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Chapter 1

Introduction and outline of thesis

1.1 Structure of thesis

This thesis deals with three topics in abstract harmonic analysis: Multipliers

of Beurling Weighted Spaces (Chapter 2); Product-Convolution Operators (Chapter

3); and the Tensor Product of Frames (Chapter 4). The topics are independent of

each other.

In order to provide background and an outline in this chapter, I shall use some

definitions which are not fully explained until Chapters 2-4. However, there is a list

of notation with short explanations in section 1.3. Further, there are two appendices

listing relevant results from harmonic analysis on locally compact abelian groups and

operator theory.

Section 1.2 is an outline of the results in the thesis, and it also provides some

perspective. In particular, I have listed each of my original contributions. These

are Theorem 2.24, Theorem 2.36, Proposition 3.12, Proposition 3.13, Theorem 4.8,

Theorem 4.12, Lemma 4.9, Lemma 4.23, Theorem 4.26, and Corollary 4.27.
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1.2 Outline and perpective

Through out this chapter, G is a locally compact abelian group and dx is a

Haar measure on G.

A Beurling weight on G is a measurable locally bounded function ω satisfying,

for each x, y ∈ G, the following two properties: ω(x) ≥ 1 and ω(x + y) ≤ ω(x)ω(y).

The spaces Lp
ω(G) := Lp(G,ωdx) are called Beurling weighted spaces. It can be

shown that L1
ω(G) is a commutative Banach algebra for the convolution between

functions, the so called Beurling Algebra. Beurling weighted spaces and precisely

Beurling algebras were introduced by A.Beurling ([4], 1938). These algebras give

important examples of standard Banach algebras that have played a central role in

building and understanding spectral synthesis theory ([1], [2], [4], [9], [15], [25], [26],

and [30]). In the last few years Beurling weighted spaces have started to appear

in the the theory of time-frequency analysis and applied mathematics. T.Strohmer

has used them to model some problems in mobile communications ([11], [17], [33],

and [34]).

Let E and F be two Banach spaces of measurable functions, and assume that

E and F are stable by translations. A multiplier E → F is a bounded operator

commuting with all translations. We denote by M(E, F ) the space of all multipliers

E → F . In Chapter 2, I study multiplier problems for Beurling weighted spaces.

The first two sections, 2.1-2.2, contain the necessary material to present my results

in sections 2.3-2.5.

In section 2.1, I collect some results about multipliers of Lp(G). In section 2.2,
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I define Beurling weighted spaces and give some of their properties. I emphasize

the fact that ωdx is a positive measure having several common properties with dx,

the Haar measure on the group G. However, I note that a translation operator is

an isometry on Lp(G), while it is not in general an isometry on Lp
ω(G). This fact is

closely related to multiplier problems for Lp
ω(G).

In section 2.3, I present a new proof of a known result, due to G.Gaudry

[15], stating that M(L1
ω(G)) can be identified with the weighted space of bounded

measures Mω(G) := {µ : µ is a bounded measure and ‖µ‖ω :=
∫

ω|µ| < ∞}.

In section 2.4, I prove the following new result.

Theorem 2.24. Let T : L1
ω(G) → Lp

ω(G) be a bounded linear transfor-

mation, where p > 1. Then

(i) T ∈ M(L1
ω(G), Lp

ω(G)) if and only if there exists a unique function

g ∈ Lp
ω(G) such that T = Tg : f → g ∗ f , f ∈ L1

ω(G).

(ii) There exists a constant c ≥ 1 dependent only on the weight function

ω, such that

‖ Tg ‖1,p,ω≤‖ g ‖p,ω≤ c ‖ Tg ‖1,p,ω .

(iii) M(L1
ω(G), Lp

ω(G)) and Lp
ω(G) are topologically and algebraically

identified by the mapping of part (i).

There is no known identification of M(Lp
ω(G)). In section 2.5, I show that the

space M(Lp
ω(G)) can be embedded in the space M(Lp

ω(G), Lp(G)), i.e., there is a

continuous linear injection M(Lp
ω(G)) → M(Lp

ω(G), Lp(G)). To obtain a characteri-

zation of M(Lp
ω(G), Lp(G)), I define a new space of Figà-Talamanca type. Let p′ be
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such that 1
p
+ 1

p′ = 1. I define the weighted Figà-Talamanca space Ap
ω(G) as follows:

Ap
ω(G) =: {

∞∑
i=1

fi ∗ gi : fi, gi ∈ Cc(G) and
∞∑
i=1

‖fi‖p,ω‖gi‖p′ < ∞},

endowed with the norm

|||f |||ω = inf{
∞∑
i=1

‖fi‖p,ω‖gi‖p′ : fi, gi ∈ Cc(G) and f =
∞∑
i=1

fi ∗ gi},

where Cc(G) is the space of continuous compactly supported functions on G.

First I prove that Ap
ω(G) is a Banach space. Then I prove the following new result.

Theorem 2.36. Let p > 1. There exists an isometric linear isomor-

phism of M(Lp
ω(G), Lp(G)) into (Ap

ω(G))∗, the Banach space of contin-

uous linear functionals on Ap
ω(G).

In [18], A.T.Gürkanli and S.Öztop considered the space M(Lp
ω(G), Lp

ω1−p′ (G)), 1 <

p ≤ 2, and identified it with the dual of the Banach space,

′Ap
ω(G) := {

∞∑
i=1

fi ∗ gi : fi, gi ∈ Cc(G) and
∞∑
i=1

‖fi‖p,ω‖gi‖p′,ω < ∞},

endowed with the norm

′|||f |||ω = inf{
∞∑
i=1

‖fi‖p,ω‖gi‖p′,ω : fi, gi ∈ Cc(G) and f =
∞∑
i=1

fi ∗ gi}.

To avoid confusion, a left prime is added to these newly defined spaces. My result

improves the Gürkanli and Öztop result [18], since

M(Lp
ω(G)) ↪→ (Ap

ω(G))∗ ↪→ (′Ap
ω(G))∗.

I also note that the techniques used by Gürkanli and Öztop and my techniques are

completely different.
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Except for trivial cases, the operators Cf : g → f ∗ g and Mϕ : g → ϕg are

never compact on L2(R). However, the composition of these two operators is, in

some cases, compact. A paper by R.C Busby and H.A.Smith [6] gives necessary and

sufficient conditions on ϕ ∈ L∞(G) for the compactness of the product-convolution

operator MϕCf , where f ∈ L1(G). In Chapter 3, I study some properties of product-

convolution operators. Appendix B contains the essentials of operator theory needed

for Chapter 3.

In section 3.1, I prove that if ϕ belongs to the closure of Lp(G) ∩ L∞(G) in

L∞(G) and if f ∈ L1(G), then the product-convolution operator MϕCf is compact.

This can also be deduced from the R.C Busby and H.A.Smith results [6]. My proof

is based on approximations of compact operators by Hilbert-Schmidt operators and

a property of C∗-algebras. The proof of R.C Busby and H.A.Smith is based on

properties of mixed norm spaces. In section 3.2, I present some applications of the

results of section 3.1.

In section 3.3, I prove the following new result.

Proposition 3.12. Let h ∈ L1(R), and ϕ, ψ ∈ L∞(R). Let x ∈ L2(R),

and assume that the functions ϕ and h ∗ ψx are twice differentiable on

an open set Ω ⊂ R. Consider on L2(R) the operator H = MϕChMψ.

Then

(i) If x is an eigenfunction of the operator H = MϕChMψ, associated

with a characteristic value λ, then x is, on Ω, a solution of the integro-
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differential equation:

Eλ : ϕ2y′′ − 2ϕ′ϕy′ + (2(ϕ′)2 − ϕ′′ϕ)y = λϕ3(h ∗ ψy)′′.

(ii) If x is a solution of Eλ, then λH(x)− x is a solution, on Ω, of the

differential equation

E ′
λ : ϕ2y′′ − 2ϕ′ϕy′ + (2(ϕ′)2 − ϕ′′ϕ)y = 0.

This new result is interesting, since it gives the spectral decomposition of some

compact operators, which are not necessarily Hilbert-Schmidt operators. I also

prove the following new result, which is useful for examples:

Proposition 3.13. Let h = e−|t| and let ϕ, ψ ∈ L∞(R). Assume that ϕ

is twice differentiable on some open set Ω ⊂ R, and ψ is continuous on Ω.

Consider on L2(R) the operator H = MϕChMψ. If x is an eigenfunction

of the operator H, associated with a characteristic value λ, then

(i) the function x is twice differentiable on the open set Ω, and

(ii) The function x is, on Ω, a solution of the differential equation

ϕ2x′′ − 2ϕ′ϕx′ + (2(ϕ′)2 − ϕ′′ϕ− ϕ2 + 2λϕ3ψ)x = 0.

I end this section by some relevant examples. Among the consequences of these

examples, I obtain special functions as eigenfunctions of product-convolution oper-

ators.

It is known that the tensor product of two orthonormal bases is an orthonormal

basis. In Chapter 4, I prove the following new result.
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Theorem 4.26. The sequence (fk
i )i∈Ik

is a frame (Riesz basis) for a

Hilbert space Hk, k ∈ {1, 2}, if and only if (f 1
i ⊗ f 2

j )(i,j)∈I1×I2 is a frame

(Riesz basis) for H1 ⊗H2.

This result improves a result by C.Heil, J.Ramanathan, and P.Topiwala [19]. They

prove that the tensor product of a frame with itself is a frame.

Section 4.1 and appendix B contain the essentials of operator theory needed

for Chapter 4. I denote by L(X) the space of all bounded operators on a Banach

space X. It is known that if Fk ∈ L(Hk), k ∈ {1, 2}, then F1 ⊗ F2 ∈ L(H1 ⊗ H2)

[14]. In section 4.2, I prove two new results. The first new result can be stated as

follows:

Theorem 4.8. For each k ∈ {1, 2}, let (F k
N)N>0 be a bounded sequence

in L(Hk). If, for each k ∈ {1, 2}, the sequence (F k
N)N>0 converges in the

strong operator topology to F k ∈ L(Hk), then (F 1
N ⊗ F 2

N)N>0 converges

in the strong operator topology to F 1 ⊗ F 2.

The second new result can be stated as follows:

Theorem 4.12. The operator F1 ⊗ F2 is invertible in L(H1 ⊗ H2) if

and only the operator Fk is invertible in L(Hk) for each k ∈ {1, 2}.

To prove my second result, I use the following new lemma.

Lemma 4.9. For each k ∈ {1, 2} let Fk be a nonzero bounded operator

on Hk, fk be a unit vector such that Fk(fk) 6= 0, Uk : H1 ⊗ H2 → Hk

and Vk : Hk → H1 ⊗ H2, defined for each f ∈ H1, g ∈ H2, and H ∈
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H1 ⊗ H2, by U1(H) = H(F2(f2)), V1(f) = Ef,f2, U2(H) = H∗(F1(f1)),

and V2(g) = Ef1,g. Then

(i) ‖ U1 ‖O(H1⊗H2,H1)≤‖ F2(f2) ‖2, ‖ U2 ‖O(H1⊗H2,H2)≤‖ F1(f1) ‖1, and

the operators V1 and V1 are isometric;

(ii) U1[F1 ⊗ F2]V1 =‖ F2(f2) ‖2
2 F1 and U2[F1 ⊗ F2]V2 =‖ F1(f1) ‖2

1 F2;

and

(iii) UkVk =< Fk(fk), fk > IHk
, for each k ∈ {1, 2}.

Theorem 4.8, Lemma 4.9, and Theorem 4.12 are new contributions to the theory of

the tensor product. Further I use them to prove Theorem 4.26.

In section 4.3, I define frames and state some of their properties. In section 4.4,

I prove Theorem 4.26, the main new result obtained in this chapter. For the proof

I use, in addition to all results obtained in section 4.2, the following new lemma.

Lemma 4.23. Let (fn)n>0 be a sequence and let (en)n>0 be an orthornor-

mal basis in a Hilbert space H. We define, formally, the linear operator

F (x) =
∑
n>0

< x, fn > en.

(i) The sequence (fn)n>0 is a frame with frame bounds A and B if and

only if the operator F is bounded and, for each x ∈ H, we have

A ‖ x ‖2≤‖ F (x) ‖2≤ B ‖ x ‖2 .

(ii) (fn)n>0 is a Riesz basis if and only if the operator F is bijective.

This lemma is an interesting connection between the theory of frames and the theory

of operators.
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I end this chapter by an application. Let g ∈ L2(Rd) r {0} and let α, β > 0.

The Gabor system generated by g, α, and β is

G(g, α, β) = { TαmMβng : m,n ∈ Zd},

where TαmMβng(x) = e2πiβn.(x−αm)g(x− αm). The following result was conjectured

by I. Daubechies and A. Grossmann [7] and then was proved independently by Y.

Lyubarski [24] and K. Seip and R. Wallstén [32].

Lyubarskii and Seip-Wallstén Theorem. Let ϕ(x) = 2
1
4 e−πx2

be

the Gaussian function on R.

G(ϕ, α, β) is a frame for L2(R) if and only if αβ < 1.

Using Theorem 4.26 and the Lyubarskii and Seip-Wallstén Theorem, I prove the

following new result.

Corollary 4.27. Let ϕ(x) = 2
d
4 e−π|x|2 be the Gaussian function on Rd.

G(ϕ, α, β) is a frame for L2(Rd) if and only if αβ < 1.

This result is important, since there is only a handful of functions g ∈ L2(Rd) for

which the precise range of α, β, such that G(g, α, β) is a frame, is known [17].
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1.3 List of Notation

G, a locally compact abelian group.

dx, a Haar measure on G, i.e., a regular positive measure invariant by trans-

lations, see p 86.

Ĝ, the dual group of the group G, see p 87.

C0(G), the space of continuous functions f vanishing at infinity, i.e., for all

ε > 0 there exists a compact set K ⊂ G such that | f(x) |< ε for almost all

x ∈ GrK.

