Delta (Σ∆) quantization

When first introduced, Sigma-Delta (Σ∆) Quantization was used to quantize

oversampled bandlimited functions; so, before we define the definition of this quan-

tization scheme in the setting of finite frame expansion, we should understand the

definition in its original setting [9].

Let f be a bandlimited function on R with bandwidth Ω > 0 and assume that

f takes value in the interval [1, 2]. We recall from Chapter 1 that this means that f is

an L∞ function on R whose Fourier transform f̂ (as a distribution) vanishes outside

[−Ω,Ω]. Then from the classical sampling theorem [3, 27], for each 0 < T < 1, the

function f can be reconstructed from the sampling sequence {f(nT )}n∈Z as follows:

f(t) = T
∑
n∈Z

f(nT )g(t− nT ), (3.3.1)

where g is an appropriate smoothing kernel or sampling function, that is, ĝ ∈ C∞

and

ĝ(ξ) =


1 for |ξ| ≤ Ω,

0 for |ξ| > Ω/T.

Then the first order Σ∆ modulator uses {f(nT )}n∈Z as inputs to generate the se-
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quence {qT (n)}n∈Z as follows:

FT (n) =



∑n
k=1 f(kT ) for n ≥ 1,

0 for n = 0,

−
∑0

k=n+1 f(kT ) for n < 0,

(3.3.2)

QT (n) = bFT (n)c, (3.3.3)

qT (n) = QT (n)−QT (n− 1), (3.3.4)

From (3.3.2) we see that FT (n) − FT (n − 1) = f(nT ) for all n ∈ Z. Since f takes

value in the interval [1, 2] we can check that qT (n) takes either the value 1 or 2.

In fact, for each n ∈ Z, we have FT (n) − 1 < bFT (n)c ≤ FT (n) and similarly

−FT (n− 1) ≤ −bFT (n− 1)c < −FT (n− 1) + 1. Adding these inequalities yields

0 ≤ f(nT )− 1 = FT (n)− FT (n− 1)− 1

< qT (n) < FT (n)− FT (n− 1) + 1 = f(nT ) + 1 ≤ 3.

Since qT (n) is an integer, from the above chain of inequalities we have either qT (n) =

1 or qT (n) = 2. We note that the equations (3.3.2) and (3.3.4) correspond to “Σ”

and “∆”, respectively; hence the name of the modulator. Since FT and QT will

accumulate into large numbers as time elapses, neither can be calculated in a circuit.

Thus one introduces the auxiliary variable uT = FT −QT = {FT} ∈ [0, 1). Then uT

satisfies the recursive relation:

uT (n)− uT (n− 1) = F (nT )− qT (n). (3.3.5)

Since uT (n) ∈ [0, 1), from (3.3.5) we have the relation

qT (n) = bf(nT ) + uT (n− 1)c. (3.3.6)
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To see this, we observe from (3.3.5) that qT (n)+uT (n) = f(nT )+uT (n−1), so that

qT (n) + buT (n)c = bqT (n) + uT (n)c = bf(nT ) + uT (n− 1)c. Since uT (n) ∈ [0, 1), it

follows that buT (n)c = 0 and hence (3.3.6) follows. Using the auxiliary variable uT ,

now we can translate the procedure in (3.3.2)–(3.3.4) into the following equivalent

procedure:

uT (n) = uT (n− 1) + F (nT )− qT (n) with uT (0) = 0, (3.3.7)

qT (n) =


1 if f(nT ) + uT (n− 1) < 2,

2 if f(nT ) + uT (n− 1) ≥ 2.

(3.3.8)

Formulae (3.3.7) and (3.3.8) motivate the definition of the Σ∆ quantization

for finite frame expansions in Rd. Let K ∈ N and δ > 0. We define the midrise

quantization alphabet Aδ
K to be the set of 2K numbers in arithmetic progression

with common difference δ, and the first number (−K + 1/2)δ. Thus,

Aδ
K = {(−K + 1/2)δ, (−K + 3/2)δ, . . . , (−1/2)δ, (1/2)δ, . . . , (K − 1/2)δ}.

We define the 2K-level midrise uniform scalar quantizer with stepsize δ by

Q(u) = arg min
q∈Aδ

K

|u− q|.

In words, Q(u) denotes the element q in Aδ
K which is closest in distance to the

element u. By convention, if there are two elements in Aδ
K which are equally closest

to u, then Q(u) will be chosen to be the larger of these two elements. In order to be

able to do numerical simulation with Σ∆ quantization, we need an explicit formula

for the quantizer Q. The following theorem will let us do just that.
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Theorem 3.3.1. The quantizer Q as defined above has the following formula:

Q(u) =


sgn(u)

(
K − 1

2

)
δ if |u| ≥ Kδ,

(
1
2

+
⌊

u
δ

⌋)
δ if |u| < Kδ.

(3.3.9)

Proof. Let a real number u be given. If |u| ≥ Kδ then the formula is easily verified.

If

(K − 1

2
)δ ≤ u < Kδ

then by definition Q(u) = (K − 1/2)δ. Since

K − 1

2
≤ u

δ
< K,

we have bu/δc = K − 1. So

(1

2
+

⌊u
δ

⌋)
δ =

(1

2
+K − 1

)
δ =

(
K − 1

2

)
δ = Q(u).

Similarly for the case

−Kδ < u ≤
(
−K +

1

2

)
δ.

Now assume that (
−K +

1

2

)
δ < u <

(
K − 1

2

)
δ

and that for some m = 0, . . . , 2K − 1

Q(u) =
(
−K +

1

2

)
δ +mδ.

Then by definition of Q(u) we see that

−δ
2
≤ u−Q(u) <

δ

2
.
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Replacing Q(u) with (−K + 1/2)δ +mδ, we have

0 ≤ u

δ
+K −m < 1.

Hence ⌊u
δ

+K −m
⌋

= 0.

Now using the property that bx+ nc = bxc+ n for all integers n and real numbers

x, we obtain that m = bu/δc+K. Replacing this value of m in Q(u), we get

Q(u) =
(
−K +

1

2

)
δ +

(⌊u
δ

⌋
+K

)
δ =

(1

2
+

⌊u
δ

⌋)
δ.

- u

6

Aδ
5

�
�

�
�

�
�

�
�
�

y(u) = u

�
�

�
�

�
�

�
�

�

•

•• •

•

• ••

u1

u2

←− Q(u2)

−9
2
δ

−1
2
δ

1
2
δ

Q(u1) −→

9
2
δ

Figure 3.1: Picture diagram of the quantizer Q.

Definition 3.3.2. Let {xn}Nn=1 ⊆ R, and let p be a permutation of the set {1, 2, . . . , N}.

Then the 2K−level first-order Σ∆ quantizer with step size δ is defined recursively

by

un = un−1 + xp(n) − qn, (3.3.10)

qn = Q(un−1 + xp(n)), (3.3.11)
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where u0 is a specified constant.

We usually refer to this definition as the first-order Σ∆ quantizer for short. We

see that Σ∆ quantizer produces two sequences: {un}Nn=0 and {qn}Nn=1. We shall refer

to {qn}Nn=1 as the quantized sequence and refer to {un}Nn=0 as the auxiliary sequence

of state variables. We shall refer to the permutation p as the quantization order.

The following proposition shows that the Σ∆ quantizer defined above is stable, that

is, the auxiliary sequence {un}Nn=0 is uniformly bounded provided that the input

sequence {xn}Nn=1 is appropriately uniformly bounded.

Proposition 3.3.3. Let K be a positive integer, let δ > 0, and consider the Σ∆

quantizer defined by (3.3.10)-(3.3.11). If |u0| ≤ δ/2 and for all integers 1 ≤ n ≤ N,

|xn| ≤
(
K − 1

2

)
δ,

then for all integers 0 ≤ n ≤ N,

|un| ≤
δ

2
.

Proof. We may assume without loss of generality that p is the identity permutation.

We shall proceed by induction. The base step, |u0| ≤ δ/2, holds by assumption.

Next, we suppose that |uj−1| ≤ δ/2 for some 2 ≤ j ≤ N. We want to show that

|uj| ≤ δ/2. We have |uj−1 + xj| ≤ |uj−1| + |xj| ≤ Kδ. We also note from the

definition of Q that if |u| ≤ Kδ, then 0 ≤ Q(u) − u ≤ δ/2. Combining this with

(3.3.10)-(3.3.11), we have

|uj| = |(uj−1 + xj)−Q(uj−1 + xj)| ≤
δ

2
.
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The following Theorem is one of the main results found in [15]. It states the

basic quantization error estimate associated to the first-order Σ∆ quantization. We

begin with the setup. Let K ∈ N and δ > 0. Let F = {en}Nn=1 be a frame for Rd,

let p be a permutation of {1, . . . , N} , and let x ∈ Rd be the input. We form the

quantized expansion

x̃ =
N∑

n=1

qnS
−1ep(n) (3.3.12)

from the frame expansion

x =
N∑

n=1

xp(n)S
−1ep(n), xp(n) = 〈x, ep(n)〉. (3.3.13)

Here, {qn}Nn=1 is the quantized sequence which is calculated using the recurrence rela-

tions (3.3.10)-(3.3.11). We want to calculate how well (3.3.12) approximates (3.3.13).

Theorem 3.3.4. Given the Σ∆ quantization as above. Let F = {en}Nn=1 be a finite

unit norm frame for Rd, p a permutation of {1, 2, . . . , N}, |u0| ≤ δ/2. If x ∈ Rd

satisfies ‖x‖ ≤ (K − 1/2)δ, then we have the following quantization error:

‖x− x̃‖ ≤ ‖S−1‖
(
σ(F, p)

δ

2
+ |uN |+ |u0|

)
,

where S−1 is the inverse frame operator for F and σ(F, p), the frame variation with

respect to p, is defined by (see Chapter 2, Section 2.4)

σ(F, p) =
N−1∑
n=1

‖ep(n) − ep(n+1)‖.
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Proof.

x− x̃ =
N∑

n=1

(xp(n) − qn)S−1ep(n)

=
N∑

n=1

(un − un−1)S
−1ep(n)

=
N−1∑
n=1

unS
−1(ep(n) − ep(n+1)) + uNS

−1ep(N) − u0S
−1ep(1).

Since ‖x‖ ≤ (K − 1/2)δ it follows from Cauchy-Schwarz Inequality that

∀ 1 ≤ n ≤ N, |xn| = |〈x, en〉| ≤ ‖x‖ ‖en‖ ≤ (K − 1/2)δ.

Thus, combining with the stability result of the sequence {un}Nn=0 from Proposi-

tion 3.3.3,

‖x− x̃‖ ≤
N−1∑
n=1

δ

2

∥∥S−1
∥∥∥∥ep(n) − ep(n+1)

∥∥ + |uN |
∥∥S−1

∥∥ + |u0|
∥∥S−1

∥∥
=

∥∥S−1
∥∥(

σ(F, p)
δ

2
+ |u0|+ |uN |

)
.

For the purpose of applicability we usually use unit norm tight frame for Rd to

expand a signal of interest. In this case the bound of the quantization error derived

in Theorem 3.3.4 can be adjusted according to the properties of the frame operator

S. More precisely, from Lemma 2.4.2 and the condition (2.3.2), we have

S =
N

d
I, (3.3.14)

so that ‖S−1‖ = d/N and we have the following corollary.

Corollary 3.3.5. Given the Σ∆ scheme of Definition 3.3.2. Let F = {en}Nn=1 be

a unit norm tight frame for Rd with frame bound A = N/d, let p be a permutation
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of {1, 2, . . . , N}, let |u0| ≤ δ/2, and let x ∈ Rd satisfy ‖x‖ ≤ (K − 1/2)δ. Then the

quantization error ‖x− x̃‖ satisfies

‖x− x̃‖ ≤ d

N

(
σ(F, p)

δ

2
+ |uN |+ |u0|

)
.

If we apply the stability result of the auxiliary sequence {un}Nn=1 from Proposi-

tion 3.3.3 then we obtain

‖x− x̃‖ ≤ δd

2N

(
σ(F, p) + 2

)
.

Since from Definition 3.3.2 the only restriction of the initial variable u0 is that

|u0| ≤ δ/2, to lower the bound of quantization error, we set the initial variable u0

to be 0. Moreover the bound of quantization error can be improved if one knows

more information about the variable uN . An example of frame that allows us to

characterize the variable uN based on the parity of the cardinality of frame is the

zero sum frame which is a type of frame for which the sum of all frame elements is

equal to 0.

Theorem 3.3.6. Given the Σ∆ scheme of Definition 3.3.2. Let F = {en}Nn=1 be

a unit norm tight frame for Rd with frame bound A = N/d, and assume that F

satisfies the zero sum condition
N∑

n=1

en = 0. (3.3.15)

Additionally, set u0 = 0. Then

|uN | =


0 if N is even,

δ/2 if N is odd.

(3.3.16)
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Proof. From (3.3.10) we have un − un−1 = xp(n) − qn, so that

uN = uN − u0 =
N∑

n=1

un − un−1 =
N∑

n=1

xp(n) −
N∑

n=1

qn =
N∑

n=1

xn −
N∑

n=1

qn.

Since
∑N

n=1 en = 0, we have

N∑
n=1

xn =
N∑

n=1

〈x, en〉 = 〈x,
N∑

n=1

en〉 = 〈x, 0〉 = 0.

Therefore
N∑

n=1

qn = −uN .

Since for each 1 ≤ n ≤ N, qn is an odd integer multiple of δ/2, we consider two

cases. The first case is that N is an odd integer. Then
∑N

n=1 qn is an odd integer

multiple of δ/2 and since from stability result |uN | ≤ δ/2, it follows that

|uN | =
δ

2
.

The second case is that N is an even integer. Then
∑N

n=1 qn is an integer multiple

of δ and since from stability result |uN | ≤ δ/2, it follows that

|uN | = 0.

Combining this theorem with Corollary 3.3.5, we have the following corollary.