Cc(G), the space of continuous compactly supported functions.

Lp(G), the space of function f such that the function | f |p is integrable.

L∞(G), the space of essentially bounded functions.

M(G), the space of bounded measures, see p 88.

| µ |, the total variation of the measure µ, see p 89.

ιaf(x) = f(x− a), the translation by a of f .

f ∗ g, the convolution of f and g, i.e., f ∗ g(x) =
∫

f(x− y)g(y)dy.

M(E, F ), the space of all multipliers: E → F , i.e., the space of all bounded

operators commuting with all translations.

M(Lp(G), Lq(G)), the space of all multipliers: Lp(G) → Lq(G).

10



Ap(G), a Figà-Talamanca space, see p 14.

ω, a Beurling weight, see p 15.

Lp
ω(G), a Beurling weighted space, i.e., the space of function f such that

∫ | f |p ωdx is finite.

‖ f ‖p,ω, the norm of each f ∈ Lp
ω(G).

Mω(G), the space of bounded measures µ such that
∫

ωd | µ | is finite.

‖ µ ‖p,ω, the norm of each µ ∈ Mω(G), i.e., ‖ µ ‖p,ω=
∫

ωd | µ |.

M(Lp
ω(G), Lq

ω(G)), the space of all multipliers on Lp
ω(G) → Lq

ω(G).

‖ T ‖p,q,ω, the norm of each T ∈ M(Lp
ω(G), Lq

ω(G)).

Ap
ω(G), a weighted space of Figà-Talamanca type, see p 36.

Cf , a convolution operator, i.e., Cf : g → f ∗ g.

Mϕ, a multiplication operator, i.e., Mϕ : g → ϕg.

H, a Hilbert space.

< f, g >, the inner product of f, g ∈ H.

L(H1,H2), the space of all bounded operators: H1 → H2.

LC(H1,H2) the space of all compact operators: H1 → H2, see p 90.

L2(H1,H2), the space of all Hilbert-Schmidt operators: H1 → H2, see p 66.

Ef,g, a rank one operator, i.e., Ef,g : x →< x, g > f .

‖ T ‖O(H1,H2), the norm of each T ∈ L(H1,H2).

‖ T ‖H(H1,H2), the norm of each T ∈ L2(H1,H2).

H1 ⊗H2, the tensor product of two Hilbert spaces, see p 67.

S ⊗ T , the tensor product of a bounded operator S on H1 and a bounded

operator T on H2, see p 68.
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G(g, α, β), a Gabor frame generated by g, α, and β, see p 77.
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Chapter 2

Multipliers of Beurling weighted spaces

In section 2.1, I list some results about multipliers of Lp(G) spaces. In section

4.2, I define Beurling weighted spaces and give some of their properties. In section

4.3, I present a new proof of a known result, due to G.Gaudry [15], stating that

M(L1
ω(G)), the space of all multipliers of L1

ω(G), can be identified with the weighted

space of bounded measures Mω(G). In section 4.4, I prove a new result, viz., the

identification of M(L1
ω(G), Lp

ω(G)), the space of all multipliers L1
ω(G) → Lp

ω(G),

with the space Lp
ω(G). There is no known identification of M(Lp

ω(G)), the space

of all multipliers of Lp
ω(G). In section 2.5, I show that the space M(Lp

ω(G)) can

be embedded in M(Lp
ω(G), Lp(G)), the space of all multipliers Lp

ω(G) → Lp(G).

To obtain a characterization of M(Lp
ω(G), Lp(G)), I define Ap

ω(G), a new space

of Figà-Talamanca type. Then I prove the isometric identification of the space

M(Lp
ω(G), Lp(G)) with the dual of Ap

ω(G). I end this section by showing how the

main result of section 2.5 improves a result due to A. Gürkanli and S. Öztop [18].

Section 2.6, is a summary of all results of this chapter. The measure and operator

theory results needed as background for this chapter can be found in appendices A

and B.

Through out this chapter G is a locally compact abelian group and dx is a

Haar measure on G. We denote by Ĝ the dual group of G. The unit of G shall be

13



denoted by e. The translation by a ∈ G of a measurable function f is defined by the

formula ιaf(x) = f(x − a). We denote by C0(G) the space of continuous functions

vanishing at infinity and by Cc(G) the space of continuous compactly supported

functions. If 1 ≤ p < ∞, Lp(G) shall denote the space of functions f such that | f |p

is integrable. We denote by f̂ the Fourier transform of an integrable function f on

G, see appendix A for detailed definitions.

2.1 Multipliers of Lp(G)

All results presented in this section are stated and proved in [23].

Definition 2.1. Let T : Lp(G) → Lq(G) be a bounded linear transformation where

1 ≤ p, q ≤ ∞. T is said to be a multiplier of (Lp(G), Lq(G)) if T commutes with

every translation operator.

We denote by M(Lp(G)) the space of all multipliers on Lp(G), ‖ T ‖p the

operator norm of each T ∈ M(Lp(G)), M(Lp(G), Lq(G)) the space of all multipliers

of (Lp(G), Lq(G)), and ‖ T ‖p,q the operator norm of each T ∈ M(Lp(G), Lq(G)).

Theorem 2.2. Let T be a linear operator on L1(G). Then the following are equiv-

alent:

(i) T ∈ M(L1(G));

(ii) T (f ∗ g) = Tf ∗ g for each f, g ∈ L1(G);

(iii) There exists a unique measure µ ∈ M(G) such that T = Tµ : f →

µ ∗ f, f ∈ L1(G).

14



Moreover, the correspondence between T and µ defines an isometric algebra

isomorphism from M(L1(G)) onto M(G).

Theorem 2.3. Let T : L1(G) → Lp(G) be a linear operator, 1 < p ≤ ∞. then the

following are equivalent:

(i) T ∈ M(L1(G), Lp(G));

(ii) There exists a unique function g ∈ Lp(G) such that T = Tg : f → g∗f, f ∈

L1(G).

Moreover, the correspondence between T and g defines an isometric isomor-

phism from M(L1(G), Lp(G)) onto Lp(G).

Theorem 2.4. Let T be a linear operator on L2(G). Then the following are equiv-

alent:

(i) T ∈ M(L2(G));

(ii) There exists a unique function ϕ ∈ L∞(Ĝ) such that T̂ (f) = ϕf̂ for each

f ∈ L2(G).

Moreover, the correspondence between T and ϕ defines an isometric algebra

isomorphism from M(L2(G)) onto L∞(Ĝ).

Corollary 2.5. If T ∈ M(Lp(G)), where 1 < p < ∞, then there exists a unique

ϕ ∈ L∞(Ĝ) such that T̂ (f) = ϕf̂ for each f ∈ L2(G) ∩ Lp(G). Further, we have

‖ ϕ ‖L∞( bG)=‖ T ‖2≤‖ T ‖p.

Definition 2.6. Let p > 1 and p′ such that 1
p

+ 1
p′ = 1. We define the Figà-
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Talamanca space Ap(G) as follows:

Ap(G) =: {
∞∑
i=1

fi ∗ gi : fi, gi ∈ Cc(G) and
∞∑
i=1

‖fi‖p‖gi‖p′ < ∞},

endowed with the norm

|||f ||| =: inf{
∞∑
i=1

‖fi‖p‖gi‖p′ : fi, gi ∈ Cc(G) and f =
∞∑
i=1

fi ∗ gi}.

Proposition 2.7. (Ap(G), |||f |||) is a Banach space.

Theorem 2.8. There exists an isometric linear isomorphism of M(Lp(G)) into

(Ap(G))∗, the Banach space of continuous linear functionals on Ap(G).

There is a similar characterization of M(Lp(G), Lq(G)) in term of Figà-Talamanca

spaces ([12, [13], and [23]).

2.2 Beurling weighted spaces

Definition 2.9. A measurable function ω on G is said to be a Beurling weight if it

has the following properties:

(i) ω(x) ≥ 1 for every (x ∈ G);

(ii) ω(x + y) ≤ ω(x)ω(y) for every (x, y ∈ G);

(iii) ω is locally bounded, i.e., ω is bounded on every compact subset of G.

For our study we restrict ourselves to the abelian case, but the definition above

may be stated for any locally compact group. There are also some more generalized

definitions of weight functions ([15], [30], and [17]).

Example 2.10. ω(x) = (1+ | x |)α, where α > 0, is a Beurling weight.
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Example 2.11. ω(x) = eλ|x|α, where α, λ > 0, is a Beurling weight.

Example 2.12. If (an) is a sequence of positive numbers, satisfying the conditions

∑
n≥1

(an)
1
n < ∞ and am+n(m + n)! ≤ amm!ann!,

then ω(x) =
∑

n≥1 an | x |nis a Beurling weight.

These examples are stated in [30].

Remark 2.13. If ω1 and ω2 are two Beurling weights, then so is ω1ω2.

In the following notation, all functions considered are supposed to be measur-

ables. For 1 ≤ p < ∞, we denote

Lp
ω(G) =: {f : ‖f‖p,ω =: (

∫
G
| f |p ωdx)1/p < ∞},

L∞ω (G) =: {f : fω ∈ L∞(G)},

and Mω(G) =: {µ : µ is a bounded measure and ‖µ‖ω =:
∫

ω|µ| < ∞}.

From the definition of ω, we can deduce easily that ωdx is a positive measure on G.

Then all the spaces, considered above, are Banach spaces. Let f, g ∈ L1
ω(G). It is

easy to check that

‖f ∗ g‖1,ω ≤ ‖f‖1,ω‖g‖1,ω.

Thus, L1
ω(G) is a Banach algebra for the convolution product [30].

Definition 2.14. The spaces Lp
ω(G), 1 ≤ p ≤ ∞, are called Beurling weighted

spaces. L1
ω(G) is called a Beurling algebra.

In the following proposition I summarize some properties of Beurling weighted

spaces.
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Proposition 2.15. (i)The space Cc(G) is dense in Lp
ω(G).

(ii) L1
ω(G) is an algebra without order, i.e., if for a function f ∈ L1

ω(G) we

have f ∗ g = 0 a.e for each g ∈ L1
ω(G) then f = 0 a.e.

(iii) Let a ∈ G. The translation operator f → ιaf is an isomorphism on

Lp
ω(G), and we have ‖ ιaf ‖p,ω≤ ω(a) ‖ f ‖p,ω.

(iv) If f ∈ Lp
ω(G) then the function x → ιxf is continuous on G.

Statements (i), (ii), and (iii) are stated and proved in [30]. I prove statement

(iv), since I could not find any reference for this statement.

Proof of Proposition 2.15(iv). Let ε > 0 and g ∈ Lp
ω(G). We claim that there exists

a compact neighborhood V of e such that ‖ ιyg − g ‖p,ω≤ ε for all y ∈ V .

First, let us show our claim for g ∈ Cc(G). Let K1 = supp g, let K2 be a

compact neighborhood of e, and set

K = K1 ∪K2 ∪ (K1 + K2) and A = sup
x∈K

ω(x).

For all y ∈ K2, we have

‖ ιyg − g ‖p
p,ω=

∫

K

| ιyg(x)− g(x) |p ω(x)dx ≤ A

∫

K

| ιyg(x)− g(x) |p dx.

Since g is uniformly continuous, there exists a neighborhood V of e, which we may

assume to be contained in K2, such that

| g(x− y)− g(x) |p< εp

A | K | for all y ∈ V,

where | K | is the measure of K. Therefore, for y ∈ V , we have

‖ ιyg − g ‖p
p,ω≤ A

∫

K

| ιyg(x)− g(x) |p dx ≤ Aεp | K |
A | K | = εp,
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and this shows our claim for g ∈ Cc(G).

Now let us show the claim for g ∈ Lp
ω(G). Let K be a compact neighborhood

of e. Since Cc(G) is dense in Lp
ω(G), there exists f ∈ Cc(G) such that

‖ g − f ‖p,ω< inf(
ε

3
,

ε

3A
), where A = sup

x∈K
ω(x).

By the first step, there exists a compact neighborhood V of e, which we may assume

to be contained in K, such that

‖ ιyf − f ‖p,ω≤ ε

3
for all y ∈ V.

Therefore, for all y ∈ V , we have

‖ ιyg − g ‖p,ω≤‖ ιyg − ιyf ‖p,ω + ‖ ιyf − f ‖p,ω + ‖ f − g ‖p,ω

≤ ω(y) ‖ f − g ‖p,ω +
2ε

3
≤ A

ε

3A
+

2ε

3
= ε.

This shows our claim which, in other words, means the continuity of the function

x → ιxf at e. This is clearly sufficient to deduce the continuity of the function

x → ιxf on the group G.

We define the space

Fω(Ĝ) =: {f̂ : f ∈ L1
ω(G)},

and endow it with the norm ‖f̂‖Fω( bG) = ‖f‖1,ω. Since L1(G) is a commutative

Banach algebra for the convolution, Fω(Ĝ) is a commutative Banach algebra for

pointwise multiplication. Fω(Ĝ) is a subalgebra of C0(G). If ω = 1 then Fω(Ĝ) =

F(Ĝ), the so called Fourier algebra of the group G ([9], [10], [25], [26], and [30]).
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Definition 2.16. Let ω be a Beurling weight on G.

(i) We say that Wiener’s approximation theorem holds for Fω(Ĝ) if, for all

f ∈ L1
ω(G), the linear combination of translates of f are dense in L1

ω(G) if and only

if |f̂(γ)| > 0, for all γ ∈ Ĝ.

(ii) We say that Fω(Ĝ) is a Wiener algebra if the continuous compactly sup-

ported functions, contained in Fω(Ĝ), are dense in Fω(Ĝ).

The following theorem is fundamental for commutative Beurling algebras.

Theorem 2.17. ([9], 1956) Let ω be a Beurling weight on a locally compact abelian

group G. Then Fω(Ĝ) is a Wiener algebra and Wiener’s approximation theorem

holds for Fω(Ĝ) if and only if ω satisfies the condition,

∑
n≥1

log ω(nt)

n2
< ∞, for all t ∈ G.

The condition of Theorem 2.17 is called the Beurling-Domar condition, or the

non-quasi-analyticity condition.

A. Beurling proved Theorem 2.17 in the real case ([4], 1932). In 1956, Y.

Domar proved the generalization to locally compact abelian groups ([1], [9], [25],

[26] and [30]).

If ω is a Beurling weight on an abelian locally compact group G, then ωdx is

a positive Radon measure on G that can be seen as a generalization of dx, the Haar

measure on G. Naturally, one wants to check if a certain property P of the measure

dx holds for the measure ωdx, or under what condition the property P holds for the

measure ωdx. Under the Beurling-Domar condition, Theorem 2.17 shows spectral

synthesis similarities between Fω(Ĝ) and F(Ĝ). One of the properties that is not
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in general shared by dx with ωdx is that a translation operator is an isometry on

Lp(G), while it is not in general an isometry on Lp
ω(G), see Proposition 2.15(iii).

This last fact is closely related to multiplier problems.

2.3 Multipliers of L1
ω(G)

We denote by M(L1
ω(G)) the space of all multipliers on L1

ω(G) and ‖ T ‖1,ω the

operator norm of each T ∈ M(L1
ω(G)). If µ ∈ Mω(G) we denote ‖ µ ‖ω=

∫
ω | µ |,

and if ω = 1 we denote ‖ µ ‖= ∫ | µ |, see appendix A.11 for the definition of | µ |.

Theorem 2.18. Let T be a linear mapping on L1
ω(G). Then the following are

equivalent:

(i) T ∈ M(L1
ω(G));

(ii) T (f ∗ g) = Tf ∗ g = f ∗ Tg for each f, g ∈ L1
ω(G).

Proof. The proof is based on the fact that L1
ω(G) is an algebra without order, see

Proposition 2.15(ii).

(ii) ⇒ (i). Let f, g, h ∈ L1
ω(G) and let a and b be complex numbers. We have

f ∗ T (ag + bh) = Tf ∗ (ag + bh) = f ∗ (aTg + bTh).

Since f is arbitrary and by using Proposition 2.15(ii), we deduce that

T (ag + bh) = aTg + bTh.

Let f, g, h ∈ L1
ω(G) and let (gn) be a sequence in L1

ω(G) such that

lim ‖ gn − g ‖1,ω= 0 and lim ‖ Tgn − h ‖1,ω= 0.
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We have

‖ f ∗ h− f ∗ Tg ‖1,ω≤‖ f ∗ h− f ∗ Tgn ‖1,ω + ‖ f ∗ Tgn − f ∗ Tg ‖1,ω

≤‖ f ‖1,ω‖ h− Tgn ‖1,ω + ‖ Tf ∗ gn − Tf ∗ g ‖1,ω

≤‖ f ‖1,ω‖ h− Tgn ‖1,ω + ‖ Tf ‖1,ω‖ gn − g ‖1,ω .

If we let n tend to infinity, we obtain f ∗ (h − Tg) = 0. Since f is an arbitrary

function and by using Proposition 2.15(ii), we obtain Tg = h. Finally the closed

graph theorem shows that T is continuous, see [23].

It remains to show that T commutes with translations. Let a ∈ G and let

f, g ∈ L1
ω(G). Then

Tιaf ∗ g = T (ιaf ∗ g) = T (f ∗ ιag) = Tf ∗ ιag = ιaTf ∗ g.

By using Proposition 2.15(ii) another time, we obtain Tιa = ιaT .

(i) ⇒ (ii). Let φ ∈ L∞ω (G). The mapping f → ∫
Tfφ is a continuous linear

form on L1
ω(G). Thus, there exists a function ψ ∈ L∞ω (G) such that

∫
Tfφ =

∫
fψω, for all f ∈ L1

ω(G).

Let f, g ∈ L1
ω(G), φ ∈ L∞ω (G), and let ψ be defined as above. Then

∫
[Tf ∗ g](t)φ(t)dt =

∫ ∫
Tf(t− s)g(s)dsφ(t)dt =

∫ ∫
ιsTf(t)g(s)dsφ(t)dt

=

∫ ∫
Tιsf(t)φ(t)dtg(s)ds =

∫ ∫
ιsf(t)ψ(t)ω(t)dtg(s)ds

=

∫ ∫
ιsf(t)g(s)dsψ(t)ω(t)dt =

∫
[f ∗ g](t)ψ(t)ω(t)dt =

∫
T [f ∗ g](t)φ(t)dt.

Since φ is arbitrary, we conclude that T (f ∗ g) = Tf ∗ g. Finally, by commutativity,

we obtain

T (f ∗ g) = Tf ∗ g = f ∗ Tg.
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Theorem 2.19. Assume that the weight ω is continuous. Let T be a bounded linear

operator on L1
ω(G). Then

(i) T ∈ M(L1
ω(G)) if and only if there exists a unique measure µ such that

T = Tµ : f → µ ∗ f, f ∈ L1
ω(G).

(ii) ω(e) ‖ µ ‖ω=‖ Tµ ‖ .

(iii) M(L1
ω(G)) and Mω(G) are topologically and algebraically identified.

Without assuming that the group G is abelian or that ω is continuous, G.

Gaudry proved a theorem similar to Theorem 2.19, [15]. I propose a new proof of

Gaudry’s result. I shall use the following lemma.

Lemma 2.20. Let (fn)n>0 be a bounded sequence in L1(G) with the following prop-

erties:

(i) If K is an arbitrary, but fixed, compact neighborhood of e, then

lim

∫

GrK

| fn(x) | dx = 0.

(ii) lim
∫ | fn(x) | dx = 1.

Then (fn)n>0 is an approximate identity in L1(G).

For a proof of this lemma I refer to [16].

Corollary 2.21. For each compact neighborhood K of e, there exists an approximate

identity (fn)n>0 in L1(G) with the following properties:

(i)
∫ | fn(x) | dx = 1.

(ii) For each n > 0, the function fn is supported in K.
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Proof. Let (Kn)n>0 be a sequence of compact neighborhoods of e, such that

(i)’ For each n > 0, Kn ⊂ K.

(ii)’ For each neighborhood E of e there exits n > 0 such that Kn ⊂ E.

Consider the sequence (fn =
1Kn

|Kn|)n>0. This sequence is bounded in L1(G) and

satisfies conditions (i) and (ii) of Lemma 2.20. Thus, it is an approximate identity

in L1(G). Since the sequence (fn)n>0 also satisfies the condition of Corollary 2.21,

the proof is complete.

Lemma 2.22. Let T ∈ M(L1
ω(G)). Then there exists a unique bounded measure µ

such that T = Tµ : f → µ ∗ f, f ∈ L1
ω(G).

Proof. Fix K, a compact neighborhood of e. Let (fn)n>0 be an approximate identity

in L1(G) satisfying the condition of Corollary 2.21 for the compact set K. Let

f ∈ L1(G). By Theorem 2.18 we have T (fn) ∗ f = fn ∗ T (f). Let ε > 0. Since

(fn)n>0 is an approximate identity in L1(G), there exists an n > 0 such that

‖ T (fn) ∗ f − T (f) ‖1=‖ fn ∗ T (f)− T (f) ‖1< ε.

Then

‖ T (f) ‖1≤ ε+ ‖ T (fn) ∗ f ‖1≤ ε+ ‖ T (fn) ‖1,ω‖ f ‖1

≤ ε+ ‖ T ‖1,ω‖ fn ‖1,ω‖ f ‖1 .

Let M = supx∈K ω(x). Since K is compact and ω is locally bounded, we see that

M is a finite real number. By using (i) of Corollary 2.21, we obtain

‖ fn ‖1,ω=

∫
| fn(x) | ω(x)dx ≤ M

∫
| fn(x) | dx = M.
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Therefore,

‖ T (f) ‖1≤ ε + M ‖ T ‖1,ω‖ f ‖1 .

Since ε is arbitrary, we have

‖ T (f) ‖1≤ M ‖ T ‖1,ω‖ f ‖1 .

Thus, T is continuous on L1
ω(G) considered with the norm of L1(G). However,

L1
ω(G) is dense as a subspace of L1(G). Hence, T can be extended to a multipliers

T on L1(G). By Theorem 2.1, there exists a bounded measure µ such that

Tf = µ ∗ f, f ∈ L1(G),

and, hence,

Tf = µ ∗ f, f ∈ L1
ω(G).

The uniqueness of µ is elementary.

We are now prepared to prove Theorem 2.19.

Proof of Theorem 2.19. Without lost of generality, we may suppose that ω(e) = 1.

Let ε > 0. Since ω is continuous at e, there exists a compact neighborhood of e such

that:

sup
x∈K

ω(x) < 1 + ε. (2.1)

Let (fn)n>0 be an approximate identity in L1(G) satisfying the condition of Corollary

2.21. Since
∫ | fn(x) | d(x) = 1, hence, by (2.1), we have

‖ fn ‖1,ω=

∫
| fn(x) | ω(x)dx ≤ 1 + ε. (2.2)
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If T ∈ M(L1
ω(G)), then, by Lemma 2.22, there exists a bounded measure µ such

that T = Tµ : f → µ ∗ f . Consider the sequence µn = (µ ∗ fn)ω. Then

‖ µn ‖=‖ µ ∗ fn ‖1,ω=‖ Tµ(fn) ‖1,ω≤‖ Tµ ‖1,ω‖ fn ‖1,ω,

and, by using (2.2), we obtain

‖ µn ‖≤ (1 + ε) ‖ Tµ ‖1,ω . (2.3)

The inequality (2.3) implies that (µn)n>0, as a sequence of bounded measures, is

bounded. Therefore, it has a subsequence (µnk
)k>0 weakly convergent to a bounded

measure µ0. This means:

lim
k

∫
fd((µ ∗ fnk

)ω − µ0) = 0 for each f ∈ C0(G),

i.e.,

lim
k

∫
fωd(µ ∗ fnk

− µ0

ω
) = 0 for each f ∈ C0(G).

Since ω is continuous, we deduce that the sequence (
µnk

ω
)k>0 is weakly convergent to

µ0

ω
. Hence, the measure µ0

ω
is bounded. However, (fnk

)k is an approximate identity

in L1(G), as that (µ ∗ fnk
)k converges weakly to µ, see appendix A.10. Therefore,

µ = µ0

ω
and the measure µω is bounded. Hence, µ ∈ Mω(G). Now, by using (2.3),

we obtain

‖ µ ‖ω=‖ µ0 ‖≤ (1 + ε) ‖ Tµ ‖1,ω .

Since ε is arbitrary, we have

‖ µ ‖ω≤‖ Tµ ‖1,ω . (2.4)
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Conversely, let µ ∈ Mω(G) and f ∈ L1
ω(G). Then

‖ µ ∗ f ‖1,ω=

∫
|
∫

f(t− s)µ(s) | ω(t)dt ≤
∫ ∫

| f(t− s) || µ | (s)ω(t)dt

≤
∫ ∫

| f(t) || µ | (s)ω(t + s)dt ≤
∫ ∫

| f(t) || µ | (s)ω(t)ω(s)dt =‖ f ‖1,ω‖ µ ‖ω .

Thus, Tµ ∈ M(L1
ω(G)) and ‖ Tµ ‖1,ω≤‖ µ ‖ω. Finally, using (2.4), we obtain

‖ Tµ ‖1,ω=‖ µ ‖ω .

This finishes the proof of Theorem 2.19.

2.4 Multipliers of (L1
ω(G), Lp

ω(G)), p > 1

Definition 2.23. A bounded operator T : L1
ω(G) → Lp

ω(G) is said to be a multiplier

of (L1
ω(G), Lp

ω(G)) if T commutes with every translation operator.

We denote by M(L1
ω(G), Lp

ω(G)) the space of all multipliers of (L1
ω(G), Lp

ω(G))

and by ‖ T ‖1,p,ω the operator norm of each T ∈ M(L1
ω(G), Lp

ω(G)). If f ∈ Lp
ω(G)

and f ∈ Lp′
ω (G) where 1

p
+ 1

p′ = 1, we denote < f, g >ω=
∫

fgωdx, and if ω = 1 we

denote < f, g >=< f, g >ω.

The following theorem is the first new result I prove in this chapter.

Theorem 2.24. Let T : L1
ω(G) → Lp

ω(G) be a bounded linear transformation, where

p > 1. Then

(i) T ∈ M(L1
ω(G), Lp

ω(G)) if and only if there exists a unique function g ∈

Lp
ω(G) such that T = Tg : f → g ∗ f , f ∈ L1

ω(G).

(ii) There exists a constant c ≥ 1 dependent only on the weight function ω,
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such that

‖ Tg ‖1,p,ω≤‖ g ‖p,ω≤ c ‖ Tg ‖1,p,ω .

(iii) M(L1
ω(G), Lp

ω(G)) and Lp
ω(G) are topologically and algebraically identified

by the mapping of part (i).

The proof is based on three new lemmas.

Lemma 2.25. Let T ∈ M(L1
ω(G), Lp

ω(G)). Then

T (f ∗ g) = Tf ∗ g = f ∗ Tg for each f, g ∈ L1
ω(G).

Proof. Let p′ be such that 1
p

+ 1
p′ = 1. Denote for f ∈ Lp

ω(G) and g ∈ Lp′
ω (G)

< f, g >ω=

∫
f(t)g(t)ω(t)dt.