Corollary 3.3.7. Given the Σ∆ scheme of Definition 3.3.2. Let F = {en}Nn=1 be

a unit norm tight frame for Rd with frame bound A = N/d, and assume that F

satisfies the zero sum condition (3.3.15). Let p be a permutation of {1, 2, . . . , N},

let |u0| ≤ δ/2, and let x ∈ Rd satisfy ‖x‖ ≤ (K−1/2)δ. Then the quantization error
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‖x− x̃‖ satisfies

‖x− x̃‖ ≤


δd
2N
σ(F, p) if N is even,

δd
2N

(
σ(F, p) + 1) if N is odd.
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Chapter 4

Uniform Distribution and Discrepancy

In this chapter, we develop the theory of uniform distribution of sequences of

real numbers. Some classic examples are discussed including the sequence {nθ}∞n=1 ,

where θ is irrational. The second part of this chapter deals with the question of

how well a given sequence is distributed over an interval of finite length. The notion

used to measure the distribution of a sequence is called discrepancy. The larger

the discrepancy the worse the sequence is distributed. One tries to approximate

discrepancy rather than compute it directly. Erdös-Turán Inequality is one of the

major tools that are used to approximate discrepancies. We shall see that this

inequality approximate discrepancies in terms of exponential sum, that is, sum of

the form
∑b

n=a e
2πif(n), for some real valued function f. The following materials on

the theory of uniform distribution and discrepancy are adapted from Chapters 1

and 2 of [17].

4.1 Uniform distribution mod 1

We begin by setting up some notations. Let I = [0, 1) be the unit interval.

We recall that the fractional part of each real number lies in I. Let ω = {xn}∞n=1 be

a given sequence of real numbers. For a positive integer N and a subset E of I, let

the counting function A(E;N ;ω) be defined as the number of terms xn (1 ≤ n ≤ N)
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for which {xn} ∈ E. We shall sometimes write A(E;N) instead of A(E;N ;ω) if the

sequence ω is understood from the context.

Definition 4.1.1. The sequence ω = {xn}∞n=1 of real numbers is said to be uniformly

distributed modulo 1 (abbreviated u.d. mod 1) if for every pair a, b of real numbers

with 0 ≤ a < b ≤ 1 we have

lim
N→∞

A([a, b);N ;ω)

N
= b− a. (4.1.1)

Descriptively the definition says that a real sequence is uniformly distributed modulo

1 if the share of the fractional parts of the terms of the sequence with the terms in

each half open subinterval of I is finally equal to the length of each such subinterval.

Example 4.1.2. The following sequence is u.d. mod 1:

{
0

1
,
0

2
,
1

2
,
0

3
,
1

3
,
2

3
, . . . ,

0

n
,
1

n
, . . . ,

n− 1

n
, . . .

}
.

Proof. Let N ∈ N and 0 ≤ a < b ≤ 1. We try to compute A([a, b);N). We observe

that there exists a unique integer kN such that

1

2
kN(kN + 1) ≤ N <

1

2
(kN + 1)(kN + 2). (4.1.2)

We write the first N terms of the sequence in question in terms of kN as follows:

0

1
,
0

2
,
1

2
,
0

3
,
1

3
,
2

3
, . . . ,

0

kN

,
1

kN

, . . . ,
kN − 1

kN

,
0

kN + 1
, . . . ,

N − kN(kN + 1)/2

kN + 1
.

Now we partition this finite sequence into kN + 1 “blocks” by letting the jth block

(1 ≤ j ≤ kN) consist of

0

j
,
1

j
,
2

j
, . . . ,

j − 1

j
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and letting the (kN + 1)th block consist of

0

kN + 1
,

1

kN + 1
,

2

kN + 1
, . . . ,

N − kN(kN + 1)/2

kN + 1
.

We now count the number of elements in the jth block (1 ≤ j ≤ kN) that are in [a, b),

i.e., we count the integers m in [0, j − 1) such that a ≤ m/j < b or ja ≤ m < jb.

We see that this number equals j(b − a) + θj, where |θj| < 1. We also see that the

number of elements in the (kN + 1)th block that are in [a, b) is not greater than

kN + 1 and is at least 0. Using these ingredients we can approximate A([a, b);N) as

follows:

kN∑
j=1

j(b− a) + θj ≤ A([a, b);N) ≤
kN∑
j=1

j(b− a) + θj + kN + 1.

Since |θj| < 1 and
∑kN

j=1 j = kN(kN + 1)/2, we can approximate further that

1

2
(b− a)kN(kN + 1)− kN < A([a, b);N) <

1

2
kN(kN + 1) + kN + kN + 1.

By (4.1.2) we have

(b− a)(N − (kN + 1))− kN < A([a, b);N) < (b− a)N + 2kN + 1

or

(b− a)− b− a
N
− kN

N
(1 + b− a) < 1

N
A([a, b);N) < b− a+

2kN + 1

N
. (4.1.3)

Since by (4.1.2), kN(kN + 1)/2 ≤ N, we have (kN/N)(kN/N + 1/N)/2 ≤ 1/N so

that limN→∞ kN/N = 0. Hence inequalities (4.1.3) imply that

lim
N→∞

A([a, b);N)

N
= b− a.

Since a, b were arbitrary in I we have that the sequence in question is u.d. mod

1.
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Example 4.1.3. Let ω1 = {xn}∞n=1 and ω2 = {yn}∞n=1 be u.d. mod 1. Then the

sequence ω3 = {x1, y1, x2, y2, . . . , xn, yn, . . . } is u.d. mod 1.

Proof. Let N ∈ N and 0 ≤ a < b ≤ 1. We want to compute A([a, b);N ;ω3). If N is

even then we list the first N terms of the sequence ω3 as follows:

x1, y1, x2, y2, . . . , xN/2, yN/2.

So

A([a, b);N ;ω3) = A([a, b);N/2;ω1) + A([a, b);N/2;ω2).

And we have

lim
N→∞

A([a, b);N ;ω3)

N
=

1

2
lim

N→∞

A([a, b);N/2;ω1)

N/2
+

1

2
lim

N→∞

A([a, b);N/2;ω2)

N/2

=
1

2
lim

K→∞

A([a, b);K;ω1)

K
+

1

2
lim

K→∞

A([a, b);K;ω2)

K

=
b− a

2
+
b− a

2
= b− a.

If N is odd then we list the first N terms of the sequence ω3 as follows:

x1, y1, x2, y2, . . . , x(N−1)/2, y(N−1)/2, x(N+1)/2.

So

A([a, b);N ;ω3) = A([a, b); (N + 1)/2;ω1) + A([a, b); (N − 1)/2;ω2).

And we have

lim
N→∞

A([a, b);N ;ω3)

N
= lim

N→∞

N + 1

2N
· A([a, b); (N + 1)/2;ω1)

(N + 1)/2

+ lim
N→∞

N − 1

2N
· A([a, b); (N − 1)/2;ω2)

(N − 1)/2

=
b− a

2
+
b− a

2
= b− a.

Hence by definition the sequence ω3 is u.d. mod 1.
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Proposition 4.1.4. If a sequence {xn}∞n=1 is u.d. mod 1, then the sequence {{xn}}∞n=1

is everywhere dense in I.

Proof. Assume that there exists an interval [a, b) ⊂ I such that {xn} 6∈ [a, b) for all

n ∈ N. Then by definition of uniform distribution mod 1 with ε equal to (b − a)/2

we have that there exists an integer N such that

∣∣∣∣A([a, b);N)

N
− (b− a)

∣∣∣∣ < b− a
2

.

Since {xn} 6∈ [a, b) for all n ∈ N, we have that A([a, b);N) = 0. Consequently

b − a < (b − a)/2 which is absurd. This shows that the sequence {{xn}}∞n=1 is

everywhere dense in I.

Example 4.1.5. If r is a rational number, then the sequence {nr}∞n=1 is not u.d. mod

1. We shall see later on that if r is instead an irrational number then the sequence

{nr} is u.d. mod 1.

Proof. Let r = p/q be a rational number with an integer p and a positive integer

q. From Euclidean Algorithm, for each n ∈ N, there exist integers sn and tn with

0 ≤ tn ≤ q−1 such that rn = pn/q = sn + tn/q. It follows that the fractional part of

each term of the sequence {rn}∞n=1 is an element of the set {0/q, 1/q, . . . , (q − 1)/q}

which is a finite set and is therefore not dense in I. Thus the sequence {{rn}}∞n=1

is also not dense in I. Hence by Proposition 4.1.4, the sequence {nr}∞n=1 is not

u.d. mod 1.

We note that the condition (4.1.1) can be stated in terms of characteristic
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function by

lim
N→∞

1

N

N∑
n=1

1[a,b)({xn}) =

∫ 1

0

1[a,b)(x) dx. (4.1.4)

This observation leads to the following theorem which is a criterion to determine

whether a real sequence is u.d. mod 1.

Theorem 4.1.6. The sequence {xn}∞n=1 of real numbers is u.d. mod 1 if and only

if for every real-valued continuous function f defined on the closed unit interval

I = [0, 1] we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x) dx. (4.1.5)

Proof. Let {xn}∞n=1 be u.d. mod 1 and let f(x) =
∑k−1

j=0 dj1[aj ,aj+1)(x) be a step

function on I, where 0 = a0 < a1 < · · · < ak = 1. Then it follows from (4.1.4) that

for every such function f equation (4.1.5) holds. We assume now that f is a real-

valued continuous function defined on I. Let ε > 0. Then there exists, by definition of

the Riemann integral, two step functions f1 and f2 such that f1(x) ≤ f(x) ≤ f2(x)

for all x ∈ I and
∫ 1

0
(f2(x) − f1(x)) dx ≤ ε. Then we have the following chain of

inequalities:∫ 1

0

f(x) dx− ε ≤
∫ 1

0

f1(x) dx = lim
N→∞

1

N

N∑
n=1

f1({xn})

≤ lim inf
N→∞

1

N

N∑
n=1

f({xn}) ≤ lim sup
N→∞

1

N

N∑
n=1

f({xn})

≤ lim
N→∞

1

N

N∑
n=1

f2({xn}) =

∫ 1

0

f2(x) dx ≤
∫ 1

0

f(x) dx+ ε.

Therefore in the case of a continuous function f the relation (4.1.5) holds. Con-

versely, let a sequence {xn}∞n=1 be given, and suppose that (4.1.5) holds for ev-

ery real-valued continuous function f on I. Let [a, b) be an arbitrary subinterval

49



of I. Let ε > 0. Then there exist two continuous functions g1 and g2 such that

g1(x) ≤ 1[a,b)(x) ≤ g2(x) for all x ∈ I and
∫ 1

0
(g2(x)− g1(x)) dx ≤ ε. Then we have

b− a− ε ≤
∫ 1

0

g2(x) dx− ε ≤
∫ 1

0

g1(x) dx = lim
N→∞

1

N

N∑
n=1

g1({xn})

≤ lim inf
N→∞

A([a, b);N)

N
≤ lim sup

N→∞

A([a, b);N)

N
≤ lim

N→∞

1

N

N∑
n=1

g2({xn})

=

∫ 1

0

g2(x) dx ≤
∫ 1

0

g1(x) dx+ ε ≤ b− a+ ε.

Since ε was arbitrary, we have condition (4.1.1).

Corollary 4.1.7. The sequence {xn} is u.d. mod 1 if and only if for every Riemann-

integrable function f on I equation (4.1.5) holds.

Proof. We note that since every real-valued continuous function is Riemann-integrable,

the sufficient statement holds. The necessary statement follows by the same argu-

ment as in the first part of the proof of Theorem 4.1.6.

Corollary 4.1.8. The sequence {xn}∞n=1 is u.d. mod 1 if and only if for every

complex-valued continuous function f on R with period 1 we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x) dx. (4.1.6)

Proof. For the necessity part, by applying Theorem 4.1.6 to the real and imaginary

part of f, one shows first that (4.1.5) also holds for complex-valued function f.

However, the periodicity condition implies f({xn}) = f(xn), and so we arrive at

(4.1.6). As to the sufficiency of (4.1.6), we need only note that in the second part

of the proof of Theorem 4.1.6 the functions g1 and g2 can be chosen in such a way

that they satisfy the additional requirements g1(0) = g1(1) and g2(0) = g2(1), so

that (4.1.6) can be applied to the periodic extensions of g1 and g2 to R.
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Example 4.1.9. Let {xn}∞n=1 be u.d. mod 1. Then the relation (4.1.5) is not valid

for every Lebesgue-integrable function f on I.

Proof. Let f = 1Q∩[0,1]. Then we see that f is Lebesgue-integrable with
∫ 1

0
f(x) dx =

µ(Q∩ [0, 1]) = 0. We note also that f is not Riemann-integrable. Choose a sequence

{xn} that is u.d. mod 1 and xn ∈ Q for all n ∈ N, e.g., the sequence in Example 4.1.2.

With this function f we have f({xn}) = 1 for all n ∈ N. So

lim
N→∞

1

N

N∑
n=1

f({xn}) = 1 6= 0 =

∫ 1

0

f(x) dx.

We record one more result about the property of u.d. mod 1 sequence before

we move on to the second section on the Weyl criterion.

Theorem 4.1.10. If the sequence {xn}∞n=1 is u.d. mod 1 and if {yn}∞n=1 is a sequence

with the property that limn→∞(xn−yn) = α, a real constant, then {yn}∞n=1 is u.d. mod

1.

Proof. See [17] for proof.

4.2 The Weyl criterion

Considered perhaps one of the most important facts in the theory of uniform

distribution modulo 1, the Weyl criterion is used to determine whether a real se-

quence is u.d. mod 1. This criterion features one of the most versatile functions

in analysis, that is the exponential functions f(x) = e2πihx, where h is a nonzero

integer. We note that functions f satisfy the necessary condition of Corollary 4.1.8.
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The Weyl criterion states that these functions suffice to determine the u.d. mod 1

of a sequence.