Let T ∗ : Lp′
ω (G) → L∞ω (G) be the adjoint operator of the operator T . Let f, g ∈

L1
ω(G) and let ϕ ∈ Lp′

ω (G). Then

< Tf ∗ g, ϕ >ω=

∫ ∫
ιsTf(t)g(s)dsϕ(t)ω(t)dt

=

∫ ∫
Tιsf(t)g(s)dsϕ(t)ω(t)dt =

∫ ∫
Tιsf(t)ϕ(t)ω(t)dtg(s)ds

=

∫
< Tιsf, ϕ >ω g(s)ds =

∫
< ιsf, T ∗ϕ >ω g(s)ds

=

∫ ∫
ιsf(t)T ∗ϕ(t)ω(t)dtg(s)ds =

∫ ∫
ιsf(t)g(s)dsT ∗ϕ(t)ω(t)dt

=< T (f ∗ g), ϕ >ω .

Since ϕ is arbitrary, T (f ∗ g) = Tf ∗ g and by commutativity we achieve the proof

of Lemma 2.25.

For the rest of this section, let K be a compact neighborhood of e and set

c = sup
x∈K

ω(x). (2.5)
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Lemma 2.26. For each g ∈ Lp
ω(G) and each ε > 0 there exists a positive function

h ∈ Cc(G) satisfying the following conditions:

‖ h ‖1= 1, ‖ h ‖1,ω≤ c, and ‖ g ∗ h− g ‖p,ω≤ ε.

Proof. Let g ∈ Lp
ω(G) and let ε > 0. By Property 2.15(iv) the function y → ιyg is

continuous at e. Then there exists a neighborhood V , which we may assume to be

contained in K, such that

‖ ιyg − g ‖p,ω≤ ε for all y ∈ V.

Consider a positive function h ∈ Cc(G), such that

supp h ⊂ V and

∫
h(y)dy = 1.

By using (2.5) and since V ⊂ K, we have
∫

h(y)ω(y)dy ≤ c.

We also have

| (g ∗ h)(x)− g(x) |≤
∫
| ιyg(x)− g(x) | h(y)dy.

By Hölder’s inequality with respect to the measure h(y)dy, we obtain

| (g ∗ h)(x)− g(x) |≤ (

∫
| ιyg(x)− g(x) |p h(y)dy)

1
p (

∫
h(y)dy)

1
p′

≤ (

∫
| ιyg(x)− g(x) |p h(y)dy)

1
p ,

where p′ is such that 1
p

+ 1
p′ = 1. Therefore,

‖ g ∗ h− g ‖p
p,ω=

∫
| g ∗ h(x)− g(x) |p ω(x)dx

≤
∫ ∫

| ιyg(x)− g(x) |p h(y)dyω(x)dx ≤
∫
‖ ιyg − g ‖p

p,ω h(y)dy = εp.

This completes the proof of Lemma 2.26.
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Lemma 2.27. Let T ∈ M(L1
ω(G), Lp

ω(G)). Then there exists a unique function

g ∈ Lp(G) such that T = Tg : f → g ∗ f, f ∈ L1
ω(G).

Proof. We claim that T is continuous if L1
ω(G) is endowed with the norm of L1(G)

and Lp
ω(G) is endowed with the norm of Lp(G).

Let f ∈ L1
ω(G). Then Tf ∈ Lp

ω(G) ⊂ LpG). For ε > 0, using Lemma 2.26 for

Lp(G), there exists a positive function ϕ ∈ Cc(G), supported in the compact set K,

such that
∫

ϕ(t)dt = 1 and ‖ ϕ ∗ Tf − Tf ‖p< ε,

hence,

‖ Tf ‖p< ε+ ‖ ϕ ∗ Tf ‖p= ε+ ‖ Tϕ ∗ f ‖p≤ ε+ ‖ Tϕ ‖p‖ f ‖1

≤ ε+ ‖ Tϕ ‖p,ω‖ f ‖1≤ ε+ ‖ T ‖1,p,ω‖ ϕ ‖1,ω‖ f ‖1 .

However,

‖ ϕ ‖1,ω=

∫
ϕ(t)ω(t)dt ≤ c.

Then

‖ Tf ‖p≤ ε+ ‖ T ‖1,p,ω c ‖ f ‖1 .

If we let ε tend to zero, we obtain

‖ Tf ‖p≤‖ T ‖1,p,ω c ‖ f ‖1

and this shows the claim.

Since L1
ω(G) is dense as a subspace of L1(G), T can be extended to a multiplier

T ∈ M(L1(G), Lp(G)). By Theorem 2.3, there exists a function g ∈ Lp(G) such that

Tf = g ∗ f, f ∈ L1(G),
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and hence,

Tf = g ∗ f, f ∈ L1
ω(G)

The uniqueness of g is elementary.

Now we are prepared to prove Theorem 2.24.

Proof of Theorem 2.24. Let g ∈ Lp
ω(G) and f ∈ L1

ω(G). Then by using Hölder’s

inequality with respect to the measure | f(y) | dy, we obtain

‖ g ∗ f ‖p
p,ω=

∫
| g ∗ f |p ω(x)dx =

∫
|
∫

g(x− y)f(y)dy |p ω(x)dx

≤
∫

[

∫
| g(x− y) |p| f(y) | dy][

∫
| f(y) | dy]

p
p′ ω(x)dx

≤
∫

(| g |p ∗ | f |)ω(x)dx[

∫
| f(y) | dy]

p
p′

≤‖| g |p ∗ | f |‖1,ω‖ f ‖
p
p′
1,ω≤‖ g ‖p

p,ω‖ f ‖1,ω‖ f ‖
p
p′
1,ω=‖ g ‖p

p,ω‖ f ‖p
1,ω .

Therefore, Tg ∈ M(L1
ω(G), Lp

ω(G)) and

‖ Tg ‖1,p,ω≤‖ g ‖p,ω . (2.6)

Let ε > 0. By Lemma 2.26, for each g ∈ Lp
ω(G), there exists a positive function h

such that

‖ h ‖1= 1, ‖ h ‖1,ω≤ c, and ‖ g ∗ h− g ‖p,ω≤ ε.

Then

‖ g ‖p,ω≤ ε+ ‖ g ∗ h ‖p,ω= ε+ ‖ Tg(h) ‖p,ω

≤ ε+ ‖ Tg ‖1,p,ω‖ h ‖1,ω≤ ε + c ‖ Tg ‖1,p,ω .

Since ε is arbitrary, we obtain

‖ g ‖p,ω≤ c ‖ Tg ‖1,p,ω . (2.7)
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Conversely, let T ∈ M(L1
ω(G), Lp

ω(G)). By Lemma 2.27, there exists a unique

function g ∈ Lp(G) such that T = Tg. It suffices to show that, in fact, g ∈ Lp
ω(G).

Using Lemma 2.26 for Lp(G), it is easy to construct for g a sequence (hn)n satisfying,

for each integer n > 0, the following conditions:

‖ g ∗ hn − g ‖p<
1

n
, (2.8)

‖ hn ‖1= 1, (2.9)

and ‖ hn ‖1,ω≤ c, (2.10)

where the inequality (2.10) is obtained by assuming that supp hn ⊂ K, for each

n > 0. Then we have

‖ g ∗ hn ‖p,ω=‖ Tg(hn) ‖p,ω≤‖ Tg ‖1,p,ω‖ hn ‖1,ω≤ c ‖ Tg ‖1,p,ω .

Thus, the sequence (g ∗ hn)n is bounded in Lp
ω(G). Therefore, it has a subsequence

(g ∗ hnk
)k, weakly convergent in Lp

ω(G) to a function g0 ∈ Lp
ω(G). This means:

lim
k

< g ∗ hnk
, f >ω=< g0, f >ω for all f ∈ Lp′

ω (G),

where 1
p

+ 1
p′ = 1, i.e.,

lim
k

< g ∗ hnk
, fω >=< g0, fω > for all f ∈ Lp′

ω (G).

Since for every u ∈ Lp′
ω (G) we can write u = u

ω
ω and u

ω
∈ Lp′(G), we obtain

lim
k

< g ∗ hnk
, u >=< g0, u > for all u ∈ Lp′(G).

Therefore, the sequence (g ∗ hnk
)k converges weakly in Lp(G) to the function g0.

However, it follows from inequality (2.8) that the sequence (g ∗ hnk
)k converges
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strongly, and hence, weakly, to the function g. Therefore, g = g0 and thus g ∈

Lp
ω(G). This combined with (2.6) and (2.7) completes the proof of Theorem 2.24.

Remark 2.28. If ω is continuous at e and ω(e) = 1, then the constant c in

Theorem 2.24 can be taken to be 1, and the correspondence between Lp
ω(G) and

M(L1
ω(G), Lp

ω(G)) is an isometry.

2.5 Multipliers of Lp
ω(G) and of (Lp

ω(G), Lp(G)), p > 1

Definition 2.29. A bounded linear operator T : Lp
ω(G) → Lp

ω(G) (or T : Lp
ω(G) →

Lp(G)) is said to be a multiplier of Lp
ω(G) (or of (Lp

ω(G), Lp(G))) if T commutes

with every translation operator.

We denote by M(Lp
ω(G)) the space of all multipliers of Lp

ω(G) and by M(Lp
ω(G), Lp(G))

the space of all multipliers of (Lp
ω(G), Lp(G)).

I prove the following new lemma.

Lemma 2.30. . Let T ∈ M(Lp
ω(G)) (or T ∈ M(Lp

ω(G), Lp(G))). Then

Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ L1
ω(G) ∩ Lp

ω(G).

Proof. Let T ∈ M(Lp
ω(G)) and f, g ∈ Cc(G). Consider T ∗ : Lp′

ω (G) → Lp′
ω (G), the

adjoint of T , where 1
p

+ 1
p′ = 1. Let ϕ ∈ Lp′

ω (G). We have

< Tf ∗ g, ϕ >ω=

∫ ∫
ιsTf(t)g(s)dsϕ(t)ω(t)dt

=

∫ ∫
Tιsf(t)g(s)dsϕ(t)ω(t)dt =

∫ ∫
Tιsf(t)ϕ(t)ω(t)dtg(s)ds

=

∫
< Tιsf, ϕ >ω g(s)ds =

∫
< ιsf, T ∗ϕ >ω g(s)ds
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=

∫ ∫
ιsf(t)T ∗ϕ(t)ω(t)dtg(s)ds =

∫ ∫
ιsf(t)g(s)dsT ∗ϕ(t)ω(t)dt

=< T (f ∗ g), ϕ >ω .

We were able to use Fubini’s theorem in these equalities because f, g ∈ Cc(G). Since

ϕ is arbitrary, we have T (f ∗ g) = Tf ∗ g; and, by commutativity, we obtain

Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ Cc(G).

Now let f, g ∈ L1
ω(G)∩Lp

ω(G) and let (fn) and (gn) be two sequences in Cc(G) such

that lim ‖ fn − f ‖p,ω= lim ‖ gn − g ‖1,ω= 0. We have

‖ T (f ∗ g)− Tf ∗ g ‖p,ω≤‖ T (f ∗ g)− T (fn ∗ gn) ‖p,ω + ‖ Tfn ∗ gn − Tf ∗ g ‖p,ω

≤‖ T ‖p,ω‖ f ∗ g − fn ∗ gn ‖p,ω + ‖ Tfn ∗ gn − Tfn ∗ g ‖p,ω + ‖ Tfn ∗ g − Tf ∗ g ‖p,ω

≤‖ T ‖p,ω [‖ f ∗ g − f ∗ gn ‖p,ω + ‖ f ∗ gn − fn ∗ gn ‖p,ω]

+ ‖ T ‖p,ω‖ fn ‖p,ω‖ gn − g ‖1,ω + ‖ T ‖p,ω‖ fn − f ‖p,ω‖ g ‖1,ω

≤‖ T ‖p,ω [‖ f ‖p,ω‖ g − gn ‖1,ω + ‖ f − fn ‖p,ω‖ gn ‖1,ω]

+ ‖ T ‖p,ω‖ fn ‖p,ω‖ gn − g ‖1,ω + ‖ T ‖p,ω‖ fn − f ‖p,ω‖ g ‖1,ω .

Since (‖ fn ‖p,ω) and (‖ gn ‖1,ω) are bounded, by letting n tend to infinity we obtain

T (f ∗ g) = Tf ∗ g; and, by commutativity, we deduce that

Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ L1
ω(G) ∩ Lp

ω(G).

The proof for T ∈ M(Lp
ω(G), Lp(G)) is similar.

I prove the following new lemma.
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Lemma 2.31. Let µ be a positive measure and let f be a positive measurable func-

tion. Then

(
µ

ω
∗ f) ≤ 1

ω
(µ ∗ ωf).

Proof. We have

(
µ

ω
∗ f)(x) =

∫
f(x− y)

1

ω(y)
dµ(y) =

∫
f(x− y)

1

ω(x− y)

1

ω(x− y)ω(y)
dµ(y)

≤
∫

f(x− y)
1

ω(x− y)

1

ω(x)
dµ(y) =

1

ω
(µ ∗ ωf)

and this finishes the proof of Lemma 2.31.

We say that a Banach space X can be embedded into another Banach space Y ,

if there exists a continuous linear injection from X into Y . The following proposition

is a new result.

Proposition 2.32. (i) The space M
ω

1
p
(G) can be embedded into the space M(Lp

ω(G)).

(ii) The space M(Lp(G)) can be embedded into the space M(Lp
ω(G), Lp(G)).

(iii) The space M(Lp
ω(G)) can be embedded into the space M(Lp

ω(G), Lp(G)).

Proof. (i) Note that ω
1
p is a Beurling weight and put µ0 = ω

1
p µ. Let f ∈ Lp

ω(G).

Then, by using Lemma 2.31, we obtain

‖ µ ∗ f ‖p,ω=‖ µ0

ω
1
p

∗ f ‖p,ω≤‖ 1

ω
1
p

(| µ0 | ∗ | ω
1
p f |) ‖p,ω=‖| µ0 | ∗ | ω

1
p f |‖p

≤‖ µ0 ‖‖ ω
1
p f ‖p=‖ µω

1
p ‖‖ ω

1
p f ‖p=‖ µ ‖

ω
1
p
‖ f ‖p,ω .

Thus, Tµ ∈ M(Lp
ω(G)) and ‖ Tµ ‖p,ω≤‖ µ ‖

ω
1
p
.

Now, let µ ∈ M
ω

1
p
(G) such that Tµ = 0. Since Cc(G) ⊂ Lp

ω(G), we have

Tµf = µ ∗ f = 0 for each f ∈ Cc(G).
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Thus, µ = 0. We conclude that the correspondence µ → Tµ is a continuous linear

injection from M
ω

1
p
(G) into M(Lp

ω(G)).

(ii) For each T ∈ M(Lp(G)) consider ψ(T ) : Lp
ω(G) → Lp(G) defined by

ψ(T )f = Tf for each f ∈ Lp
ω(G).

For each f ∈ Lp
ω(G), we have

‖ ψ(T )f ‖p=‖ Tf ‖p≤‖ T ‖M(Lp(G))‖ Tf ‖p .

Then ‖ ψ(T ) ‖M(Lp
ω(G),Lp(G))≤‖ T ‖M(Lp(G)). Hence, ψ is a continuous linear injection

from M(Lp(G)) into M(Lp
ω(G), Lp(G)).

Now let T ∈ M(Lp(G)) such that ψ(T ) = 0. Then

ψ(T )f = Tf = 0 for each f ∈ Lp
ω(G).

Since Lp
ω(G) is a dense subspace of Lp(G) and T is continuous on Lp(G), we conclude

that T = 0. Therefore, ψ realizes an embedding of M(Lp(G)) into M(Lp
ω(G), Lp(G)).

(iii) For each T ∈ M(Lp
ω(G)) consider ψ(T ) : Lp

ω(G) → Lp(G) defined by

ψ(T )f = Tf for each f ∈ Lp
ω(G).

Obviously ψ is a linear injection from M(Lp
ω(G)) into M(Lp

ω(G), Lp(G)). Moreover,

for each f ∈ Lp
ω(G), we have

‖ ψ(T )f ‖p=‖ Tf ‖p≤‖ Tf ‖p,ω≤‖ T ‖M(Lp
ω(G))‖ f ‖p,ω .

Then

‖ T ‖M(Lp
ω(G),Lp(G))≤‖ T ‖M(Lp

ω(G)) .

Therefore, ψ realizes an embedding of M(Lp
ω(G)) into M(Lp

ω(G), Lp(G)).
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This embedding has motivated me to identify M(Lp
ω(G), Lp(G)) with the dual

of a new space of Figà-Talamanca type ([12], [13], and [23]), that I shall now define.

Definition 2.33. Let p > 1 and p′ such that 1
p

+ 1
p′ = 1. We define the space

Ap
ω(G) := {

∞∑
i=1

fi ∗ gi : fi, gi ∈ Cc(G) and
∞∑
i=1

‖fi‖p,ω‖gi‖p′ < ∞},

endowed with the norm

|||f |||ω = inf{
∞∑
i=1

‖fi‖p,ω‖gi‖p′ : fi, gi ∈ Cc(G) and f =
∞∑
i=1

fi ∗ gi}.

Proposition 2.34. (Ap
ω(G), |||f |||ω) is a Banach space.

Proof. Let (hn)n≥1 be a Cauchy sequence of Ap
ω(G). Then (hn)n≥1 has a subsequence

(kn)n≥1 such that |||kn+1−kn|||ω < 2−n, for all n ≥ 1. From the definition of Ap
ω(G),

we can find two sequences (fnj)j≥1 and (gnj)j ≥ 1 such that

(i) k1 =
∑
j≥1

f1j ∗ g1j,

(ii)
∑
j≥1

‖f1j‖p,ω‖g1j‖q ≤‖ k1 ‖ω +1,

(iii) kn+1 − kn =
∑
j≥1

fn+1j ∗ gn+1j,

(iv)
∑
j≥1

‖fn+1j‖p,ω‖gn+1j‖q ≤ 2−n+1, n = 1, 2... .

If we set

h =
∑
j≥1

f1j ∗ g1j +
∑
n≥1

∑
j≥1

fn+1j ∗ gn+1j,

we obtain

|||h|||ω ≤
∑
j≥1

‖f1j‖p,ω‖g1j‖q +
∑
n≥1

∑
j≥1

‖fn+1j‖p,ω‖gn+1j‖q

≤ |||k1|||ω + 1 +
∑
n≥1

2−n+1 = |||k1|||ω + 3.
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Thus, h ∈ Ap
ω(G). We have

|||h− kn+1|||ω = |||h− k1 −
n∑

m=1

kn+1|||ω = |||
∞∑

m=n+1

∑
j≥1

fm+1j ∗ gm+1j|||ω

≤
∞∑

m=n+1

∑
j≥1

‖fm+1j‖p,ω‖gm+1j‖q ≤
∞∑

m=n+1

2−m+1 = 2−n+1.

If we let n tend to infinity, we obtain lim |||h − kn+1|||ω = 0, and this shows that

(Ap
ω(G), |||f |||ω) is a Banach space.

From now on, I shall denote by ‖ T ‖p,ω the operator norm of each T ∈

M(Lp
ω(G), Lp(G)). The following lemma is a new result.

Lemma 2.35. If T ∈ M(Lp
ω(G), Lp(G)) then there exists a net of functions (gα) ⊂

Cc(G) such that if Tα = gα ∗ f , f ∈ Lp
ω(G), then

(i) ‖ Tα(f) ‖p≤ c ‖ T ‖p,ω‖ f ‖p,ω for each f ∈ Lp
ω(G) and for each α,

(ii) lim
α
‖ Tαf − Tf ‖p= 0 for each f ∈ Lp

ω(G),

where c is a positive constant dependent only on the weight function ω.

To prove this important lemma, I shall follow the same steps used to show its

analogous for the classical case in [23].

Proof. We claim that it is sufficient, in order to establish the desired conclusion, to

show (i) and

(ii)′ lim
α

< Tαf, g >=< Tf, g > for each f ∈ Lp
ω(G) and for each g ∈ Lp′(G).

As suppose this were true. Let a1, a2, ......, an be nonnegative real numbers for which

∑n
i=1 ai = 1. Then

‖
n∑

i=1

aiTαi
f ‖p≤

n∑
i=1

ai ‖ Tαi
f ‖p≤

n∑
i=1

ai ‖ Tαi
‖p,ω‖ f ‖p,ω
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≤
n∑

i=1

ai ‖ T ‖p,ω‖ f ‖p,ω=‖ T ‖p,ω‖ f ‖p,ω,

and

lim
α

<

n∑
i=1

aiTαi
f, g >= lim

α

n∑
i=1

ai < Tαi
f, g >= 0,

for any choice of the ai and each f ∈ Lp
ω(G), g ∈ Lp′(G). Hence, the set of Tα

satisfying (i) and (ii)’ is convex. The statement (ii) means that (Tα) converges to T

in the strong operator topology, while the statement (ii)’ means that (Tα) converges

to T in the weak operator topology. And since the closure of a convex set in the

weak and strong operator topologies are identical, we conclude that there exists a

net of functions (gα) ⊂ Cc(G) satisfying (i) and (ii) of Lemma 2.35.

Now let (uβ)β≥1 be an approximate identity in L1(G) such that for each β ≥ 1:

uβ ∈ Cc(G)∗Cc(G), uβ > 0,
∫

uβ = 1, and uβ is zero off of some common compact K0.

Let (vδ)δ≥1 be an approximate identity in L1(Ĝ) such that for each δ ≥ 1: v̂δ ∈ Cc(G)

and ‖ vδ ‖1= 1. For the existence of approximate identities as (uβ)β≥1 or (vδ)δ≥1 see

[16] or [23]. For each β ≥ 1 we have uβ = u1
β∗u2

β for some u1
β, u2

β ∈ Cc(G). By Lemma

2.30, we have Tuβ = Tu1
β ∗ u2

β. Since Tu1
β ∈ Lp(G) and u2

β ∈ Cc(G) ⊂ Lp′(G), with

1
p

+ 1
p′ = 1, then Tuβ ∈ C0(G). Hence, v̂δTuβ ∈ Cc(G) for each β and δ. Ordering

the set {(β, δ) : β ≥ 1, δ ≥ 1} lexicographically, we obtain a net (gα) ⊂ Cc(G) upon

setting gα = v̂δTuβ whenever α = (β, δ). We claim that the net (Tα), defined by

Tαf = gα ∗ f for each f ∈ Lp
ω(G), satisfies (i) and (ii)’.

Indeed, for f, g ∈ Cc(G), and each α we have

|< Tαf, g >|=|< gα ∗ f, g >|=|< gα, f ∗ g >|

=|
∫

G

gα(−s)(f ∗ g)(s)ds =|
∫

G

(v̂δTuβ)(−s)(f ∗ g)(s)ds |
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=|
∫

G

∫

G

∫
bG v̂δ(γ)(−s,−γ)Tuβ(−s)f(s− t)g(t)d̂γdtds |

≤
∫
bG | v̂δ(γ) | {|

∫

G

∫

G

(s, γ)Tuβ(−s)f(s− t)g(t)dtds |}d̂γ

≤
∫
bG | v̂δ(γ) | {|

∫

G

∫

G

Tuβ(−s)(s− t, γ)f(s− t)g(t)(t, γ)dtds |}d̂γ

≤
∫
bG | v̂δ(γ) | {|

∫

G

Tuβ(−s)(γf ∗ γg)(s)ds |}d̂γ

≤‖ v̂δ ‖1 sup
γ∈ bG |< Tuβ, γf ∗ γg >|= sup

γ∈ bG |< Tuβ, γf ∗ γg >|

= sup
γ∈ bG |< T (uβ ∗ γf), γg >|≤ sup

γ∈ bG ‖ T (uβ ∗ γf) ‖p‖ γg ‖p′

≤‖ T ‖p,ω sup
γ∈ bG ‖ uβ ∗ γf ‖p,ω‖ γg ‖p′

≤‖ T ‖p,ω‖ uβ ‖1,ω sup
γ∈ bG ‖ γf ‖p,ω‖ γg ‖p′=‖ T ‖p,ω‖ uβ ‖1,ω‖ f ‖p,ω‖ g ‖p′ .

Since uβ is supported by the compact set K0, we have

‖ uβ ‖1,ω=

∫
uβ(t)ω(t)dt ≤ c

∫
uβ(t)dt = c,

upon putting c = supt∈K0
ω(t). Therefore,

|< Tαf, g >|≤ c ‖ T ‖p,ω‖ f ‖p,ω‖ g ‖p′ for each f, g ∈ Cc(G).

Then

‖ Tαf ‖p≤ c ‖ T ‖p,ω‖ f ‖p,ω for each f ∈ Cc(G).

By continuity of Tα and density of Cc(G) in Lp
ω(G), we obtain

‖ Tαf ‖p≤ c ‖ T ‖p,ω‖ f ‖p,ω for each f ∈ Lp
ω(G).

Let f, g ∈ Cc(G) and consider the net of real numbers Xα =< Tαf, g >. We

have | Xα |=|< Tαf, g >|≤ c ‖ T ‖p,ω‖ f ‖p,ω‖ g ‖p′ . Thus, the net (Xα)α∈N2

has a subnet (Xγ)γ∈I convergent to some finite limit l, we recall that N2 is ordered

lexicographically. We claim that l =< Tf, g >.

40



Let ε > 0 and γ = (β, δ) ∈ I. Then

|< Tf, g > − < Tαf, g >|

≤|< Tf, g > − < uβ ∗ Tf, g >| + |< uβ ∗ Tf, g > − < Tαf, g >|

≤|< Tf, g > − < Tf, uβ ∗ g >| + |< uβ ∗ Tf, g > − < v̂δTuβ ∗ f, g >|

≤|< Tf, g − uβ ∗ g > + |< Tuβ ∗ f, g > − < v̂δTuβ, f ∗ g >|

≤‖ Tf ‖p‖ g − uβ ∗ g ‖p′ + |< (1− v̂δ)Tuβ, f ∗ g >|

≤‖ Tf ‖p‖ g − uβ ∗ g ‖p′ + sup
s∈K

| 1− v̂δ(−s) |‖ Tuβ ‖p‖ f ∗ g ‖p′ ,

where K is the compact support of the function f ∗ g. Because the supports of uβ

are contained in the compact K0, it is easily seen that there exists some β0 such

that ‖ g−uβ0 ∗ g ‖q<
ε
4
(‖ Tf ‖p)

−1. For this β0, since v̂δ converges uniformly to one

on compact subsets of G, there exists a δ0 such that

sup
s∈K

| 1− v̂δ0(−s) |< ε

4
(‖ Tuβ0 ‖p‖ f ∗ g ‖q)

−1,

and it is obvious that we may choose (β0, δ0) ∈ I. If we put γ0 = (β0, δ0), then

|< Tf, g > −Xγ0 |< ε
2
. It is always possible to choose γ0 large enough to have

| Xγ0− l |< ε
2
. Combining these inequalities, we see at once that |< Tf, g > −l |< ε.

Consequently, since ε is arbitrary, we conclude that < Tf, g >= l. We have shown

that if a subnet of (< Tαf, g >) has a limit then this limit is equal to < Tf, g >.

Therefore, lim < Tαf, g >=< Tf, g >.