Theorem 4.2.1 (Weyl Criterion). The sequence {xn}∞n=1 is u.d. mod 1 if and

only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all integers h 6= 0. (4.2.1)

Proof. The necessity follows from Corollary 4.1.8. Now suppose that {xn}∞n=1 pos-

sesses property (4.2.1). Then we shall show that (4.1.6) is valid for every complex-

valued continuous function f on R with period 1. Let ε > 0. Then by the Weier-

strass approximation theorem, there exists a trigonometric polynomial Ψ(x), that

is, Ψ(x) = a0 +
∑K

k=1 ake
2πihkx for some a0, . . . , aK ∈ C and h1, . . . , hK ∈ Z r {0} ,

such that

sup
0≤x≤1

|f(x)−Ψ(x)| ≤ ε

2
. (4.2.2)

A straightforward calculation yields that
∫ 1

0
Ψ(x) dx = a0. We have the following

inequalities:∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤
∣∣∣∣∫ 1

0

f(x) dx−
∫ 1

0

Ψ(x) dx

∣∣∣∣
+

∣∣∣∣∣
∫ 1

0

Ψ(x) dx− 1

N

N∑
n=1

Ψ(xn)

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

Ψ(xn)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣
≤ ε

2
+
ε

2
+

∣∣∣∣∣a0 − a0 +
1

N

N∑
n=1

K∑
k=1

ake
2πihkxn

∣∣∣∣∣
= ε+

∣∣∣∣∣
K∑

k=1

ak
1

N

N∑
n=1

e2πihkxn

∣∣∣∣∣ .
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Passing on the limit supremum, we obtain

lim sup
N→∞

∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ ε+ lim sup
N→∞

∣∣∣∣∣
K∑

k=1

ak
1

N

N∑
n=1

e2πihkxn

∣∣∣∣∣
≤ ε+

K∑
k=1

ak lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

e2πihkxn

∣∣∣∣∣
= ε.

Since ε is arbitrarily small, we have that

lim sup
N→∞

∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ = 0,

and so does the limit infimum. Therefore

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x) dx.

It follows from Corollary 4.1.8 that {xn}∞n=1 is u.d. mod 1. Hence the sufficiency

follows.

Example 4.2.2. Let θ be an irrational number. We show, using the Weyl criterion,

that the sequence {nθ}∞n=1 is u.d. mod 1. Let h be a nonzero integer. We have∣∣∣∣∣ 1

N

N∑
n=1

e2πihnθ

∣∣∣∣∣ =
1

N

∣∣∣∣e2πihθ(1− e2πihNθ)

1− e2πihθ

∣∣∣∣
≤ 1

N |sin πhθ|
. (4.2.3)

We note that since θ is irrational, sin πhθ 6= 0. So the right side of the inequality

approaches zero as N approaches infinity. Hence by Theorem 4.2.1 the sequence

{nθ}∞n=1 is u.d. mod 1.

Example 4.2.3. We show that the sequence {log n}∞n=1 is not u.d. mod 1. This is

an interesting fact because we will see later that there is a subsequence {xn}∞n=1 of
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natural numbers such that {log xn}∞n=1 is u.d. mod 1. An example of such sequence

{xn}∞n=1 is the Fibonacci sequence {Fn}∞n=1 , i.e., F1 = F2 = 1 and Fn = Fn−1 +Fn−2

for n ≥ 3. To show that {log n}∞n=1 is not u.d. mod 1, we need the Euler summation

formula which states the following. If F (t) is a complex-valued function with a

continuous derivative on 1 ≤ t ≤ N, where N ∈ N, then

N∑
n=1

F (n) =

∫ N

1

F (t) dt+
1

2

(
F (1) + F (N)

)
+

∫ N

1

(
{t} − 1

2

)
F ′(t) dt. (4.2.4)

In this case we let F (t) = e2πi log t. Then we see that the first term on the right of

(4.2.4) divided by N is equal to

Ne2πi log N − 1

N(2πi+ 1)
=
N

(
cos(2π logN) + i sin(2π logN)

)
− 1

N(2πi+ 1)
,

which does not converge as N → ∞. The second term on the right of (4.2.4)

divided by N converges to zero as N → ∞. Finally the last term on the right of

(4.2.4) divided by N also converges to zero as N →∞. This can be seen by noticing

that F ′(t) = e2πi log t2πi/t and 0 ≤ {t} < 1, so that

∣∣∣∣∫ N

1

(
{t} − 1

2

)
F ′(t) dt

∣∣∣∣ ≤ ∫ N

1

∣∣∣∣{t} − 1

2

∣∣∣∣ |F ′(t)| dt

≤
∫ N

1

1

2
· 2π
t
dt = π logN.

This shows that (4.2.1) with xn = log n and h = 1 is not satisfied and therefore

{log n}∞n=1 is not u.d. mod 1.

Remark 4.2.4. We note that Euler summation formula (4.2.4) has various applica-

tions in analytic number theory. It is used for example in the standard proof of The

Prime Number Theorem. Another application of the formula includes the proof of
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the Stirling’s formula which states that

lim
n→∞

n!√
2πn

( e
n

)n
= 1.

(See, e.g., pp. 288 in [21] for proof.) This formula has an application in combinatorics

as it is used to approximate n!.We have found another application of (4.2.4) by using

it to create the following curious looking integral:∫ ∞

0

xbxc
4x4 + 1

dx =
π

16
.

Theorem 4.2.5. If a sequence {xn}∞n=1 has the property that

∆xn = xn+1 − xn → θ (irrational) as n→∞ , (4.2.5)

then the sequence {xn}∞n=1 is u.d. mod 1.

Proof. Let q be a positive integer, then by (4.2.5) there exists an integer g0 = g0(q)

such that for any integers n > g ≥ g0 and integer k ≥ 0,

|∆xj − θ| ≤
1

q2
(j = g + kq, g + 1 + kq, . . . , n− 1 + kq).

Since
∑b−1

j=a ∆xj = xb − xa for 1 ≤ a < b, we have for each integer k ≥ 0,

|xn+kq − xg+kq − (n− g)θ| =

∣∣∣∣∣
n−1+kq∑
j=g+kq

(∆xj − θ)

∣∣∣∣∣
≤

n−1+kq∑
j=g+kq

|∆xj − θ|

≤
n−1+kq∑
j=g+kq

1

q2
=
n− g
q2

. (4.2.6)

For arbitrary real numbers u and v, we have

∣∣e2πiu − e2πiv
∣∣ =

∣∣e2πi(u−v) − 1
∣∣ =

∣∣eπi(u−v) − e−πi(u−v)
∣∣

= |2i sin π(u− v)| ≤ 2π |u− v| .
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Let h be a nonzero integer. Then combining the fact above with (4.2.6) we obtain

for each integer k ≥ 0,

∣∣e2πihxn+kq − e2πih(xg+kq+(n−g)θ)
∣∣ ≤ 2π |h| |xn+kq − xg+kq − (n− g)θ|

≤ 2π |h| (n− g)
q2

.

From (4.2.3) and the triangle inequality, we have for each integer k ≥ 0,∣∣∣∣∣
g+q−1∑
n=g

e2πihxn+kq

∣∣∣∣∣ ≤
∣∣∣∣∣
g+q−1∑
n=g

e2πih(xg+kq−(n−g)θ)

∣∣∣∣∣
+

∣∣∣∣∣
g+q−1∑
n=g

e2πihxn+kq −
g+q−1∑
n=g

e2πih(xg+kq−(n−g)θ)

∣∣∣∣∣
≤

∣∣∣∣∣
g+q−1∑
n=g

e2πih(xg+kq−(n−g)θ)

∣∣∣∣∣
+

g+q−1∑
n=g

∣∣e2πihxn+kq − e2πih(xg+kq−(n−g)θ)
∣∣

≤

∣∣∣∣∣
g+q−1∑
n=g

e2πih(xg+kq−(n−g)θ)

∣∣∣∣∣ +
2π |h|
q2

q+g−1∑
n=g

(n− g)

=

∣∣∣∣∣
g+q−1∑
n=g

e2πihθ

∣∣∣∣∣ +
2π |h|
q2
· q(q − 1)

2
≤ K,

where K = 1
|sin πhθ| + π |h| . For every positive integer H, we have∣∣∣∣∣

g−1+Hq∑
n=g

e2πihxn

∣∣∣∣∣ =

∣∣∣∣∣∣
g−1+q∑
n=g

e2πihxn +

g−1+2q∑
n=g+q

e2πihxn + · · ·+
g−1+Hq∑

n=g+(H−1)q

e2πihxn

∣∣∣∣∣∣
=

∣∣∣∣∣
g−1+q∑
n=g

e2πihxn +

g−1+q∑
n=g

e2πihxn+q + · · ·+
g−1+q∑
n=g

e2πihxn+(H−1)q

∣∣∣∣∣
≤

H−1∑
k=0

∣∣∣∣∣
g−1+q∑
n=g

e2πihxn+kq

∣∣∣∣∣
≤

H−1∑
k=0

K = HK.

Let N ≥ g be an integer. Choose the largest integer HN such that g−1+HNq < N.
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It follows that

g − 1 +HNq ≤ N − 1⇒ HN ≤
N − g
q

and

g − 1 + (HN + 1)q ≤ N ⇒ N − g −HNq + 1 ≤ q.

With these facts we have∣∣∣∣∣
N∑

n=1

e2πihxn

∣∣∣∣∣ =

∣∣∣∣∣
g−1∑
n=1

e2πihxn +

g−1+HN q∑
n=g

e2πihxn +
N∑

n=g+HN q

e2πihxn

∣∣∣∣∣
≤ (g − 1) +HNK + (N − g −HNq + 1)

≤ g − 1 +
N − g
q

K + q.

Keeping q fixed, we obtain

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

e2πihxn

∣∣∣∣∣ ≤ K

q
.

Since q can be made arbitrarily large, we have

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

e2πihxn

∣∣∣∣∣ = 0,

and hence so does the limit infimum. Therefore

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0.

Hence by Theorem 4.2.1, {xn}∞n=1 is u.d. mod 1.

Example 4.2.6. We show that for each irrational number θ, {xn = nθ +
√
n}∞n=1

is u.d. mod 1. We have

xn+1 − xn = θ +
√
n+ 1−

√
n→ θ as n→∞,

so that the hypothesis of Theorem 4.2.5 is satisfied and therefore the sequence

{xn}∞n=1 is u.d. mod 1.
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Example 4.2.7. We show that {logFn}∞n=1 is u.d. mod 1. It is a well-known fact

that Fn+1/Fn converges to the golden ratio τ = (1 +
√

5)/2 as n → ∞. We then

have

logFn+1 − logFn = log
(Fn+1

Fn

)
→ log τ as n→∞.

Since log τ is an irrational number, it follows from Theorem 4.2.5 that the sequence

{logFn}∞n=1 is u.d. mod 1.

Example 4.2.8. Let θ be an irrational number, and let a and d be integers with

a ≥ 0 and d > 0. For n ≥ 1, one sets εn = 1 if the integer closest to nθ is to the left

of nθ; otherwise, εn = 0. Then we have

lim
N→∞

1

N

N∑
n=1

εa+nd =
1

2
.

Proof. We prove the case when a = 0 and d = 1. From Example 4.2.2 we know that

the sequence ω = {nθ}∞n=1 is u.d. mod 1. We also note that the definition of εn can

be rewritten as εn = 1 if nθ − bnθc = {nθ} < 1/2 and εn = 0 otherwise.We then

have

1

N

N∑
n=1

εn =
1

N

( ∑
{nθ}<1/2

εn +
∑

{nθ}≥1/2

εn
)

=
1

N

∑
{nθ}<1/2

1 =
1

N
A

(
[0,

1

2
);N ;ω

)
.

Since ω is u.d. mod 1, the last quantity, by definition, tends to 1/2−0 = 1/2 as N →

∞. For general case a ≥ 0 and d > 0, we check that the sequence {(a+ nd)θ}∞n=1 is

u.d. mod 1 and then proceed the proof as above. In fact we have for each nonzero

integer h, ∣∣∣∣∣ 1

N

N∑
n=1

e2πih(a+nd)θ

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
n=1

e2πi(hd)nθ

∣∣∣∣∣
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which, by Theorem 4.2.1, tends to 0 as N → ∞, since hd is a nonzero integer and

{nθ}∞n=1 is u.d. mod 1.

4.3 Approximation of exponential sums

Many well-known mathematicians such as Gauss, Weyl, Vinogradov, and van

der Corput, to name a few, have studied exponential sums and contributed signifi-

cant results in the subject. However, perhaps one of the most famous exponential

sums is the Gaussian sum. This is an exponential sum of the form

S(p, q) =

q−1∑
n=0

e−πin2 p
q ,

where p and q are relatively prime integers and q > 0. Gauss showed that

S(−2, q) =
1− iq

1− i
√
q,

where q is odd. (See pp. 235-237 in [13] for an interesting proof by Dirichlet using

Fourier Analysis.) Most of the exponential sums cannot be derived into a simple

form. Number theorists therefore try to come up with a good way to approximate

an exponential sum. One efficient theorem is given by van der Corput.

Theorem 4.3.1 (van der Corput). If a and b are integers with a < b and if f

is a twice differentiable function on [a, b] with f ′′(x) ≥ ρ > 0 for all x ∈ [a, b] or

f ′′(x) ≤ −ρ < 0 for all x ∈ [a, b], then∣∣∣∣∣
b∑

n=a

e2πif(n)

∣∣∣∣∣ ≤ (|f ′(b)− f ′(a)|+ 2)
( 4
√
ρ

+ 3
)
. (4.3.1)

We need some lemmata to prove Theorem 4.3.1.
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Lemma 4.3.2. Suppose the real-valued function f has a monotone derivative f ′

on [a, b] with |f ′(x)| ≥ λ > 0 for x ∈ [a, b]. Then, if J =
∫ b

a
e2πif(x) dx, we have

|J | < 1/λ.

Proof. We rewrite J as

J =
1

2πi

∫ b

a

de2πif(x)

f ′(x)
.

Then since f ′ is monotone on [a, b], it follows from the Second Mean Value Theorem

(see, e.g., [22], pp. 279) that there exists x0 ∈ [a, b] such that

J =
1

2π

( 1

f ′(a)

∫ x0

a

de2πif(x) +
1

f ′(b)

∫ b

x0

de2πif(x)
)
,

so that

|J | ≤ 1

2π

( 1

|f ′(a)|
∣∣e2πif(x0) − e2πif(a)

∣∣ +
1

|f ′(b)|
∣∣e2πif(b) − e2πif(x0)

∣∣ )
≤ 1

2π

( 2

|f ′(a)|
+

2

|f ′(b)|
)
≤ 2

πλ
<

1

λ
.