Now let ε > 0 and f ∈ Cc(G). For each g ∈ Lp′(G) there exists a function

g0 ∈ Cc(G) such that

‖ g − g0 ‖p′< ε inf((4c ‖ T ‖p,ω‖ f ‖p,ω)−1, (4 ‖ T ‖p,ω‖ f ‖p,ω)−1)
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Since lim < Tαf, g0 >=< Tf, g0 > , there is an α0 such that for each α greater than

α0, we have |< Tαf, g0 > − < Tf, g0 >|< ε
2
. Then

|< Tαf, g > − < Tf, g >|≤|< Tαf, g > − < Tαf, g0 >|

+ |< Tαf, g0 > − < Tf, g0 >| + |< Tf, g0 > − < Tf, g >|

≤|< Tαf, g − g0 >| +
ε

2
+ |< Tf, g0 − g >|

≤‖ Tαf ‖p‖ g − g0 ‖p′ +
ε

2
+ ‖ Tf ‖p‖ g − g0 ‖p′

≤ c ‖ T ‖p,ω‖ f ‖p,ω ε(4c ‖ T ‖p,ω‖ f ‖p,ω)−1 +
ε

2

+ ‖ T ‖p,ω‖ f ‖p,ω ε(4 ‖ T ‖p,ω‖ f ‖p,ω)−1 ≤ ε

4
+

ε

2
+

ε

4
= ε.

Hence,

lim < Tαf, g >=< Tf, g > for each f ∈ Cc(G), g ∈ Lp′(G).

Finally, let ε > 0 and g ∈ Lp′(G). For each f ∈ Lp
ω(G) there exists f0 ∈ Cc(G)

such that

‖ f − f0 ‖p,ω< ε inf((4c ‖ T ‖p,ω‖ g ‖p′)
−1, (4 ‖ T ‖p,ω‖ g ‖p′)

−1).

Since lim < Tαf0, g >=< Tf0, g > , there is an α0 such that for each α greater

than α0, we have |< Tαf0, g > − < Tf0, g >|< ε
2
. Then

|< Tαf, g > − < Tf, g >|≤|< Tαf, g > − < Tαf0, g >|

+ |< Tαf0, g > − < Tf0, g >| + |< Tf0, g > − < Tf, g >|

≤|< Tαf − Tαf0, g >| +
ε

2
+ |< Tf0 − Tf, g >|

≤‖ Tαf − Tαf0 ‖p‖ g ‖p′ +
ε

2
+ ‖ Tf0 − Tf ‖p‖ g ‖p′

≤ c ‖ T ‖p,ω‖ f − f0 ‖p,ω ε(4c ‖ T ‖p,ω‖ g ‖p′)
−1 +

ε

2
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+ ‖ T ‖p,ω‖ f − f0 ‖p,ω ε(4 ‖ T ‖p,ω‖ g ‖p′)
−1 ≤ ε

4
+

ε

2
+

ε

4
= ε.

We conclude that

lim < Tαf, g >=< Tf, g > for each f ∈ Lp
ω(G), g ∈ Lp′(G)

which is what we wish to establish.

Theorem 2.36. There exists an isometric linear isomorphism of M(Lp
ω(G), Lp(G))

into (Ap
ω(G))∗, the Banach space of continuous linear functionals on Ap

ω(G).

Proof. Let T ∈ M(Lp
ω(G), Lp(G)). If

h =
∞∑
i=1

fi ∗ gi, with fi, gi ∈ Cc(G),

then set

ψ(T )h =
∞∑
i=1

< Tfi, gi > .

Since Tfi ∈ Lp(G)) and gi ∈ Cc(G) ⊆ Lp′(G)), 1
p

+ 1
p′ = 1, we conclude that

| ψ(T )h |=|
∞∑
i=1

< Tfi, gi >|≤
∞∑
i=1

‖ Tfi ‖p‖ gi ‖p′

≤‖ T ‖p,ω

∞∑
i=1

‖ f ‖p,ω‖ gi ‖p′≤‖ T ‖p,ω|‖ h ‖|ω< ∞. (2.11)

It is apparent that ψ(T ) is linear. To show that ψ(T )(h) is independent of the

representation of h, it suffice to show that ψ(T )(h) = 0 whenever h = 0. By Lemma

2.35, there exists a net (gα) ⊂ Cc(G) such that:

(i) ‖ Tα(f) ‖p≤ c ‖ T ‖p,ω‖ f ‖p,ω for each f ∈ Lp
ω(G) and for each α

(ii) lim
α
‖ Tαf − Tf ‖p= 0 for each f ∈ Lp

ω(G)
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where Tαf = gα ∗ f and c is a positive constant dependent only on the weight

function ω. Suppose that

h =
∞∑
i=1

fi ∗ gi = 0, fi, gi ∈ Cc(G) and
∞∑
i=1

‖fi‖p,ω‖gi‖p′ < ∞.

For each α, we have

∞∑
i=1

| < Tαfi, gi > | ≤
∞∑
i=1

‖Tαfi‖p‖gi‖p′ ≤ c‖T‖p,ω

∞∑
i=1

‖fi‖p,ω‖gi‖p′ < ∞.

Hence, the series
∑∞

i=1 < Tαfi, gi > converges in the supremum norm uniformly

with respect to α, and

lim
α

∞∑
i=1

< Tαfi, gi >=
∞∑
i=1

lim
α

< Tαfi, gi >=
∞∑
i=1

< Tfi, gi > .

We also have

∞∑
i=1

< Tαfi, gi >=
∞∑
i=1

< gα ∗ fi, gi >=< gα,

∞∑
i=1

fi ∗ gi > .

To justify the last equality, note that the mapping f →< gα, f > is a continuous

linear form on C0(G) and the series
∑∞

i=1 fi ∗ gi converges in C0(G), since

∞∑
i=1

‖ fi ∗ gi ‖∞≤
∞∑
i=1

‖ fi ‖p‖ gi ‖p′≤
∞∑
i=1

‖ fi ‖p,ω‖ gi ‖p′< ∞.

Consequently, if h ∈ Ap
ω(G) is such that h = 0 then

∞∑
i=1

< Tfi, gi >= 0.

Therefore, ψ(T ) is a well defined linear form on Ap
ω(G). Moreover, by (2.11) we have

‖ ψ(T ) ‖≤‖ T ‖p,ω. Furthermore, we have

‖ T ‖p,ω= sup
f∈Cc(G),‖f‖p,ω≤1

‖ Tf ‖p
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= sup
f∈Cc(G),‖f‖p,ω≤1

( sup
g∈Cc(G),‖g‖q≤1

|< Tf, g >|)

≤ sup{| ψ(T )(h) |: h = f ∗ g, ‖ f ‖p,ω≤ 1, ‖ g ‖p′≤ 1, and f, g ∈ Cc(G)}

≤ sup{| ψ(T )(h) |:|‖ h ‖|ω≤ 1} =‖ ψ(T )(h) ‖ .

Hence, ‖ ψ(T ) ‖=‖ T ‖p,ω. Therefore,

ψ : M(Lp
ω(G), Lp(G)) → (Ap

ω(G))∗

is an isometric linear isomorphism. The proof will be complete once we have shown

that the mapping ψ is surjective. Let F ∈ (Ap
ω(G))∗. For each f ∈ Cc(G), define

Ff (g) = F (f ∗ g), g ∈ Cc(G). We have

| Ff (g) |=‖ F (f ∗ g) ‖≤‖ F ‖|‖ f ∗ g ‖|ω≤‖ F ‖‖ f ‖p,ω‖ g ‖p′ .

Hence, Ff defines a continuous linear form on Cc(G) considered as a subspace of

Lp′(G). Since Cc(G) is dense in Lp′(G) and (Lp′(G))∗ = Lp(G), there exists a unique

function Sf ∈ Lp(G) such that

Ff (g) = F (f ∗ g) =< g, Sf >, for each g ∈ Cc(G);

and we have

‖ Sf ‖p≤‖ F ‖‖ f ‖p,ω for each f ∈ Cc(G).

Since Cc(G) is dense in Lp
ω(G), S can be extended to a continuous linear transfor-

mation T : Lp
ω(G) → Lp(G), with ‖ T ‖p,ω≤‖ F ‖. Furthermore, for each s ∈ G and

each f, g ∈ Cc(G) we have

< Tιsf, g >= F (ιsf ∗ g) = F (f ∗ ιsg) =< Tf, ιsg >=< ιsTf, g > .
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Since Cc(G) is dense in Lp′(G), we obtain

Tιsf = ιsTf, for each f ∈ Cc(G).

Since Cc(G) is dense in Lp
ω(G), we obtain

Tιsf = ιsTf, for each f ∈ Lp
ω(G).

Thus, T ∈ M(Lp
ω(G), Lp(G)).

However, if h ∈ Ap
ω(G) has the representation h =

∞∑
i=1

fi ∗ gi, then

ψ(T )(h) =
∞∑
i=1

< Tfi, gi >=
∞∑
i=1

F (fi ∗ gi) = F (h),

since the sequence (
n∑

i=1

fi∗gi)n≥1 converges to h in Ap
ω(G). That is ψ(T ) = F.

Therefore, ψ is surjective and the proof is complete.

The technique of tensor products is often used to solve multiplier problems for

non abelian groups [29]. In [18] A.T.Gürkanli and S.Öztop have used this technique

to obtain the following result for a unimodular group and for 1 ≤ p ≤ 2:

If every element of M(Lp
ω(G), Lp

ω1−p′ (G)) can be approximated in the ultraweak∗

operator topology by an operator of the form Tϕ : f → ϕ ∗ f , ϕ ∈ Cc(G), then

M(Lp
ω(G), Lp

ω1−p′ (G)) can be identified isometrically with the dual of the Banach

space,

′Ap
ω(G) := {

∞∑
i=1

fi ∗ gi : fi, gi ∈ Cc(G) and
∞∑
i=1

‖fi‖p,ω‖gi‖p′,ω < ∞},

endowed with the norm

′|||f |||ω = inf{
∞∑
i=1

‖fi‖p,ω‖gi‖p′,ω : fi, gi ∈ Cc(G) and f =
∞∑
i=1

fi ∗ gi}.
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To avoid confusion, a left prime is added to these newly defined spaces. Let us

assume that G is a locally compact abelian group, and 1 < p ≤ 2. Then

M(Lp
ω(G)) ↪→ (Ap

ω(G))∗ ↪→ (′Ap
ω(G))∗.

Thus, my result improves the result of A.T.Gürkanli and S.Öztop.

2.6 Summary

A study of multiplier problems for Beurling weighted spaces is presented in

this chapter. G. Gaudry solved the multiplier problem for L1
ω(G), i.e., he proved

that M(L1
ω(G)) can be identified with the weighted space of bounded measures

Mω(G) [15]. In this chapter I solved multiplier problems for (L1
ω(G), Lp

ω(G)) and for

(Lp
ω(G), Lp(G)).

My first new result is Theorem 2.24, where I proved that the spaces M(L1
ω(G), Lp

ω(G))

and Lp
ω(G) can be topologically and algebraically identified. This solves the multi-

plier problem for (L1
ω(G), Lp

ω(G)).

The multiplier problem for M(Lp
ω(G)) is an open and difficult problem [18]. In

Proposition 2.32, I proved that M(Lp
ω(G)) can be embedded in the space M(Lp

ω(G), Lp(G)).

Motivated by this, I solved the multiplier problem for (Lp
ω(G), Lp(G)). In Defini-

tion 2.33, I defined Ap
ω(G), a new space of Figà-Talamanca type. In Proposition

2.34, I proved that Ap
ω(G), endowed with a norm defined in Definition 2.33, is a

Banach space. In Theorem 2.36, I proved that M(Lp
ω(G), Lp(G)) can be isometri-

cally identified with the dual of the space Ap
ω(G). This new result improves a result

obtained A.T.Gürkanli and S.Öztop [18]. The results obtained in section 2.5 can be
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summarized as follows:

M
ω

1
p
(G) ↪→ M(Lp

ω(G)) ↪→ M(Lp
ω(G), Lp(G)) ' (Ap

ω(G))∗;

where the sign ′′ ' ′′ means an isometric identification, and the sign ′′ ↪→ ′′ means

an embedding.
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Chapter 3

Product-convolution operators

Let G be a locally compact abelian group, f ∈ L1(G), and ϕ ∈ L∞(G). We

define the convolution and multiplication operators, respectively, as follows:

Cf : g 7→ f ∗ g and Mϕ : g 7→ ϕg, g ∈ L2(G).

If G = R then, except for trivial cases, the operators Cf and Mϕ are never com-

pact on L2(R). However, the composition of these two operators is, in some cases,

compact. A paper by R.C Busby and H.A.Smith [6] gives necessary and sufficient

conditions on ϕ for the compactness of the product-convolution operator MϕCf . In

section 3.1, I prove that if ϕ belongs to the closure of Lp(G)∩L∞(G) in L∞(G) and

f ∈ L1(G), then the product-convolution operator MϕCf is compact. This can also

be deduced from the Busby and Smith results. My proof is based on approximations

of compact operators by Hilbert-Schmidt operators and a property of C∗-algebras.

The proof of R.C Busby and H.A.Smith is based on properties of mixed norm spaces.

In section 3.2, I apply the results of the first section to show that some Volterra con-

volution type integral operators are compact. As a second application, I show that,

for any function f ∈ L1(G), the convolution operator Cf : L2
ω(G) → L2

ω−1(G) is

compact, where ω is a positive measurable function for which ω−1 is bounded and

vanishes at infinity. Then I obtain a spectral decomposition of Cf that gives rise to

a numerical method to solve a theoretical problem in communication theory [35]. In
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section 3.3, I prove that the spectral synthesis of some product-convolution opera-

tors can be obtained by solving differential equations. This new result is interesting,

since it gives the spectral decomposition of some compact operators, which are not

necessarily Hilbert-Schmidt operators. I end this section by some relevant examples.

Among the consequences of these examples, I obtain special functions as eigenfunc-

tions of product-convolution operators. In section 3.4, I summarize the results of

this chapter.

3.1 Compactness of product-convolution operators

Let G be a locally compact abelian group. For each 1 ≤ p ≤ ∞ we denote

by ‖ f ‖p the norm of f ∈ Lp(G) . We denote by L(L2(G)) the space of all

bounded linear operators on the Hilbert space L2(G), and by LC(L2(G)) the space

of all compact operators on L2(G). We denote by ‖ T ‖ the operator norm of each

T ∈ L(L2(G)). For definitions and certain properties of bounded, compact, and

Hilbert-Schmidt operators see appendix B. For f ∈ L1(G) and ϕ ∈ L∞(G), we

define the convolution and multiplication operators, respectively, as follows:

Cf : g 7→ f ∗ g and Mϕ : g 7→ ϕg, g ∈ L2(G).

Theorem 3.1. Let f ∈ L1(G) and ϕ ∈ L∞(G). MϕCf is a Hilbert-Schmidt operator

on L2(G) if and only if f, ϕ ∈ L2(G).

Proof. Let g ∈ L2(G). Then

MϕCfg(t) = ϕ(t)

∫
f(t− s)g(s)ds.
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Thus, MϕCf is an integral operator whose kernel is the function k(t, s) = ϕ(t)f(t−s).

We recall (see Theorem B.9) that an integral operator is Hilbert-Schmidt if and only

if its kernel is square integrable. Since we have

∫ ∫
| k(t, s) |2 dtds =

∫
(

∫
| f(t− s) |2 dt) | ϕ(s) |2 ds

=

∫
(

∫
| f(t) |2 dt) | ϕ(s) |2 ds =‖ f ‖2

2‖ ϕ ‖2
2,

the assertion of Theorem 3.1 follows.

For 1 ≤ p < ∞, we denote by Lp(G) ∩ L∞(G)
∞

the closure of Lp(G)∩L∞(G)

in L∞(G) endowed with its usual topology.

Lemma 3.2. For 1 ≤ p ≤ ∞, we have

Lp(G) ∩ L∞(G)
∞

= L1(G) ∩ L∞(G)
∞

.

Proof. Since one inclusion is obvious, it suffices to show that for each p ≥ 1 we have

Lp(G) ∩ L∞(G) ⊂ L1(G) ∩ L∞(G)
∞

.

Set C = L1(G) ∩ L∞(G)
∞

, and define the involution (∗) on L∞(G) by: f ∗(t) =

f(t). With this setting, C is a subC∗-algebra of L∞(G), see Definition B.11. Let

ψ ∈ Lp(G) ∩ L∞(G), then | ψ |p∈ L1(G) ∩ L∞(G) ⊂ C. Using Proposition B.13, we

conclude that ψ ∈ C, and this finishes the proof.

The proof of the following lemma, about the operators Cf and Mϕ, is straight-

forward.

Lemma 3.3. Let f, g ∈ L1(G) and let ϕ, ψ ∈ L∞(G). Then
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(i) ‖ Mϕ ‖=‖ ϕ ‖∞ and ‖ Cf ‖=‖ f̂ ‖∞≤‖ f ‖1.

(ii) MϕMψ = Mϕψ and CfCg = Cf∗g.

(iii) (Mϕ)∗ = Mϕ and (Cf )
∗ = Cf∗ where f ∗(t) = f(−t) a.e.

The result of the following theorem is not new, but I use new techniques to

prove it.

Theorem 3.4. If f ∈ L1(G) and ϕ ∈ Lp(G) ∩ L∞(G)
∞

, then the product-convolution

operator MϕCf is compact on L2(G).

Proof. Let ϕ ∈ L2(G) ∩ L∞(G) and f ∈ L1(G). Let (fn)n>0 be an approximate

identity of L1(G), consisting of compactly supported functions. Since ϕ, fn ∈

L2(G) ∩ L1(G) for each integer n > 0, we conclude, by Theorem 3.1, that the

operator MϕCfn is Hilbert-Schmidt, and thus, is compact. Since LC(L2(G)) is a

sided ideal of L(L2(G)) ( see Proposition B.2), we conclude that (MϕCfCfn)n>0 is

a sequence of compact operators. By using Lemma 3.3, we have

‖ MϕCfCfn −MϕCf ‖=‖ Mϕ(CfCfn − Cf ) ‖=‖ Mϕ(Cf∗fn − Cf ) ‖

≤‖ Mϕ ‖‖ Cf∗fn − Cf ‖≤‖ f ∗ fn − f ‖1‖ ϕ ‖∞ .

If we remember that (fn)n>0 is an approximate identity for L1(G) and let n tend

to infinity, we conclude that the sequence (MϕCfCfn)n>0, of compact operators,

converges to the operator MϕCf . Since LC(L2(G)) is a Banach space, we conclude

that the operator MϕCf is compact. Thus, we have shown that if ϕ ∈ L2(G) ∩

L∞(G), then the operator MϕCf is compact for each f ∈ L1(G). Now let ϕ ∈

L2(G) ∩ L∞(G)
∞

. There exists a sequence (ϕn)n>0 such that ϕn ∈ L2(G) ∩ L∞(G)

52



for each integer n > 1 and lim ‖ ϕn − ϕ ‖∞= 0. Then, for each f ∈ L1(G), the

sequence (MϕnCf )n>0 is contained in LC(L2(G)). By using Lemma 3.3, we obtain

‖ MϕnCf −MϕCf ‖≤‖ Mϕn −Mϕ ‖‖ Cf ‖=‖ ϕn − ϕ ‖∞‖ Cf ‖ .

Thus, the sequence MϕnCf of compact operators converges to MϕCf and hence the

operator MϕCf is compact. Finally, the proof can be completed by using Lemma

3.2.

Corollary 3.5. If f ∈ L1(G) and ϕ is a measurable function vanishing at infinity,

then the product-convolution operator MϕCf is compact on L2(G).

Proof. Since ϕ is a measurable function vanishing at infinity, for each integer n > 0,

there exists a compact set Kn ⊂ G such that

| ϕ(t) |< 1

n
for each t ∈ (GrKn).

Consider the sequence (ϕn = ϕ1kn)n>0, where 1kn is the characteristic function of

Kn. Then ‖ ϕn − ϕ ‖< 1
n

for each integer n > 0, and thus ϕn → ϕ in L∞(G). For

each integer n the function ϕn ∈ L2(G) ∩ L∞(G), since ϕn is compactly supported.

Consequently, the function ϕ is an element of L2(G) ∩ L∞(G)
∞

. This fact along

with Theorem 3.4 give Corollary 3.5.

In [6] R.C.Busby and A.H.Smith obtained the following result.

Theorem 3.6. Let ϕ ∈ L∞(R). The product-convolution operator MϕCf on L2(R)

is compact for each f ∈ L1(R) if and only if

lim
n→∞

∫ n+1

n

| ϕ(t) | dt = 0.
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We remark that Theorem 3.4 is a consequence of the last theorem for the case

G = R. The version of Theorem 3.6 for locally compact groups is given in [6], but

requires too many preliminaries to be stated, here.

3.2 Applications

Corollary 3.7. Let f ∈ L1([0, 1]). The operator

T : g → T (g), where T (g)(t) =

∫ t

0

f(t− s)g(s)ds a.e,

is compact on L2([0, 1]).

Proof. Consider the extension operator E : L2([0, 1]) → L2(R) and the restriction

operator R : L2(R) → L2([0, 1]) which are defined as follows. If x ∈ L2([0, 1]) then

E(x) = X is such that X(t) = x(t) for almost all t ∈ [0, 1] and X vanishes out of

[0, 1]. If X ∈ L2(R) then R(X) = x is such that x(t) = X(t) for almost all t ∈ [0, 1].

Let F = E(f) and ϕ = 1[0,1], the characteristic function of [0, 1]. By Corollary

3.5, the operator MϕCF Mϕ is compact. It is easy to see that the operators E and R

are bounded and that T = RMϕCfMϕE. Therefore, the operator T is compact.

Remark 3.8. A result similar to Corollary 3.7 can be stated for any bounded interval

[a, b].

The operators defined in Corollary 3.7 are called Volterra convolution type

integral operators [22]. One historically important example of them is the following.

Example 3.9. The Abel transform of index α, where α is a positive real number,
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is defined by

Aαx(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, for each x ∈ L2([0, 1]),

where Γ(α) is the Gamma function [27]. Sometimes Aαx is called a Riemann-

Liouville integral and it is related with fractional derivatives ([20] and [22]). We

claim that the operator Aα is compact for any positive real number α. Indeed, the

function fα(t) = tα−1

Γ(α)
is integrable on [0, 1]; and thus, the compactness of the operator

Aα follows by using Corollary 3.7. We note that the operator Aα is not a Hilbert-

Schmidt operator if 0 < α ≤ 1
2
.

Proposition 3.10. Let ω be a positive weight function such that the function 1
ω

is bounded and satisfies the condition of Theorem 3.6. If h ∈ L1(G) is such that

h(t) = h(−t) (a.e), then there exist a sequence (λn)n>0 of nonzero real numbers,

an orthonormal system (fn)n>0 in L2
ω(G), and an orthonormal system (gn)n>0 in

L2
ω−1(G), such that

h ∗ x =
∑
n>0

λn < x, fn >ω gn for every x ∈ L2
ω(G) (1),

where the right hand side of (1) is understood to be convergent in the topology of

bounded operators, i.e., lim
N

sup
‖x‖2,ω=1

‖
N∑

n=0

λn < x, fn >ω gn−Tx ‖2,ω−1= 0.

As an example, think of the Beurling weight ω(t) = 1+ | t | defined in the first

chapter.

Proof. Let ϕ = 1√
ω
. Then ϕ satisfies the condition of Theorem 3.6, and the operator

MϕChMϕ is compact. Since h = h∗ and ϕ is real valued , by Lemma 3.3, we have

(MϕChMϕ)∗ = (Mϕ)∗(Ch)
∗(Mϕ)∗ = MϕCh∗Mϕ = MϕChMϕ.
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Therefore, the operator MϕChMϕ is compact and self-adjoint. By the spectral de-

composition Theorem for self-adjoint compact operators, see Theorem B.6, there

exist a sequence (λn)n>0 of nonzero eigenvalues of MϕCfMϕ and an associated oth-

onormal system (en)n>0 of eigenvectors such that

ϕ(h ∗ ϕy) =
∑
n>0

λn < y, en > en for every y ∈ L2(G).

For each n > 0 set x = ϕy, fn = ϕen and gn = en

ϕ
. Then we obtain

h ∗ ϕx =
∑
n>0

λn < x, fn >ω gn for every x ∈ L2(G).

Since < fm, fn >ω=
∫

fmfnωdt =
∫

emendt, (fn)n>0 is an orthonormal system in

L2
ω(G). Since < gm, gn >ω−1=

∫
gmgnω

−1dt =
∫

emendt, (gn)n>0 is an orthonormal

system in L2
ω−1(G). This finishes the proof of Proposition 3.10.

Corollary 3.11. Let ω be a positive weight function such that the function 1
ω

is

bounded and satisfies the condition of Theorem 3.6. If h ∈ L1(G), then there exist

a sequence (λn)n>0 of complex numbers, a sequence (fn)n>0 in L2
ω(G), a sequence

(gn)n>0 in L2
ω−1(G), such that (fn)n>0 is a frame for its span, (gn)n>0 is a frame for

its span, and

h ∗ x =
∑
n>0

λn < x, fn >ω gn for every x ∈ L2
ω(G), (2)

where the right hand side of (2) is understood to be convergent in the topology of

bounded operators.

Proof. Consider the two functions h1(t) = 1
2
[h(t) + h(−t)] and h2(t) = i

2
[h(t) −

h(−t)]. Then h1 = h∗1, h2 = h∗2, and h = h1 − ih2. By Proposition 3.10, there exist
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two sequences (λ1
n)n>0 and (λ2

n)n>0, two orthonormal systems (f 1
n)n>0 and (f 2

n)n>0

in L2
ω(G), and two orthonormal systems (g1

n)n>0 and (g2
n)n>0 in L2

ω−1(G) such that

h ∗ x = h1 ∗ x− ih2 ∗ x =
∑
n>0

λ1
n < x, f 1

n >ω g1
n − iλ2

n < x, f 2
n >ω g2

n.

Define the sequences (λn)n>0, (fn)n>0, and (gn)n>0 as follows:

λ2n+1 = λ1
n and λ2n = −iλ2

n.

f2n+1 = f 1
n and f2n = f 2

n.

g2n+1 = λ1
n and g2n = g2

n.

Since each sequence of (fn)n>0 and (gn)n>0 is a frame for its span, as each sequence

is the union of two orthonormal systems [17], the proof of Corollary 3.11 is complete.

In communication systems a transmitted signal x passes though a channel H

and arrives at the receiver as y = Hx. If the channel is time invariant then it can

be modeled by a convolution operator: y = Hx = h ∗ x, [35].

The problem is to recover the transmitted signal x by using the data of the

received signal y, in other words we want to solve the equation

y = h ∗ x (E),

where y is known and x is unknown. Assume that Hx = 0 only if x = 0, i.e.,

the operator H is injective. One way to solve (E) is to use Fourier transforms to

obtain ĥx̂ = ŷ, i.e., x̂ = bybh (the injectivity of H implies that ĥ(γ) 6= for almost all

γ). It can be shown that x lies in a Beurling weighted space L2
ω(G), see [33], where
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ω(t) = e|t|
δ
. If we suppose that h = h∗ then, by using Proposition 3.10, equation

(E) can be replaced by

∑
n>0

λn < x, fn >ω gn = y (E ′),

which is a discrete form of equation (E). Since (gn) is an orthonormal basis for

L2
ω−1(G) , we have

λn < x, fn >ω=< y, gn >ω−1 for every n > 0,

and hence,

< x, fn >ω=
< y, gn >ω−1

λn

for every n > 0.

Remember that (λn)n>0 is a sequence of eigenvalues, hence, λn 6= 0 for all n > 0.

Therefore, we recover x by the formula

x =
∑
n>0

< x, fn >ω fn =
∑
n>0

< y, gn >ω−1

λn

fn.