Lemma 4.3.3. Let f be twice differentiable on [a, b] with f ′′(x) ≥ ρ > 0 for x ∈ [a, b]

or f ′′(x) ≤ −ρ < 0 for x ∈ [a, b]. Then the integral J from Lemma 4.3.2 satisfies

|J | < 4/
√
ρ.

Proof. We assume that f ′′(x) ≥ ρ > 0 for x ∈ [a, b]; otherwise, we replace f by −f.

So f ′ is increasing. Suppose for the moment that f ′ is of constant sign in [a, b]. That

is either f ′(x) ≥ 0 for all x ∈ [a, b] or f ′(x) ≤ 0 for all x ∈ [a, b]. We consider each

of these cases. Let c be fixed with a < c < b. For the case f ′ ≥ 0 on [a, b], applying

the Mean Value Theorem on [a, x] for x ∈ [c, b] yields that there exists ξx in (a, x)
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such that

f ′(x)− f ′(a) = (x− a)f ′′(ξx) ≥ (x− a)ρ,

so that

f ′(x) ≥ (x− a)ρ+ f ′(a) ≥ (x− a)ρ > (c− a)ρ > 0.

Applying Lemma 4.3.2 with
∫ b

c
e2πif(x) dx, we have

|J | ≤
∣∣∣∣∫ c

a

e2πif(x) dx

∣∣∣∣ +

∣∣∣∣∫ b

c

e2πif(x) dx

∣∣∣∣ < (c− a) +
1

(c− a)ρ
. (4.3.2)

We note that the last quantity is minimized when c = a + 1/
√
ρ. Hence, with this

value of c

|J | < 2
√
ρ
.

For the case f ′ ≤ 0 on [a, b], applying the Mean Value Theorem on [x, b] for x ∈ [a, c]

yields that there exists ηx in (x, b) such that

f ′(b)− f ′(x) = (b− x)f ′′(ηx) ≥ (b− x)ρ,

so that

f ′(x) ≤ −(b− x)ρ+ f ′(b) ≤ −(b− x)ρ ≤ −(b− c)ρ < 0.

Applying Lemma 4.3.2 with
∫ c

a
e2πif(x) dx, we have

|J | ≤
∣∣∣∣∫ c

a

e2πif(x) dx

∣∣∣∣ +

∣∣∣∣∫ b

c

e2πif(x) dx

∣∣∣∣ < 1

(b− c)ρ
+ (b− c). (4.3.3)

We note that the last quantity is minimized when c = b − 1/
√
ρ. Hence, with this

value of c

|J | < 2
√
ρ
.
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In the general case, [a, b] is the union of two intervals in each of which f ′ is of

constant sign, and the desired inequality follows by adding the inequalities for these

two intervals and hence obtaining the bound 4/
√
ρ.

Remark 4.3.4. We note that the value c that minimizes the last quantity in either

(4.3.2) or (4.3.3) should be contained in (a, b). If this is not the case then we replace

c by either b or a whichever appropriate and the bound of J will be replaced by

C/
√
ρ for some absolute constant C > 0.

Lemma 4.3.5. Let f ′ be monotone on [a, b] with |f ′(x)| ≤ 1/2 for a ≤ x ≤ b. Then,

if J1 =
∫ b

a
({x} − 1/2)de2πif(x), we have

|J1| ≤ 2.

Proof. Since the function x 7→ {x} − 1/2 is odd and periodic with period 1, we

obtain the Fourier series of this function by

{x} − 1

2
=

∞∑
n=1

bn sin 2πnx,

valid for all x 6∈ Z and bn is given by

bn = 2

∫ 1

0

(
{x} − 1

2

)
sin 2πnx dx = − 1

πn
.

Let SN(x) denote the Nth partial sum of the series, i.e., SN(x) = −
∑N

n=1
sin 2πnx

πn
for

x ∈ R. Then by summation by parts one can show that SN is uniformly bounded.

Therefore,

J1 = lim
N→∞

∫ b

a

SN(x)de2πif(x). (4.3.4)
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For each integer N ≥ 1 we have

∫ b

a

SN(x)de2πif(x) =
N∑

n=1

1

n

∫ b

a

(−2i sin 2πnx)e2πif(x)f ′(x) dx

=
N∑

n=1

1

n

∫ b

a

(e−2πinx − e2πinx)e2πif(x)f ′(x) dx

=
1

2πi

N∑
n=1

1

n

( ∫ b

a

f ′(x)

f ′(x)− n
de2πi(f(x)−nx) −

∫ b

a

f ′(x)

f ′(x) + n
de2πi(f(x)+nx)

)
.

Since the functions f ′/(f ′ ± n) are monotone and |f ′| ≤ 1/2, an application of the

Second Mean Value Theorem yields that

∣∣∣∣∫ b

a

f ′(x)

f ′(x)± n
de2πi(f(x)±nx)

∣∣∣∣ ≤ 2

n− 1
2

,

so that

∣∣∣∣∫ b

a

SN(x)de2πif(x)

∣∣∣∣ ≤ 2

π

N∑
n=1

1

n(n− 1
2
)

=
2

π

(
2 +

N∑
n=2

1

n(n− 1
2
)

)
≤ 2

π

(
2 +

N∑
n=2

1

n(n− 1)

)
=

2

π
(2 + 1− 1

N
) <

6

π
< 2.

Taking the limit N →∞ we obtain |J1| ≤ 2.

Proof of Theorem 4.3.1. We write

b∑
n=a

e2πif(n) =
∞∑

p=−∞

Sp (4.3.5)

with

Sp =
∑

a≤n≤b
p−1/2≤f ′(n)<p+1/2

e2πif(n).
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The sum over p in (4.3.5) is in fact a finite sum. Let p be an integer for which the

sum Sp is nonvoid. By the assumption on f ′′, we have that f ′ is monotone, and

therefore this sum Sp is over consecutive values of n, say from n = ap to n = bp.

With Fp(x) = f(x)− px, we get

Sp =

bp∑
n=ap

e2πif(n) =

bp∑
n=ap

e2πiFp(n)

=

∫ bp

ap

e2πiFp(x) dx+
1

2

(
e2πiFp(ap) + e2πiFp(bp)

)
+

∫ bp

ap

(
{x} − 1

2

)
de2πiFp(x)

by the Euler summation formula. Now the first integral is in absolute value less

than 4/
√
ρ by Lemma 4.3.3. The last integral is in absolute value at most 2 because

of the fact that |F ′
p(x)| ≤ 1/2 for x ∈ [ap, bp] and of Lemma 4.3.5. Therefore,

|Sp| < (4/
√
ρ) + 3. (4.3.6)

By counting the values of p such that

min {f ′(a), f ′(b)} − 1

2
< p ≤ max {f ′(a), f ′(b)}+

1

2
,

we obtain that there are at most |f ′(b)−f ′(a)|+1/2−(−1/2)+1 = |f ′(b)−f ′(a)|+2

values of p for which Sp is a nonvoid sum. This, (4.3.6), and (4.3.5) imply (4.3.1)

and therefore the proof is complete.

Example 4.3.6. To see how good the van der Corput Theorem is in approximat-

ing exponential sums, we experiment it with the Gaussian sum S(−2, q) (q odd)

described in the introduction of this section. A straightforward calculation yields

that for each positive odd integer q,

|S(−2, q)| = √q.
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To approximate S(−2, q) using Theorem 4.3.1, we let f(x) = −x2/q so that f ′(x) =

−2x/q and f ′′(x) = −2/q.We have |f ′′(x)| = 2/q for all x so that ρ = 2/q.Moreover,

|f ′(q − 1)− f ′(0)| = 2(q − 1)/q. Hence from Theorem 4.3.1,

|S(−2, q)| ≤
(2(q − 1)

q
+ 2

)( 4√
2/q

+ 3
)
< 8
√

2
√
q + 12 < 17

√
q,

for all q ≥ 169. We see that Theorem 4.3.1 approximates |S(−2, q)| up to the

asymptotic order of
√
q which is considered acceptably good in applications.

4.4 Discrepancy

We have seen from the previous sections the sequences that are uniformly

distributed. We have developed some good criteria to determine whether a given

sequence is uniformly distributed. However, there are quite a few sequences that

are not uniformly distributed. Among these sequences there might be some that are

distributed “better” than the others. That is to say we are interested in measuring

how well a given sequence is distributed comparing with a sequence that has uniform

distribution which we consider as the ideal distribution. The quantity associated

with the quality of the distribution of a sequence is called discrepancy. In this section

we shall develop the notion of discrepancy and prove an important inequality, namely

the Erdös-Turán Inequality, that is mainly used to approximate the discrepancy of

a given sequence in terms of exponential sums.

Definition 4.4.1. Let x1, . . . , xN be a finite sequence of real numbers. The dis-

crepancy of the given sequence, denoted DN(x1, . . . , xN) or simply DN , is defined
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by

DN = DN(x1, . . . , xN) = sup
0≤α<β≤1

∣∣∣∣A([α, β);N)

N
− (β − α)

∣∣∣∣ . (4.4.1)

If ω = {xn}∞n=1 is an infinite sequence of real numbers then we define DN(ω) to be

the discrepancy of the first N terms of the sequence.

It should be remarked that to compute the discrepancy of a sequence, we consider the

supremum in (4.4.1) over all subintervals of the unit interval I = [0, 1). Therefore,

when we prove some assertions about discrepancy we can assume without loss of

generality that all elements of a given sequence are contained in I.

The following theorem reflects the association of a uniform distribution to an ideal

distribution.

Theorem 4.4.2. The sequence ω is u.d. mod 1 if and only if

lim
N→∞

DN(ω) = 0.

Proof. To prove the sufficiency, we let [a, b) be an arbitrary interval in I and note

that for each positive integer N,

∣∣∣∣A([a, b);N)

N
− (b− a)

∣∣∣∣ ≤ sup
0≤α<β≤1

∣∣∣∣A([α, β);N)

N
− (β − α)

∣∣∣∣ .
Since as N → ∞, the right-hand side quantity approaches 0 by assumption, it

follows that

lim
N→∞

∣∣∣∣A([a, b);N)

N
− (b− a)

∣∣∣∣ = 0

and therefore ω is u.d. mod 1. Now we show the necessity. Let m ≥ 2 be a positive

integer and let Ik = [k/m, (k+ 1)/m) for k = 0, 1, . . . ,m− 1, so that the the family

66



{Ik}m−1
k=0 partitions the interval I. From the definition of u.d. mod 1, there exists an

integer N0(m) such that for each integer N ≥ N0, and for each k = 0, 1, . . . ,m− 1,

1

m

(
1− 1

m

)
≤ A(Ik;N)

N
≤ 1

m

(
1 +

1

m

)
. (4.4.2)

Let J = [α, β) be an arbitrary interval in I. Then we see that there exist intervals J1

and J2 being finite unions of intervals Ik such that J1 ⊆ J ⊆ J2 with λ(J)−λ(J1) <

2/m and λ(J2)− λ(J) < 2/m. We note that J1 is possibly an empty interval. From

(4.4.2) we have that for each N ≥ N0,

λ(J1)
(
1− 1

m

)
≤ A(J1;N)

N
≤ A(J ;N)

N
≤ A(J2;N)

N
≤ λ(J2)

(
1− 1

m

)
from which it follows that

(
λ(J)− 2

m

)(
1− 1

m

)
<
A(J ;N)

N
<

(
λ(J) +

2

m

)(
1 +

1

m

)
.

Now since λ(J) ≤ 1 we have

− 3

m
− 2

m2
<
A(J ;N)

N
− λ(J) <

3

m
+

2

m2
.

Since the bounds are independent of interval J it follows that for each N ≥ N0,

DN(ω) ≤ 3

m
+

2

m2
.

By letting m be arbitrarily large, we have

lim
N→∞

DN(ω) = 0.

We note that the necessity of Theorem 4.4.2 asserts that if a sequence ω is u.d. mod

1, then limN→∞A([a, b);N)/N = b− a uniformly in all subintervals [a, b) of I. The

following theorem gives basic estimates for a discrepancy.
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Theorem 4.4.3. For any sequence of N numbers, we have

1

N
≤ DN ≤ 1.

Proof. The rightmost inequality follows by noting that for every arbitrary interval

[α, β) in I,

A([α, β);N)

N
− (β − α) ≤ 1− (β − α) < 1.

To prove the leftmost inequality, we fix an element x in the sequence and let ε > 0

be small such that x+ ε ≤ 1. We then have

A([x, x+ ε);N)

N
− ε ≥ 1

N
− ε.

This implies DN ≥ 1/N − ε. Since ε can be made arbitrarily small, it follows that

DN ≥
1

N
.

Example 4.4.4. The leftmost inequality in Theorem 4.4.3 is in fact sharp. Consider

the following sequence 0, 1/N, 2/N, . . . , (N − 1)/N in some order. Let [α, β) be an

arbitrary interval in I. We try to compute A([α, β);N). From the terms of the

sequence this amounts to counting integers k for k = 0, 1, . . . , N − 1 such that

α < k/N ≤ β. Hence

A([α, β);N) = N(β − α) + θ,

such that 0 ≤ θ ≤ 1. This means

∣∣∣∣A([α, β);N)

N
− (β − α)

∣∣∣∣ =
θ

N
≤ 1

N
.

Therefore DN ≤ 1/N. From Theorem 4.4.3 we have DN = 1/N.
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Computationally speaking, it might be easier to restrict the family of intervals

over which the supremum is formed in the definition of discrepancy. One type

of restriction is to consider only intervals [0, α) for all 0 < α ≤ 1. This type of

restriction will prove very useful in computing discrepancy. We define discrepancy

associated to this restriction as follows.

Definition 4.4.5. Let x1, . . . , xN be a finite sequence of real numbers. We define

the discrepancy D∗
N of this sequence by

D∗
N = D∗

N(x1, . . . , xN) = sup
0<α≤1

∣∣∣∣A([0, α);N)

N
− α

∣∣∣∣ . (4.4.3)

The following theorem relates the size of D∗
N with DN .

Theorem 4.4.6. For any sequence of N numbers, we have

D∗
N ≤ DN ≤ 2D∗

N .

Proof. The leftmost inequality is clear from the fact that {[0, α) : 0 < α ≤ 1} ⊂

{[α, β) : 0 ≤ α < β ≤ 1} . To show the rightmost inequality, we let [α, β) be an ar-

bitrary interval in I and observe that A([α, β);N) = A([0, β);N)− A([0, α);N), so

that

∣∣∣∣A([α, β);N)

N
− (β − α)

∣∣∣∣ ≤ ∣∣∣∣A([0, β);N)

N
− β

∣∣∣∣ +

∣∣∣∣A([0, α);N)

N
− α

∣∣∣∣ .
Since each term on the right-hand side is no greater than D∗

N , it follows that

∣∣∣∣A([α, β);N)

N
− (β − α)

∣∣∣∣ ≤ 2D∗
N .

This implies DN ≤ 2D∗
N as we wish to show.
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Corollary 4.4.7. The sequence ω is u.d. mod 1 if and only if

lim
N→∞

D∗
N(ω) = 0.

Proof. This follows immediately from Theorem 4.4.2 and Theorem 4.4.6 above.

We note that when we compute DN or D∗
N of a finite sequence, the order of the

terms of the sequence does not matter; so we may order the terms of the sequence

in increasing order.

One advantage of D∗
N over DN is that one can actually compute it explic-

itly (involving only finitely many steps of computation) as stated by the following

theorem.

Theorem 4.4.8. Let x1 ≤ x2 ≤ · · · ≤ xN be N numbers in I. Then their discrepancy

D∗
N is given by

D∗
N = max

1≤i≤N
max

{∣∣∣∣xi −
i

N

∣∣∣∣ , ∣∣∣∣xi −
i− 1

N

∣∣∣∣}
=

1

2N
+ max

1≤i≤N

∣∣∣∣xi −
2i− 1

2N

∣∣∣∣ .
(4.4.4)

Proof. We let x0 = 0 and xN+1 = 1 and observe that the distinct values of the

numbers xi, 0 ≤ i ≤ N + 1, form a partition of interval [0, 1]. Therefore,

D∗
N = max

0≤i≤N
xi<xi+1

sup
xi<α≤xi+1

∣∣∣∣A([0, α);N)

N
− α

∣∣∣∣
= max

0≤i≤N
xi<xi+1

sup
xi<α≤xi+1

∣∣∣∣ iN − α
∣∣∣∣ .

Now we note that whenever xi < xi−1, the function gi(α) = |i/N − α| attains its

maximum in [xi, xi+1] at one of the end points of the interval. Hence,

D∗
N = max

0≤i≤N
xi<xi+1

max

{∣∣∣∣ iN − xi

∣∣∣∣ , ∣∣∣∣ iN − xi+1

∣∣∣∣} . (4.4.5)
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Now we show that we may drop the restriction xi < xi+1 in the first maximum.

Suppose we have xi < xi+1 = xi+2 = · · · = xi+r < xi+r+1 with some r ≥ 2. The

indices not admitted in the first maximum in (4.4.5) are the integers i + j with

1 ≤ j ≤ r − 1. We shall prove that the numbers∣∣∣∣ i+ j

N
− xi+j

∣∣∣∣ and

∣∣∣∣ i+ j

N
− xi+j+1

∣∣∣∣
for 1 ≤ j ≤ r − 1, which are excluded in (4.4.5), are in fact dominated by numbers

already occurring in (4.4.5). For 1 ≤ j ≤ r − 1, we get by the same reasoning as

above (by considering the function hi+1(y) = |y − xi+1|) that∣∣∣∣ i+ j

N
− xi+j

∣∣∣∣ =

∣∣∣∣ i+ j

N
− xi+1

∣∣∣∣ < max

{∣∣∣∣ iN − xi+1

∣∣∣∣ , ∣∣∣∣ i+ r

N
− xi+1

∣∣∣∣}
= max

{∣∣∣∣ iN − xi+1

∣∣∣∣ , ∣∣∣∣ i+ r

N
− xi+r

∣∣∣∣} ,

and both numbers in the last maximum occur in (4.4.5). The same argument can be

applied for |(i+ j)/N − xi+j+1| , 1 ≤ j ≤ r − 1. Thus, we may drop the restriction

xi < xi+1 and arrive at

D∗
N = max

0≤i≤N
max

{∣∣∣∣ iN − xi

∣∣∣∣ , ∣∣∣∣ iN − xi+1

∣∣∣∣}
= max

1≤i≤N
max

{∣∣∣∣ iN − xi

∣∣∣∣ , ∣∣∣∣ i− 1

N
− xi

∣∣∣∣} .

The last equality is valid since the only terms we dropped are |0/N − x0| and

|N/N − xN+1| which are both zero. We now show the second equality in (4.4.4). It

suffices to show that

max

{∣∣∣∣xi −
i

N

∣∣∣∣ , ∣∣∣∣xi −
i− 1

N

∣∣∣∣} =
1

2N
+

∣∣∣∣xi −
2i− 1

2N

∣∣∣∣ .
We consider two cases. The first case is that max

{∣∣xi − i
N

∣∣ , ∣∣xi − i−1
N

∣∣} =
∣∣xi − i

N

∣∣ .
This means

∣∣xi − i−1
N

∣∣ < ∣∣xi − i
N

∣∣ which is equivalent to
(
xi − i−1

N

)2
<

(
xi − i

N

)2
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which, after expanding, is equivalent to

xi <
2i− 1

2N
.

Therefore,

0 <
1

2N
+

∣∣∣∣xi −
2i− 1

2N

∣∣∣∣ =
1

2N
+

2i− 1

2N
− xi =

i

N
− xi =

∣∣∣∣ iN − xi

∣∣∣∣ .
The second case is that max

{∣∣xi − i
N

∣∣ , ∣∣xi − i−1
N

∣∣} =
∣∣xi − i−1

N

∣∣ . By the same argu-

ment above we have

xi >
2i− 1

2N
.

Therefore,

0 <
1

2N
+

∣∣∣∣xi −
2i− 1

2N

∣∣∣∣ =
1

2N
+ xi −

2i− 1

2N
= xi −

i− 1

N
=

∣∣∣∣xi −
i− 1

N

∣∣∣∣ .
Example 4.4.9. For n ≥ 1, let ωn be the finite sequence

0

n2
,

1

n2
,

4

n2
, . . . ,

(n− 1)2

n2
.

We show that

lim
n→∞

D∗
n(ωn) =

1

4
.

First let’s compute D∗
n(ωn) for n large. From the second equation of (4.4.4) we have

D∗
n(ωn) =

1

2n
+ max

1≤k≤n

∣∣∣∣(k − 1)2

n2
− 2k − 1

2n

∣∣∣∣ .
Let hn(x) = (x− 1)2/n2 − (2x− 1)/2n for x ∈ [1, n]. We see that the graph of hn is

a parabola with vertex at x = n/2 + 1. If n is even then

D∗
n(ωn) =

1

2n
+ max {|h(n/2 + 1)| , |h(1)| , |h(n)|}

=
1

2n
+ max

{
1

4
+

1

2n
,

1

2n
,

3

2n
− 1

n2

}
=

1

2n
+

1

4
+

1

2n
=

1

4
+

1

n
→ 1

4
as n→∞.
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Similarly, if n is odd then

D∗
n(ωn) =

1

2n
+ max {|h((n− 1)/2 + 1)| , |h(1)| , |h(n)|}

=
1

2n
+ max

{
1

4
+

1

2n
− 1

4n2
,

1

2n
,

3

2n
− 1

n2

}
=

1

2n
+

1

4
+

1

2n
− 1

4n2
=

1

4
+

1

n
− 1

4n2
→ 1

4
as n→∞.

Since in either case D∗
n(ωn)→ 1/4 as n→∞, we have the desired result.

Corollary 4.4.10. For any sequence of N numbers in I we have

D∗
N ≥

1

2N
,

with equality only for the sequence 1/(2N), 3/(2N), . . . , (2N − 1)/(2N) or its rear-

rangements.

Proof. This follows immediately by looking at the second equality in (4.4.4).

The discrepancy D∗
N of infinite sequence has different lower bounds than the one

given by Corollary 4.4.10 as stated by the following theorem.

Theorem 4.4.11. For any infinite sequence ω of real numbers, we have

ND∗
N(ω) > c logN

for infinitely many positive integers N, where c > 0 is an absolute constant.

Proof. See [17], pp. 109 for proof.

We present two types of inequalities that give the upper bounds of discrepancies in

terms of exponential sums.
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Theorem 4.4.12 (LeVeque’s Inequality). The discrepancy DN of the finite se-

quence x1, . . . , xN in I satisfies

DN ≤
(

6

π2

∞∑
k=1

1

k2

∣∣∣∣ 1

N

N∑
n=1

e2πikxn

∣∣∣∣2)1/3

. (4.4.6)

Proof. See [17], pp. 111 for proof.

Remark 4.4.13. We remark that the constant 6/π2 in LeVeque’s Inequality is best

possible. In fact, let x1 = x2 = · · · = xN = 0. Then DN = 1, and the right-hand

side is equal to (
6

π2

∞∑
n=1

1

n2

)1/3

= 1.

Theorem 4.4.14 (Erdös-Turán Inequality). For any finite sequence x1, . . . , xN

of real numbers and any positive integer K, we have

DN ≤
6

K + 1
+

4

π

K∑
k=1

(1

k
− 1

K + 1

) ∣∣∣∣∣ 1

N

N∑
n=1

e2πikxn

∣∣∣∣∣ . (4.4.7)

Proof. Without loss of generality, we assume that x1 ≤ x2 ≤ · · · ≤ xN . Let

∆N(x) =
A([0, x);N)

N
− x for 0 ≤ x ≤ 1,

and extend this function with period 1 to R. The function ∆N can be written
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explicitly as follows:

∆N(x) =



−x 0 ≤ x ≤ x1,

1/N − x x1 < x ≤ x2,

...

k/N − x xk < x ≤ xk+1,

...

N/N − x xN < x ≤ 1.

(4.4.8)
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Figure 4.1: A typical graph of the function ∆N . This particular graph draws ∆4 of

the sequence x1 = 1/8, x2 = 2.3/8, x3 = 5.4/8, x4 = 7.2/8.

We consider first a sequence x1, . . . , xN in I for which∫ 1

0

∆N(x) dx = 0. (4.4.9)

For convenience we also let

Sh =
1

N

N∑
n=1

e2πihxn for h ∈ Z.

75



We note that by computing the Fourier coefficients of ∆N , we have

Sh

−2πih
=

∫ 1

0

∆N(x)e2πihx dx for h ∈ Z r {0} . (4.4.10)

In fact we note that A([0, x);N) =
∑N

n=1 1(xn,1](x), so that for every nonzero integer

h, we have

∫ 1

0

∆N(x)e2πihx dx =
1

N

N∑
n=1

∫ 1

0

1(xn,1](x)e
2πihx dx−

∫ 1

0

xe2πihx dx

=
1

N

N∑
n=1

∫ 1

xn

e2πihx dx− 1

2πih

=
1

2πihN

N∑
n=1

(
1− e2πihxn

)
− 1

2πih

= − 1

2πihN

N∑
n=1

e2πihxn .

Choose a positive integer m, and let a be a real number to be determined later.

From (4.4.9) and (4.4.10) it follows that

m∑∗

h=−m

(m+ 1− |h|)e−2πiha Sh

−2πih

=

∫ 1

0

∆N(x)

( m∑
h=−m

(m+ 1− |h|)e2πih(x−a)

)
dx

=

∫ 1−a

−a

∆N(x+ a)

( m∑
h=−m

(m+ 1− |h|)e2πihx

)
dx,

(4.4.11)

where the asterisk indicates that h = 0 is deleted from the range of summation.

Because of the periodicity of the integrand, the last integral may also be taken over

[−1/2, 1/2]. We note that

m∑
h=−m

(m+ 1− |h|)e2πihx =
sin2(m+ 1)πx

sin2 πx
, (4.4.12)

where the right-hand side is interpreted as (m+ 1)2 in case x is an integer. This is
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the well-known discrete version of Fejér kernel. We infer from (4.4.11) that∣∣∣∣ ∫ 1/2

−1/2

∆N(x+ a)
sin2(m+ 1)πx

sin2 πx
dx

∣∣∣∣ ≤ 1

2π

m∑∗

h=−m

(m+ 1− |h|) |Sh|
|h|

=
1

π

m∑
h=1

(m+ 1− h) |Sh|
h
.

(4.4.13)

The last equality follows from the fact that |Sh| = |S−h| . We note from the nature

of the graph of ∆N (Figure 4.1) that we either have ∆N(b) = −D∗
N or ∆N(b+ 0) =

limx→b+ ∆N(x) = D∗
N for some b ∈ [0, 1]. We shall deal with the second case, the

first case being completely similar.

For b < t ≤ b+D∗
N , we have

∆N(t) = D∗
N + ∆N(t)−∆N(b+ 0) ≥ D∗

N + b− t. (4.4.14)

In fact, since the slope of each linear function in the function ∆N equals −1, it

follows from the the nature of the graph of ∆N (Figure 4.2) that

∆N(t)−∆N(b+ 0)

t− b
≥ −1.

Now choose a = b + 1
2
D∗

N . Then for |x| < 1
2
D∗

N , we have b < x + a < b + D∗
N . So

x+ a plays the role of t in (4.4.14) and therefore,

∆N(x+ a) ≥ D∗
N + b− x− a =

1

2
D∗

N − x for |x| < 1

2
D∗

N . (4.4.15)
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slope = −1

Figure 4.2: Pictorial proof of (4.4.14)

Consequently, we have∫ 1/2

−1/2

∆N(x+ a)
sin2(m+ 1)πx

sin2 πx
dx

=

( ∫ −D∗
N/2

−1/2

+

∫ D∗
N/2

−D∗
N/2

+

∫ 1/2

D∗
N/2

)
∆N(x+ a)

sin2(m+ 1)πx

sin2 πx
dx

≥
∫ D∗

N/2

−D∗
N/2

(
D∗

N

2
− x)sin

2(m+ 1)πx

sin2 πx
dx−D∗

N

∫ −D∗
N/2

−1/2

sin2(m+ 1)πx

sin2 πx
dx

−D∗
N

∫ 1/2

D∗
N

sin2(m+ 1)πx

sin2 πx
dx

= D∗
N

∫ D∗
N/2

0

sin2(m+ 1)πx

sin2 πx
dx− 2D∗

N

∫ 1/2

D∗
N/2

sin2(m+ 1)πx

sin2 πx
dx

= D∗
N

∫ 1/2

0

sin2(m+ 1)πx

sin2 πx
dx− 3D∗

N

∫ 1/2

D∗
N/2

sin2(m+ 1)πx

sin2 πx
dx

≥ m+ 1

2
D∗

N − 3D∗
N

∫ 1/2

D∗
N/2

dx

4x2
>
m+ 1

2
D∗

N −
3

2
.

(4.4.16)

The second inequality follows from (4.4.15) and the fact that |∆N(x)| ≤ D∗
N for all

x. The third equality follows from the definition of even function. We note that
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(4.4.12) yields ∫ 1/2

0

sin2(m+ 1)πx

sin2 πx
dx =

m+ 1

2
. (4.4.17)

By convexity of the graph of sine function, we obtain the following inequality:

sin x ≥ 2

π
x for x ∈ [0, π/2]. (4.4.18)

We see that (4.4.17) and (4.4.18) together yield the penultimate inequality in (4.4.16).

Combining (4.4.16) and (4.4.13), we arrive at

D∗
N ≤

3

m+ 1
+

2

π

m∑
h=1

(
1

h
− 1

m+ 1
)|Sh|.

Since DN ≤ 2D∗
N (Theorem 4.4.6), it follows that

DN ≤
6

m+ 1
+

4

π

m∑
h=1

(
1

h
− 1

m+ 1
)|Sh|. (4.4.19)

We shall show that for any finite sequence x1, . . . , xN in [0, 1), there exists c ∈ [0, 1)

such that the shifted sequence {x1 + c}, . . . , {xN + c} satisfies (4.4.9). This will

prove the theorem, since both the left-hand and the right-hand side of (4.4.19) are

invariant under the transition from x1, . . . , xN to the shifted sequence. Now since

∫ 1

0

∆N(x) dx =
1

N

∫ 1

0

( N∑
n=1

1(xn,1](x)−Nx
)
dx

=
1

N

N∑
n=1

∫ 1

xn

1 dx−
∫ 1

0

x dx

=
1

N

N∑
n=1

(1− xn)− 1

2

=
1

2
− 1

N

N∑
n=1

xn,
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we have to prove the existence of a number c ∈ I for which

1

N

N∑
n=1

{xn + c} =
1

2
.

But for every c ∈ I, we have

1

N

N∑
n=1

({xn + c} − xn) =
1

N

∑
xn<1−c

c+
1

N

∑
xn≥1−c

(c− 1)

=
c

N

( ∑
xn<1−c

1 +
∑

xn≥1−c

1
)
− 1

N

∑
xn≥1−c

1

= c− 1

N

(
N −

∑
xn<1−c

1
)

= c− 1 +
1

N

∑
xn<1−c

1 = ∆N(1− c).

Therefore it remains to show that there exists c ∈ I such that

∆N(1− c) =
1

2
− 1

N

N∑
n=1

xn =: s.

We consider only the case s > 0, the case s < 0 being completely analogous. Since∫ 1

0
∆N(t) dt = s, we have ∆N(x) ≥ s for some x ∈ (0, 1). But since ∆N(1) = 0 and

since ∆N is piecewise linear with positive jumps only, the function ∆N must attain

the value s in the interval [x, 1).

We end this chapter by stating Koksma’s Inequality which gives the upper

bound in terms of discrepancy for the error of the integral from the average value

of function over finitely many points in I.

Theorem 4.4.15 (Koksma’s Inequality). Let f be a function on I of bounded

variation V ar(f), and suppose we are given N points x1, . . . , xN in I with discrep-

ancy D∗
N . Then ∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫ 1

0

f(t) dt

∣∣∣∣∣ ≤ Var(f)D∗
N .
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Chapter 5

Number Theoretic Approximation Theorem

5.1 Statement of the main theorem

In this chapter we prove the main theorem on improved quantization error

estimate. The construction of proof has been modified from the original proof given

in [16]. We begin with the setup of the problem. Let {FN}∞N=d+1 be a family of

unit norm tight frames for Rd, with FN = {eN
n }Nn=1, so that FN has frame bound

N/d. If x ∈ Rd, then {xN
n }Nn=1 will denote the corresponding sequence of frame

coefficients with respect to FN , i.e., xN
n = 〈x, eN

n 〉. Let {qN
n }Nn=1 be the quantized

sequence which is obtained by running the Σ∆ scheme of Definition 3.3.2 on the

input sequence {xN
n }Nn=1 with respect to the identity permutation of {1, 2, . . . , N} ,

and let {uN
n }Nn=0 be the associated auxiliary sequence of state variables. Thus, if

x ∈ Rd is expressed as a frame expansion with respect to FN , and if this expansion

is quantized by the first order Σ∆ scheme, then the resulting quantized expansion

is

x̃N =
d

N

N∑
n=1

qN
n e

N
n .

With uN
0 = 0, Abel Summation by Parts yields

x− x̃N =
d

N

( N−1∑
n=1

uN
n (eN

n − eN
n+1) + uN

Ne
N
N

)
=

d

N

( N−2∑
n=1

vN
n (fN

n − fN
n+1) + vN

N−1f
N
N−1 + uN

Ne
N
N

)
,

(5.1.1)
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where we have defined

fN
n = eN

n − eN
n+1, v

N
n =

n∑
j=1

uN
j , and vN

0 = 0.

Our goal is to achieve a good estimate for |vn| for all n = 1, . . . , N − 1 and N is

sufficiently large.

We let BΩ be the class of Ω-bandlimited functions consisting of all functions

in L∞(R) whose Fourier transforms (as distributions) are supported in [−Ω,Ω]. By

Paley-Wiener theorem, elements of BΩ are restrictions of entire functions to the real

line. A function f is said to be in classMΩ if f ∈ BΩ, f
′ ∈ L∞(R) and all the zeros

z1, . . . , zn∗ of f ′ contained in [0, 1] are simple, that is, f ′′(zj) 6= 0 for all j = 1, ..., n∗.

We use the notation A . B to mean that there exists an absolute constant C > 0

such that A ≤ CB. The following is the main theorem leading to the improvement

of quantization error estimate of Σ∆ quantization.

Theorem 5.1.1 (Number Theoretic Theorem on Sigma-Delta Quantiza-

tion). Let {FN}∞N=d+1 be a family of unit norm tight frames for Rd, with FN =

{eN
n }Nn=1. Suppose x ∈ Rd satisfies ‖x‖ ≤ (K − 1/2)δ, and let {xn}Nn=1 be the se-

quence of frame coefficients of x with respect to FN . If, for some Ω > 0, there exists

h ∈MΩ such that

∀N and 1 ≤ n ≤ N, xN
n = h(n/N),

then for all sufficiently large integers N and for all n = 1, . . . , N − 1,

|vN
n | . δ

( n

N1/4
+N3/4 logN

)
. δN3/4 logN.

Moreover, if h′ has no zero inside [0, 1], then for all sufficiently large integers N and
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for all n = 1, . . . , N − 1,

|vN
n | . δN2/3 +

√
δN2/3 +N1/3 . (δ +

√
δ)N2/3.

The implicit constants are independent of N and δ, but they do depend on x and

hence h. The value of what constitutes a sufficiently large N depends on δ.

5.2 Güntürk’s theorem

In what follows we list two additional results which are not discussed in the

previous chapters and are necessary for the proof of Theorem 5.1.1. We shall prove

a special case of Güntürk’s theorem in detail and shall derive an explicit bound

associated to the inequality. The proof of the general case of Güntürk’s theorem

can be found in [8].

Theorem 5.2.1 (Bernstein’s Inequality). Let f ∈ BΩ. Then ‖f (r)‖L∞ ≤ Ωr‖f‖L∞ .

Theorem 5.2.2 (Güntürk). Let Ω > 0, λ0 > 1 and let h ∈ BΩ, then for each 0 <

T ≤ 1
2λ0Ω

there exists an analytic function XT satisfying the following conditions.

•

∀t ∈ R, XT (t)−XT (t− 1) = h(tT ) and XT (0) = 0, (5.2.1)

•

‖X ′
T − h(·T )‖L∞ ≤ Kλ0,ΩT‖h‖L∞ , (5.2.2)

where Kλ0,Ω is a constant depending on Ω and λ0.
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If it is given that ĥ is real-valued and locally integrable, then the constant Kλ0,Ω can

be taken as

Kλ0,Ω = 3
√
π2 + 4λ0Ω

(
1

2
+

λ0

π(λ0 − 1)

)2/3

.

Proof. As mentioned earlier, we shall prove the special case of the function h, that

is, we shall assume that h ∈ BΩ for some Ω < π, and ĥ is real-valued and locally

integrable. Let XT be a function in L∞(R) such that its Fourier transform is given

by

X̂T (γ) =
ĥ(γ/T )

T (1− e−2πiγ)
+ cδ0(γ),

where c = c(T ) is chosen such that XT (0) = 0. It follows that X̂T is a compactly

supported distribution on R. To see this, it suffices to show that for every function

g ∈ C∞
c (R) the following condition holds

lim
ε→0+

∫
ε≤|γ|≤Ω

ĥ(γ/T )

1− e−2πiγ
g(γ) dγ <∞ for T > 0.

We may assume without loss of generality that T = 1. We have, for each 0 < ε < Ω,

∫
ε≤|γ|≤Ω

ĥ(γ)

1− e−2πiγ
g(γ) dγ =

∫
ε≤|γ|≤Ω

γ
ĥ(γ)

1− e−2πiγ
· g(γ)− g(0)

γ
+

g(0)ĥ(γ)

1− e−2πiγ
dγ.

The first term in the integral is integrable since

(i)
g(γ)− g(0)

γ
→ g′(0) as |γ| → 0,

(ii)
γ

1− e−2πiγ
is bounded away from zero as |γ| → 0, and

(iii) ĥ is locally integrable.
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We investigate the second integral carefully. We have, for each 0 < ε < Ω,

∫
ε≤|γ|≤Ω

ĥ(γ)

1− e−2πiγ
dγ =

1

2i

∫ −ε

−Ω

ĥ(γ)eπiγ

sin πγ
dγ +

1

2i

∫ Ω

ε

ĥ(γ)eπiγ

sin πγ
dγ

= − 1

2i

∫ Ω

ε

ĥ(−γ)e−πiγ

sin πγ
dγ +

1

2i

∫ Ω

ε

ĥ(γ)eπiγ

sin πγ
dγ

=
1

2i

∫ Ω

ε

ĥ(γ)
(
eπiγ − e−πiγ

)
sin πγ

dγ

=

∫ Ω

ε

ĥ(γ) dγ <∞ as ε→ 0+
(

∵ ĥ ∈ L1
loc(R)

)
.

The third equality follows from the assumption that ĥ is real-valued, so that ĥ(−γ) =

ĥ(γ) = ĥ(γ). We therefore verify that X̂T is a compactly supported distribution on

R. Hence, by the Paley-Wiener Theorem, XT is a real analytic function on R. Now

since

(XT (t)−XT (t− 1))̂ (γ) = X̂T (γ)− e−2πiγX̂T (γ)

= (1− e−2πiγ)X̂T (γ) =
1

T
ĥ(γ/T ) + cδ0(γ)(1− e−2πiγ)

=
(
h(tT )

)̂
(γ) + c(1(t)− 1(t− 1))̂ (γ) =

(
h(tT )

)̂
(γ),

it follows that (5.2.1) holds. Let ϕ be a fixed smoothing kernel defined by

ϕ̂(γ) =


1 if |γ| ≤ Ω,

0 if |γ| ≥ λ0Ω.

Let φT be such that

φ̂T (γ) =
( 2πiγ

1− e−2πiγ
− 1

)
ϕ̂(γ/T ).
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Since, by computation of Fourier transform,

(
X ′

T − h(·T )
)̂

(γ) = 2πiγX̂T (γ)− 1

T
ĥ(γ/T )

= 2πiγ
( ĥ(γ/T )

T (1− e−2πiγ)
+ cδ0(γ)

)
− 1

T
ĥ(γ/T )

=
2πiγĥ(γ/T )

T (1− e−2πiγ)
+ 2πic γδ0(γ)︸ ︷︷ ︸

=0

− 1

T
ĥ(γ/T )

=
( 2πiγ

1− e−2πiγ
− 1

) 1

T
ĥ(γ/T )

=
(
φT ∗ h(·T )

)̂
(γ),

it follows that

X ′
T − h(·T ) = φT ∗ h(·T ). (5.2.3)

Hence we obtain the following inequality

‖X ′
T − h(·T )‖L∞ ≤ ‖φT‖L1‖h‖L∞ . (5.2.4)

Next we establish that ‖φ‖L1 ≤ Kλ0,ΩT for some constant Kλ0,Ω > 0. We first note

that

2πiγ

1− e−2πiγ
= 1 + iπγ +O(γ2).

Hence, by convexity, for |γ| ≤ 1/2,

∣∣∣ 2πiγ

1− e−2πiγ
− 1

∣∣∣ ≤ √π2 + 4 |γ| and
∣∣∣ d
dγ

( 2πiγ

1− e−2πiγ

)∣∣∣ ≤ π

2

√
π2 + 4.

Now since |γ| ≤ λ0ΩT ≤ 1/2 in the support of φ̂T , we obtain

|φ̂T (γ)| ≤
∣∣∣ 2πiγ

1− e−2πiγ
− 1

∣∣∣|ϕ̂(γ/T )| ≤
√
π2 + 4 |γ| ≤

√
π2 + 4λ0ΩT
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and ∣∣∣dφ̂T

dγ

∣∣∣ ≤ ∣∣∣ d
dγ

( 2πiγ

1− e−2πiγ

)∣∣∣|ϕ̂(Tγ)|+
∣∣∣ 2πiγ

1− e−2πiγ
− 1

∣∣∣∣∣∣ 1

T
(ϕ̂)′(γ/T )

∣∣∣
≤ π

2

√
π2 + 4 +

√
π2 + 4 |γ| 1

T

1

Ω(λ0 − 1)

≤ π

2

√
π2 + 4 +

√
π2 + 4λ0ΩT

1

T

1

Ω(λ0 − 1)

=
√
π2 + 4

(π
2

+
λ0

λ0 − 1

)
.

This implies that

‖φT‖L∞ ≤
∫
|φ̂T (γ)| dγ ≤

∫
|γ|≤λ0ΩT

√
π2 + 4λ0ΩT dγ ≤ 2

√
π2 + 4λ2

0Ω
2T 2

and ∥∥∥dφ̂T

dγ

∥∥∥
L2
≤

( ∫
|γ|≤λ0ΩT

(π2 + 4)
(π

2
+

λ0

λ0 − 1

)2

dγ

)1/2

≤
√

2
√
π2 + 4

(π
2

+
λ0

λ0 − 1

)√
λ0

√
Ω
√
T .

Combining these two estimates, we obtain, for any A > 0,

‖φT‖L1 ≤
∫
|t|≤A

‖φT‖L∞ dt+

∫
|t|>A

1

|t|
|tφT (t)| dt

≤ 4A
√
π2 + 4λ2

0Ω
2T 2 +

1

2π

( ∫
|t|>A

1

t2
dt

)1/2( ∫
| − 2πitφT (t)|2 dt

)1/2

= 4A
√
π2 + 4λ2

0Ω
2T 2 +

1

2π

√
2√
A

∥∥∥dφ̂T

dγ

∥∥∥
L2

≤ 4A
√
π2 + 4λ2

0Ω
2T 2 +

1

π

1√
A

√
π2 + 4

(π
2

+
λ0

λ0 − 1

)√
λ0

√
Ω
√
T .

The second inequality follows from Hölder’s inequality and the third equality from

Parseval’s formula and the fact that (−2πitf(t))̂ (γ) = (f̂)′(γ). To minimize the

right-hand side of the last inequality, we choose A = (w/2v)2/3 where v = 4λ2
0Ω

2T 2

and w = 1
π

(
π
2

+ λ0

λ0−1

)√
λ0

√
Ω
√
T . We obtain

‖φT‖L1 ≤ 3
3
√

4

√
π2 + 4w2/3v1/3 = 3

√
π2 + 4λ0Ω

(
1

2
+

λ0

π(λ0 − 1)

)2/3

T
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and hence the proof is complete.

Remark 5.2.3. With the setting of hypothesis of Theorem 5.1.1, Theorem 5.2.2 states

the following: For each N > d there exists an analytic function XN such that

∀ t ∈ R, XN(t)−XN(t− 1) = h
( t

N

)
and XN(0) = uN

0 = 0. (5.2.5)

Moreover, we have ∣∣∣X ′
N(t)− h

( t

N

)∣∣∣ .
1

N
. (5.2.6)

We note that condition (5.2.5) implies

∀ 0 ≤ n ≤ N,∃kn ∈ Z, kn ≡ n (mod 2), XN(n) = uN
n + kn

δ

2
. (5.2.7)

To see this, we proceed by induction: For n = 0 we have XN(0) = uN
0 = 0 = 0 · δ

2
.

So the statement is true for n = 0.

For n = 1,

XN(1) = XN(1)−XN(0) = h
( 1

N

)
= xN

1 = uN
1 − uN

0 + qN
1 = uN

1 + qN
1 .

Since qN
1 is one of the quantization alphabet, it follows that qN

1 is an odd multiple

of δ/2.

Assume the result for n− 1, then from (5.2.5)

XN(n) = XN(n− 1) + h
( n
N

)
= XN(n− 1) + xN

n

= XN(n− 1) + uN
n − uN

n−1 + qN
n .

So

XN(n)− uN
n =

(
XN(n− 1)− uN

n−1

)
+ qN

n .
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By induction hypothesis, XN(n− 1)−uN
n−1 is either an odd or even multiple of δ/2.

If it is an odd (even) multiple of δ/2, then since qN
n is an odd multiple of δ/2, we

have that XN(n)− uN
n is an even (odd) multiple of δ/2.

5.3 Proof of the main theorem

We are now ready to present the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1. Let uN
n be the state variable of the Σ∆ scheme and define

ũN
n = uN

n /δ. From the definition of vN
n , and Koksma’s Inequality, we obtain

|vN
j | = δ

∣∣∣ j∑
n=1

ũN
n

∣∣∣ = jδ
∣∣∣1
j

j∑
n=1

ũN
n −

∫ 1/2

−1/2

y dy
∣∣∣

≤ jδVar(x)Dj(ũ
N
1 , . . . , ũ

N
j ),

where Dj(·) denotes the discrepancy of a sequence as defined by (4.4.1). Next we

estimate the discrepancy using Erdös-Turán’s inequality: There exists a constant

C > 0 such that for all integers K ≥ 1,

Dj(ũ
N
1 , . . . , ũ

N
j ) ≤ C

( 1

K
+

1

j

K∑
k=1

1

k

∣∣∣ j∑
n=1

e2πikeuN
n

∣∣∣).
Finally it suffices to estimate |

∑j
n=1 e

2πikeuN
n |.

Applying Bernstein’s inequality to (5.2.6) yields

∣∣∣X ′′
N(t)− 1

N
h′

( t

N

)∣∣∣ .
1

N2
. (5.3.1)

Let z1, . . . , zn∗ be the zeros of h′ contained in [0,1] in increasing order. Let 0 < α < 1

be fixed. With an integer N sufficiently large, we define sequence of intervals as
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follows:

∀ j = 1, . . . , n∗, Ij = [Nzj −Nα, Nzj +Nα],

∀ j = 1, . . . , n∗ − 1, J
(1)
j = [Nzj +Nα,

N

2
(zj + zj+1)]

and

J
(2)
j = [

N

2
(zj + zj+1), Nzj+1 −Nα],

J0 = [1, Nz1 −Nα] and Jn∗ = [Nzn∗ +Nα, N ].

•
1

•
↑

Nz1 −Nα

•
↓

Nz1 +Nα

•
↑

N
2
(z1 + z2)

J
(2)
1 . . .J

(1)
1I1J0 In∗ Jn∗

•
↑

Nz2 −Nα

•
↓

Nzn∗ −Nα

•
↑

Nzn∗ +Nα

•
N

Figure 5.1: The partition of interval [1, N ]

If 0 or 1 is a zero of h′, then we adjust the intervals as follows: if z1 = 0, then

discard J0 and adjust I1 by I1 = [1, Nα], if zn∗ = 1, then discard Jn∗ and adjust

In∗ by In∗ = [N − Nα, N ]. If h′ has no zero in [0, 1] then we just consider the

whole interval [1, N ]. In the following proof, we treat only the case when z1 6= 0 and

zn∗ 6= 1. The proof can be slightly modified when handling with these two cases.

We see that

J0 ∪ I1 ∪ J (1)
1 ∪ J

(2)
1 ∪ I2 ∪ · · · ∪ In∗ ∪ Jn∗ = [1, N ].
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Claim. There exists a constant C > 0 such that for all sufficiently large integer N

and for all j = 1, . . . , n∗ − 1, k = 1, 2 and for all t ∈ J0 or t ∈ Jn∗ or t ∈ J (k)
j ,

∣∣∣h′( t

N

)∣∣∣ ≥ C
1

N1−α
.

Proof of Claim. Fix 1 ≤ j ≤ n∗ − 1, and let t ∈ J (1)
j . Then

zj +
1

N1−α
≤ t

N
≤ wj,

where wj = 1
2
(zj + zj+1).

Since zj and zj+1 are two consecutive zeros of h′ in [0, 1] and zj < t/N < zj+1, we

have two cases.

case 1 h′(t/N) < 0. Applying Mean Value Theorem on [zj, t/N ], we have that there

exists ct,j ∈ (zj, t/N) such that

h′
( t

N

)
− h′(zj) = h′

( t

N

)
= h′′(ct,j)

( t

N
− zj

)
.

By the first inequality above, we have

h′
( t

N

)
≤ h′′(ct,j)

1

N1−α

≤ sup
ξ∈(zj ,wj ]

h′(ξ)− h′(zj)

ξ − zj

· 1

N1−α

= sup
ξ∈(zj ,wj ]

h′(ξ)

ξ − zj

· 1

N1−α
.

Since t was arbitrary in J
(1)
j and since zj and zj+1 are consecutive zeros of h′, we

have h′(t/N) < 0 for all t ∈ J (1)
j . Hence for all t ∈ J (1)

j

−h′
( t

N

)
≥ inf

ξ∈(zj ,wj ]

−h′(ξ)
ξ − zj

· 1

N1−α
.
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case 2 h′(t/N) > 0. By the same argument as above, we have that for all t ∈ J (1)
j

h′
( t

N

)
≥ inf

ξ∈(zj ,wj ]

h′(ξ)

ξ − zj

· 1

N1−α
.

Combining case 1 and 2 together, we have that for all t ∈ J (1)
j ,

∣∣∣h′( t

N

)∣∣∣ ≥ inf
ξ∈(zj ,wj ]

|h′(ξ)|
ξ − zj

· 1

N1−α
.

Now since for each ξ ∈ (zj, wj], the quantity h′(ξ)
ξ−zj

is the slope of line joining (ξ, h′(ξ))

and (zj, h
′(zj)) and since h′′(zj) 6= 0, we see that

C
(1)
j = inf

ξ∈(zj ,wj ]

|h′(ξ)|
ξ − zj

· 1

N1−α
> 0.

Thus for each j = 1, . . . , n∗ − 1 and t ∈ J (1)
j ,

∣∣∣h′( t

N

)∣∣∣ ≥ C
(1)
j

1

N1−α
.

Fix 1 ≤ j ≤ n∗ − 1 and let t ∈ J (2)
j . Then

wj ≤
t

N
≤ zj+1 −

1

N1−α
,

where wj = 1
2
(zj + zj+1). Using the same argument as in the first part of the proof

above, we have that for each j = 1, . . . , n∗ − 1, there exists C
(2)
j > 0 such that for

all t ∈ J (2)
j , ∣∣∣h′( t

N

)∣∣∣ ≥ C
(2)
j

1

N1−α
.

The proofs for the intervals J0 and Jn∗ are analogous and we assume the constants

obtained from these two cases are C0 and Cn∗ , respectively. By letting

C = min{C0, Cn∗ , C
(1)
1 , C

(2)
1 , . . . , C

(1)
n∗−1, C

(2)
n∗−1},
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we have the statement of the claim.

Let J denote one of the intervals J0, Jn∗ , J
(k)
j , j = 1, . . . , n∗−1, k = 1, 2. From (5.3.1),

we then have, for all t ∈ J,

1

N

∣∣∣h′( t

N

)∣∣∣− |X ′′
N(t)| . 1

N2
,

so that

1

N2−α
.

1

N

∣∣∣h′( t

N

)∣∣∣ .
1

N2
+ |X ′′

N(t)|.

Hence, by continuity of X ′′
N ,

1

N2−α
. X ′′

N(t) ∀t ∈ J or X ′′
N(t) . − 1

N2−α
∀t ∈ J. (5.3.2)

Also, since h ∈ BΩ ⊆ L∞(R), and from (5.2.6), we obtain

∀t ∈ J, |X ′
N(t)| . 1. (5.3.3)

Now we consider the bound of exponential sum. For each integer k ≥ 1, and for

each interval J, we have

∣∣∣∣ ∑
n∈N∩J

e2πikũN
n

∣∣∣∣ =

∣∣∣∣ ∑
n∈N∩J

e2πi k
δ
uN

n

∣∣∣∣
=

∣∣∣∣ ∑
n∈N∩J
n even

e2πi k
δ
(XN (n)+kn

δ
2
) +

∑
n∈N∩J
n odd

e2πi k
δ
(XN (n)+`n

δ
2
)

∣∣∣∣, kn even, `n odd

=

∣∣∣∣ ∑
n∈N∩J
n even

e2πi k
δ
XN (n) + (−1)k

∑
n∈N∩J
n odd

e2πi k
δ
XN (n)

∣∣∣∣
≤

∣∣∣∣ ∑
n∈N∩J
n even

e2πi k
δ
XN (n)

∣∣∣∣ +

∣∣∣∣ ∑
n∈N∩J
n odd

e2πi k
δ
XN (n)

∣∣∣∣.

We consider the bound for n even, and the case for n odd is analogous. We have
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∣∣∣∣ ∑
n∈N∩J
n even

e2πi k
δ
XN (n)

∣∣∣∣ =

∣∣∣∣ b∑
`=a

e2πi k
δ

eXN (`)

∣∣∣∣,
where X̃N(`) = XN(2`) for ` = a, a+ 1, . . . , b. From inequalities (5.3.2) and (5.3.3),

we have ∣∣∣X̃ ′
N(t)

∣∣∣ = 2
∣∣∣X ′

N(2t)
∣∣∣ . 1,

and ∣∣∣X̃ ′′
N(t)

∣∣∣ = 4
∣∣∣X ′′

N(2t)
∣∣∣ &

1

N2−α
.

So we can apply Van der Corput Theorem (Theorem 4.3.1) to get

∣∣∣∣ ∑
n∈N∩J
n even

e2πi k
δ
XN (n)

∣∣∣∣ .

∣∣∣∣kδ X̃ ′
N(b)− k

δ
X̃ ′

N(a) + 2

∣∣∣∣(4

√
δ

k
N1−α

2 + 3

)

.

√
k

δ
N1−α

2 +
k

δ
+

√
δ

k
N1−α

2 + 1

.

√
k

δ
N1−α

2 +
k

δ
.

We get the same bound for n odd. Hence, for sufficiently large N, for each integer

k ≥ 1, and for each interval J.

∣∣∣∣ ∑
n∈N∩J

e2πikũN
n

∣∣∣∣ .

√
k

δ
N1−α

2 +
k

δ
.

We use the trivial estimate on interval I where I is one of the intervals Ij, j =

1, . . . , n∗, i.e.,

∣∣∣∣ ∑
n∈N∩I

e2πikũN
n

∣∣∣∣ . 2Nα.
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We observe that if we take a subset of consecutive integers inside intervals I or J,

the same bound of the exponential sum holds. Thus, for all j = 1, . . . , N − 1,

∣∣∣∣ j∑
n=1

e2πikũN
n

∣∣∣∣ . Nα +

√
k

δ
N1−α

2 +
k

δ
.

Let K = Nβ, for some 0 < β < 1. By the bound of discrepancy we have earlier, it

follows that for all sufficiently large integers N,

Dj(ũ
N
1 , . . . , ũ

N
j ) .

1

K
+
Nα logK

j
+
K1/2N1−α/2

δ1/2j
+
K

δj

.
1

Nβ
+
Nα logN

j
+
Nβ/2−α/2+1

δ1/2j
+
Nβ

δj
.

Thus we obtain the bound of vN
n :

|vN
n | .

δn

Nβ
+ δNα logN + δ1/2Nβ/2−α/2+1 +Nβ

. δN1−β + δNα logN + δ1/2Nβ/2−α/2+1 +Nβ

To minimize the right-hand side quantity, we choose α = 3/4 and β = 1/4. We then

have, for each ε > 0, there exists Nε such that for all N ≥ Nε,

|vN
n | . δN3/4 + δN3/4 logN + δ1/2N3/4 +N1/4 . δN3/4 logN . δN3/4+ε.

If h′ has no zero in [0, 1] then there exists a constant C > 0 such that |h′(t)| ≥ C for

all t ∈ [0, 1]. This allows us to let α = 1 in the construction of the proof above. So we

can approximate the exponential sum over interval [1, N ] directly and obtain that

for each integer k ≥ 1, for all sufficiently large integers N and for all j = 1, . . . , N−1,

∣∣∣ j∑
n=1

e2πikeuN
n

∣∣∣ .

√
k

δ
N1/2 +

k

δ
.
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Let K = Nβ. Then we have, for all sufficiently large integers N,

Dj(ũ
N
1 , . . . , ũ

N
j ) .

1

K
+
K1/2N1/2

δ1/2j
+
K

δj

.
1

Nβ
+
Nβ/2+1/2

δ1/2j
+
Nβ

δj
.

Thus we obtain the bound of vN
n :

|vN
n | .

δn

Nβ
+
√
δNβ/2+1/2 +Nβ . δN1−β +

√
δNβ/2+1/2 +Nβ

To minimize the right-hand side quantity, we choose β = 1/3. This proves the second

part of the theorem.

Corollary 5.3.1. Let {FN}∞N=d be a family of unit norm tight frames for Rd, for

which each FN = {eN
n }Nn=1 satisfies the zero sum condition. Suppose x ∈ Rd satisfies

‖x‖ ≤ (K − 1/2)δ for some positive integer K and δ > 0 in the Σ∆ scheme. Let

{xN
n }Nn=1 be the sequence of frame coefficients of x with respect to FN , and suppose

there exists h ∈MΩ, Ω > 0, such that

∀N and 1 ≤ n ≤ N, xN
n = h(n/N).

Additionally, suppose that fN
n = eN

n − eN
n+1 satisfies

∀N and 1 ≤ n ≤ N, ‖fN
n ‖ .

1

N
and ‖fN

n − fN
n+1‖ .

1

N2
,

and set uN
0 = 0 in the Σ∆ scheme.

If N is even and sufficiently large, then

‖x− x̃N‖ .
δ logN

N5/4
.
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If N is odd and sufficiently large, then

δ

N
. ‖x− x̃N‖ .

δd

2N
(σ(FN , pN) + 1).

If h′ has no zero in [0, 1], then for N even and sufficiently large,

‖x− x̃N‖ .
δ

N4/3
,

and for N odd and sufficiently large,

δ

N
. ‖x− x̃N‖ .

δd

2N
(σ(FN , pN) + 1).

The implicit constants are independent of δ and N, but do depend on x, and hence

h.

Proof. From the first part of Theorem 5.1.1 we have∥∥∥∥∥ dN ( N−2∑
n=1

vN
n (fN

n − fN
n+1) + vN

N−1f
N
N−1

)∥∥∥∥∥
≤ d

N

( N−2∑
n=1

∣∣vN
n

∣∣ ∥∥fN
n − fN

n+1

∥∥ +
∣∣vN

N−1

∣∣ ∥∥fN
N−1

∥∥)
.

d

N

(
δN3/4 logN

)(N − 2

N2
+

1

N

)
.
δ logN

N5/4
.

Combining this with Theorem 3.3.6 and (5.1.1), we have that for N even and suffi-

ciently large

‖x− x̃N‖ .
δ logN

N5/4
,

and for N odd and sufficiently large

δ

N
.

dδ

2N
=
d

∣∣uN
N

∣∣ ∥∥eN
N

∥∥
N

. ‖x− x̃N‖+
δ logN

N5/4
. ‖x− x̃N‖

.
δd

2N
(σ(FN , pN) + 1).
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The rightmost inequality follows from Theorem 3.3.7.

If h′ has no zero in [0, 1], then by Theorem 5.1.1 we have
∣∣vN

n

∣∣ . δN2/3. We proceed

as above by replacing the bound of
∣∣vN

n

∣∣ with δN2/3 and obtain that for N even and

sufficiently large

‖x− x̃N‖ .
δ

N4/3
,

and for N odd and sufficiently large

δ

N
. ‖x− x̃N‖ .

δd

2N
(σ(FN , pN) + 1).

5.4 Examples

In this section we give examples to verify the theorems we have proved in

Chapter 3 and in this chapter.

Example 5.4.1 (Error estimates for Hd
N with d even). We shall assume

throughout that d is even. We show first that a harmonic frame Hd
N satisfies

the zero sum condition and has uniformly bounded frame variation with respect

to identity permutation. We recall the definition (2.4.3) of harmonic frame Hd
N =

{en}N−1
n=0 , N > d for the case when d is even that

en =

√
2

d

[
cos

2πn

N
, sin

2πn

N
, cos

2π2n

N
, sin

2π2n

N
, . . . , cos

2π d
2
n

N
, sin

2π d
2
n

N

]

for n = 0, 1, . . . , N − 1. The verification that Hd
N satisfies the zero sum condition

follows by noting that, for each integer k not divisible by N,

N−1∑
j=0

cos
2πkj

N
= <

[
N−1∑
j=0

(e2πik/N)j

]
= 0
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and

N−1∑
j=0

sin
2πkj

N
= =

[
N−1∑
j=0

(e2πik/N)j

]
= 0.

Now we show that the kth order frame variation σk(H
d
N , p) (see Definition 2.4.3) of

Hd
N with respect to identity permutation p is uniformly bounded. From the proof

of Theorem 2.4.5, we have

σk(H
d
N , p) =

N−k−1∑
n=0

∥∥∆ken

∥∥
=

N−k−1∑
n=0

√
2

d

 d/2∑
j=1

(
∆k cosnθj

)2

+
(
∆k sinnθj

)2

1/2

( where θj = 2πj/N)

=

√
2

d

N−k−1∑
n=0

 d/2∑
j=1

(
2 sin

θj

2

)2k

1/2

≤ (N − k)
√

2

d

 d/2∑
j=1

(2πj

N

)2k

1/2

= (N − k)
√

2

d

(2π

N

)k( d/2∑
j=1

j2k
)1/2

≤
√

2

d
(2π)k

( d/2∑
j=1

j2k
)1/2

.

Thus, for k = 1,

σ1(H
d
N , p) = σ(Hd

N , p) ≤
√

2

d
2π

(
d

2

(d
2

+ 1
)
(d+ 1)

1

6

)1/2

=
π√
3

√
(d+ 2)(d+ 1)

<
π√
3
(d+ 2).

(5.4.1)

We now derive error estimates for Σ∆ quantization of harmonic frames in their

natural order. If we set u0 = 0 and assume that x ∈ Rd satisfies ‖x‖ ≤ (K − 1/2)δ,
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then combining (5.4.1) and Corollary 3.3.7 gives

‖x− x̃‖ ≤


δd
2N

π√
3
(d+ 2) if N is even,

δd
2N

(
π√
3
(d+ 2) + 1

)
if N is odd.

Example 5.4.2 (Refined estimates for Hd
N with d even). As before, let the

dimension d be even. Suppose that x ∈ Rd satisfies ‖x‖ ≤ (K−1/2)δ, and that N is

sufficiently large with respect to δ. The frame coefficients of x = (a1, b1, . . . , ad/2, bd/2) ∈

Rd with respect to Hd
N are given by

{
xN

n

}N

n=1
= {h(n/N)}Nn=1 , where

h(t) =

√
2

d

( d/2∑
j=1

aj cos(2πjt) +

d/2∑
j=1

bj sin(2πjt)
)
.

We shall verify that for fN
n = eN

n − eN
n+1 we have

∥∥fN
n

∥∥ .
1

N
and

∥∥fN
n − fN

n+1

∥∥ . 1N2.

From the proof of Theorem 2.4.5, we have

∥∥∆ken

∥∥ =

√
2

d

 d/2∑
j=1

(
2 sin

πj

N

)2k

1/2

≤
√

2

d
2k

 d/2∑
j=1

(πj
N

)2k

1/2

=

√
2

d
2k

( π
N

)k( d/2∑
j=1

j2k
)1/2

.
1

Nk
.

So for k = 1,
∥∥fN

n

∥∥ = ‖∆en‖ . 1/N and for k = 2,
∥∥fN

n − fN
n+1

∥∥ = ‖∆2en‖ . 1/N2.

To be specific, let x = (1/π, 1/50,
√

3/17, 1/e) ∈ R4. Then for this choice of x

it is not hard to verify that h ∈Md/2. Hence, the first part of Corollary 5.3.1 gives

100



that if N is even then

‖x− x̃‖ .
δ logN

N5/4
,

and if N is odd then

δ

N
. ‖x− x̃‖ ≤ 2δ

N

( 6π√
3

+ 1
)
.

In the next several pages are the series of figures showing the plots of the

quantization error ‖x− x̃N‖ as a function of N when the harmonic frames H2
N or

H4
N are used to quantize various inputs. The variables K = 1 and δ = 2 are used

in the Σ∆ scheme producing the alphabet {−1, 1} . For comparison, the figures also

show the plots of 1/N as a dash-dotted line and of 1/N1.25 as a solid line. The parity

of N is also shown on the plots as “crosses” when N is an odd integer and as “dots”

when N is an even integer. The y-axis is scaled logarithmically while the x-axis is

scaled linearly for the purpose of spreading the plots. In general, we see that the

plots seem to confirm the theory well. We see that each plot is globally decreasing

and has two portions that are globally “parallel” to the line 1/N if the integer N is

odd and to the line 1/N1.25 if the integer N is even.
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Figure 5.2: This plot shows the quantization error associated to quantizing the

signal x = (1/10, 1/20). It exemplifies one of the most typical shape patterns in the

plots of quantization error.
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Figure 5.3: This plot shows the quantization error associated to quantizing the

signal x = (1/100, 1/200). It exemplifies another interesting shape pattern. The

graph corresponding to odd integers splits itself into two parts while the graph

corresponding to even integers stays together but jumps up and down.
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Figure 5.4: This plot shows the quantization error associated to quantizing the

signal x = (1/π,
√

3/17). This is considered a classic plot as it appears in the

original paper [16].
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Figure 5.5: These two plots show the quantization error associated to quantizing

the signal x = (0.0018, 0.0014). The first plot includes the frame size up to 1000

while the second one includes up to 5000. We see in this case that one would have

to increase the frame size in order to see the behavior of graphs more properly.
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Figure 5.6: This plot shows the quantization error associated to quantizing the

signal x = (1/100, 1/100)) with ‖x‖ =
√

2/100.
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Figure 5.7: This plot shows the quantization error associated to quantizing the

signal x = (1/1000,
√

199/1000) with ‖x‖ =
√

2/100, which is the same norm as

that of the signal in the previous Figure 5.6. This plot demonstrates that the shape

of graphs does not depend on the norm of signals.
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Figure 5.8: This plot shows the quantization error associated to quantizing the

signal x = (
√

199/1000, 1/1000) which is in a different order from the signal in the

previous Figure 5.7. This demonstrates that the order of quantization affects the

shape of graphs.
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Figure 5.9: This plot shows another classic example in [16] which is the quantization

error associated to quantizing the signal x = (1/π, 1/50,
√

3/17, 1/e) ∈ R4.
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Figure 5.10: This plot shows the quantization error associated to quantizing the

signal x = (1/100, 1/100, 1/100, 1/100) with ‖x‖ = 2/50. It demonstrates that the

shape pattern gets more complicated as the dimension increases.
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Figure 5.11: This plot shows the quantization error associated to quantizing the sig-

nal x = (1/100, 1/100, 1/1000,
√

1/2500− 2× 10−4 − 10−6) with ‖x‖ = 2/50, which

is the same norm as that of the signal in the previous Figure 5.10. It emphasizes

the independence of norms to the shape of graphs in higher dimensions.
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[5] Ö. Yılmaz, “Stability analysis for several sigma-delta methods of coarse quanti-

zation of bandlimited functions,” Constructive Approximation, vol. 18, pp. 599–

623, 2002.
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[23] H. Inose, Y. Yasuda, and J. Murakami, “A telemetering system code

modulation-∆−Σ modulation,” IRE Trans. Space Elect. Telemetry, vol. SET-8,

pp. 204–209, September 1962.

[24] J. Candy, “A use of double integeration in Sigma-Delta modulation,” IEEE

Trans. on Communications, vol. COM-33, pp. 249–258, March 1985.

114



[25] J. Candy, “A use of limit cycle oscillation to obtain robust analog-to-digital

converters,” IEEE Trans. Communications, vol. 22, pp. 298–305, 1974.

[26] J. Candy and Y. Benjamin, “The structure of quantization noise from sigma-

delta modulation,” IEEE Trans. Communications, vol. 29, pp. 1316–1323, 1981.

[27] Y. Meyer, Wavelets and Operator. Cambridge University Press, 1992.

115