For each integer N consider the finite linear system

N∑
n>0

λn < z, fn >ω gn = y. (SN)

As before SN has a unique solution xN that can be written

xN =
N∑

n>0

< xN , fn >ω gn =
N∑

n>0

< y, gn >ω−1

λn

gn.

The sequence (xN)N>0 converges to x in L2
ω(G), hence, xN can be taken as an

approximation of the solution x.
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3.3 Spectral synthesis of product-convolution operators

A nonzero complex number λ is said to be a characteristic value of a linear

operator T , if 1
λ

is an eigenvalue for T . The following proposition is a new result

permitting the spectral synthesis of some product-convolution operators.

Proposition 3.12. Let h ∈ L1(R) and ϕ, ψ ∈ L∞(R). Let x ∈ L2(R) and assume

that the function ϕ and h ∗ ψx are twice differentiable on an open set Ω ⊂ R.

Consider on L2(R) the operator H = MϕChMψ. Then:

(i) If x is an eigenfunction of the operator H = MϕChMψ associated with a

characteristic value λ, then x is, on Ω, a solution of the integro-differential equation:

Eλ : ϕ2y′′ − 2ϕ′ϕy′ + (2(ϕ′)2 − ϕ′′ϕ)y = λϕ3(h ∗ ψy)′′.

(ii) If x is a solution of Eλ, then λH(x) − x is a solution, on Ω, of the

differential equation

E ′
λ : ϕ2y′′ − 2ϕ′ϕy′ + (2(ϕ′)2 − ϕ′′ϕ)y = 0.

Proof. On the open set Ω we have

(H(x))′ = ϕ(h ∗ ψx)′ + ϕ′(h ∗ ψx);

(H(x))′′ = ϕ(h ∗ ψx)′′ + 2ϕ′(h ∗ ψx)′ + ϕ′′(h ∗ ψx).

Then

ϕ2(H(x))′′ − 2ϕ′ϕ(H(x))′ = ϕ3(h ∗ ψx)′′ + (ϕ′′ϕ− 2(ϕ′)2)H(x),

i.e.,

ϕ2(H(x))′′ − 2ϕ′ϕ(H(x))′ + (2(ϕ′)2 − ϕ′′ϕ)H(x) = ϕ3(h ∗ ψx)′′.
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If x = λH(x), the last equality becomes

ϕ2x′′ − 2ϕ′ϕx′ + (2(ϕ′)2 − ϕ′′ϕ)x = λϕ3(h ∗ ψx)′′.

Hence, we obtain (i).

Now suppose that x is a solution of Eλ. Then

ϕ2(λH(x)− x)′′ − 2ϕ′ϕ(λH(x)− x)′ + (2(ϕ′)2 − ϕ′′ϕ)(λH(x)− x) = 0.

Hence, we obtain (ii).

Proposition 3.13. Let h = e−|t| and let ϕ, ψ ∈ L∞(R). Assume that ϕ is twice

differentiable on some open set Ω ⊂ R, and ψ is continuous on Ω. Consider on

L2(R) the operator H = MϕChMψ. If x is an eigenfunction of the operator H

associated with a characteristic value λ, then

(i) The function x is twice differentiable on the open set Ω.

(ii) The function x is, on Ω, a solution of the differential equation

ϕ2x′′ − 2ϕ′ϕx′ + (2(ϕ′)2 − ϕ′′ϕ− ϕ2 + 2λϕ3ψ)x = 0.

Proof. We have x = λHx = λϕ(h∗ψx). Since h, ψx ∈ L2(R), the function (h∗ψx) is

continuous, see appendix A.3. Therefore, the function x = λλϕ(h∗ψx) is continuous

on Ω, since the functions ϕ and h ∗ ψx are continuous on Ω. Now let t ∈ Ω. Then

we have

(h ∗ ψx)(t) =

∫
e−|t−s|ψ(s)x(s)ds = e−t

∫ t

−∞
esψ(s)x(s)ds + et

∫ ∞

t

e−sψ(s)x(s)ds.

Since Ω is open, there exists an open interval (a, b) such that t ∈ (a, b) ⊂ Ω. We

have
∫ t

−∞
esψ(s)x(s)ds =

∫ a

−∞
esψ(s)x(s)d +

∫ t

a

esψ(s)x(s)ds.
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The function esψ(s)x(s) is continuous on (a, b). Then by the Fundamental Theo-

rem of Calculus the function t → ∫ t

a
esψ(s)x(s)ds is differentiable on (a, b) and its

derivative at t is given by etψ(t)x(t). By using a similar arguments we can show

that the function t → ∫∞
t

e−sψ(s)x(s)ds is differentiable on Ω and its derivative at

t is given by e−tψ(t)x(t). Therefore, the function (h ∗ψx) is differentiable on Ω. By

computing the derivatives, we obtain

(h ∗ ψx)′(t) = −e−t

∫ t

−∞
esψ(s)x(s)ds + et

∫ ∞

t

e−sψ(s)x(s)ds.

By proceeding as before, we can show that (h∗ψx) is twice differentiable on Ω; and,

by computing the derivatives, we obtain

(h ∗ ψx)′′(t) = h ∗ ψx− 2ψx. (3.1)

Now by using Proposition 3.12, we have

ϕ2x′′ − 2ϕ′ϕx′ + (2(ϕ′)2 − ϕ′′ϕ)x = λϕ3(h ∗ ψx)′′.

And by using (3.1), we obtain

ϕ2x′′ − 2ϕ′ϕx′ + (2(ϕ′)2 − ϕ′′ϕ− ϕ2 + 2λϕ3ψ)x = 0.

This finishes the proof.

Example 3.14. Let h(t) = e−|t| and ϕ = 1[0,1]. We have h(t) = h(−t) and ϕ is

real valued. Then the operator H = MϕCfMϕ is self-adjoint and is Hilbert-Schmidt,

since h, ϕ ∈ L2(R). Then the spectrum of H is countable and consists of nonzero

real numbers.
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We claim that the operator x → h ∗ x is injective on L2(R). Indeed, Let

x ∈ L2(R) such that h ∗ x = 0. Then ĥ ∗ x = ĥx̂ = 0. However

ĥ(γ) =

∫
e−2πite−|t|dt =

2

1 + 4π2γ2

is never vanishing. Then x̂ = 0 and thus x = 0. This shows the claim.

Let H0 = RHE where E : L2([0, 1]) → L2(R) is the extension operator and

R : L2(R) → L2([0, 1]) is the restriction operator. Then the operator H0 is compact

self-adjoint and injective on L2([0, 1]). By Proposition 3.13, the eigenfunctions of

H0 satisfy the differential equation

Eλ : y′′ + (2λ− 1)y = 0.

If λ = 1
2
, the solutions of Eλ are given by y(t) = at + b, and

1

2
H0(y)(t) = y(t) +

1

2
[(a− b)e−t − 2a + b

e
et].

Therefore, 1
2

is not a characteristic value for H0.

If λ 6= 1
2
, the solutions of Eλ are given by y(t) = aeµt+be−µt, where µ2 = 1−2λ.

We have

λH0(y)(t) = y(t) +
1

2
[(a(µ− 1)− b(µ + 1))e−t +

−a(µ + 1)eµ + b(µ− 1)e−µ

e
et].

Thus, λ is a characteristic value of H0 if and only if

b = a
µ− 1

µ + 1
, (3.2)

eµ = ∓µ− 1

µ + 1
. (3.3)

The solutions of the equation eµ = µ−1
µ+1

, are given by the purely imaginary

numbers µ = iα such that tan(α
2
) = 1

α
and α > 0.
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The solutions of the equation eµ = −µ−1
µ+1

, are given by the purely imaginary

numbers µ = iα such that tan(α
2
) = −α and α > 0.

Now we shall give the spectral decomposition of the operator H0. First recall

that H0 is compact, self-adjoint and injective. By Theorem B.6, there exists an

orthonormal basis (en)n≥0 of L2([0, 1]) and a sequence (ηn)n≥0 such that

Tx =
∑

ηn < x, en > en =
∑

< Tx, en > en.

Define the sequence (αn)n≥0 as follows:

tan(
α2(n+1)

2
) =

1

α2(n+1)

and α2(n+1) ∈ ((2n + 3)π, (2n + 5)π),

tan(
α2n+1

2
) = −α2n+1 and α2n+1 ∈ ((2n + 1)π, (2n + 3)π),

tan(
α0

2
) =

1

α0

and α0 ∈ (0, π).

The sequence of eigenvalues of H0 is ( 2
1+α2

n
)n≥0, and the spectral decomposition of

H0 is given by

H0(x) =
∑
n>0

2

1 + α2
n

< x, en > en,

where (en)n≥0, defined by

en(t) =

√
1 + α2

n

2(3 + α2
n)

[eiαnt + (−1)neiαne−iαnt],

is the orthonormal basis of L2([0, 1]) consisting of the eigenfunctions of H0.

Example 3.15. Let h(t) = e−|t| and ϕ(t) = eαt1(−∞,0), α > 0. Let H0 = RHE

where E : L2((−∞, 0)) → L2(R) is the extension operator and R : L2(R) →

L2((−∞, 0)) is the restriction operator. As in Example 3.14 we can show that
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the operator H0 is Hilbert-Schmidt, self-adjoint and injective on L2((−∞, 0)). The

eigenfunctions of H0 satisfy the differential equation

Eλ : y′′ − 2αy′ − (α2 − 1 + 2λe2αt)y = 0.

The solution of Eλ are given by:

eαtJ 1
α
(
µ

2
eαt)

where J 1
α

is the Bessel function of order 1
α
, see [27], and µ2 = 2λ. By calculations

similar to Example 3.14, we can deduce that the sequence of eigenvalues is given by

the sequence ( 2
µ2

n
)n≥0, where µn

2
are the zeros of the Bessel function J 1

α
−1, and the

sequence of eigenfunctions is given by

en(t) =

√
2α

J 1
α
(µn

2
)
eαtJ 1

α
(
µn

2
eαt).

The spectral decomposition of H0 is given by

H0(f) =
∑
n>0

4α

(µnJ 1
α
(µn

2
))2

< f, en > en.

Example 3.16. Let h(t) = e−|t| and ϕ(t) = 1√
t
1(1,∞). We note that ϕ is zero at

infinity, hence, the operator H = MϕCfMϕ is compact by Corollary 3.5, but not

necessarily Hilbert-Schmidt. Let H0 = RHE where E : L2((1,∞)) → L2(R) is the

extension operator and R : L2(R) → L2((1,∞)) is the restriction operator. As be-

fore, we can show that H0 is compact, self-adjoint, and injective. The eigenfunctions

of H satisfy the differential equation

Eλ : t2y′′ + ty′ − (t2 − 2λt +
1

4
)y = 0.
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To solve Eλ we set y(t) = 1√
t
etz(−2t) to obtain the equation

Fλ : tz′′ − tz′ − λz = 0,

which is a degenerate hypergeometric equation, [27].

3.4 Summary

Product-convolution operators are studied in this chapter.

In Theorem 3.4, I proved that if ϕ belongs to the closure of Lp(G)∩L∞(G) in

L∞(G) and if f ∈ L1(G), then the product-convolution operator MϕCf is compact

on L2(G). This is a known result, for which I gave a new proof. In section 3.2, I

presented some applications of the results of section 3.1. Proposition 3.10 showed

that a convolution operator Ch : L2
ω(G) → L2

ω−1(G) is compact, if ω is such that

ω−1 satisfies the condition of Theorem 3.4. I used this new result and the spectral

decomposition theorem for compact operators to solve equations of the forms y =

h ∗ x. These kinds of equations recall equations arising in communications theory

[35]. In Proposition 3.12 and Proposition 3.13, I proved that the eigenfunctions of

some product-convolution operators can be obtained as solutions of some differential

equations. This new result is interesting, since it gives the spectral decomposition

of some compact operators which are not necessarily Hilbert-Schmidt operators.

As an illustration, I ended this chapter by three examples. Incidentally, I obtain

some special functions as eigenfunctions of some product-convolution operators. I

also obtained the zeros of some special functions as eigenvalues of some product-

convolution operators.
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Chapter 4

The tensor product of frames

It is known that the tensor product of two orthonormal bases is an orthonormal

basis. In this chapter, I prove the following new result.

Theorem 4.26. The sequence (fk
i )i∈Ik

is a frame (Riesz basis) for a

Hilbert space Hk, k ∈ {1, 2}, if and only if (f 1
i ⊗ f 2

j )(i,j)∈I1×I2 is a frame

(Riesz basis) for H1 ⊗H2.

This result improves a result by C.Heil, J.Ramanathan, and P.Topiwala [19]. They

prove that the tensor product of a frame with itself is a frame. Section 4.1 and

appendix B contain the essentials of operator theory needed for Chapter 4. In

Section 4.1, I describe H1 ⊗ H2, the tensor product of two Hilbert spaces H1 and

H2. In section 4.2, I prove Theorem 4.8 and Theorem 4.12, two new contributions to

the theory of tensor products. In Section 4.3, I define frames and state some of their

properties. I prove Lemma 4.8, this new result is an interesting connection between

the theory of frames and the theory of operators. In section 4.4, I prove Theorem

4.26, the main result of this Chapter. I use this result to extend the Lyubarski

and Seip-Wallsten theorem, characterizing Gabor frames generated by the Gaussian

function, to higher dimensions([17], [24], and [32]). Section 4.5 is a summary of all

results of this chapter.
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4.1 The tensor product of Hilbert spaces

The main reference for this section is [14]. Let H1 and H2 be two Hilbert

spaces. If k ∈ {1, 2}, we denote by ‖ . ‖k and <,>k the norm and the inner product

of Hk, respectively.

Definition 4.1. Let H1 and H2 be two Hilbert spaces. An operator T : H1 → H2

is called Hilbert-Schmidt, if for some orthonormal basis (ei)i∈I in H1 one has

∑
i∈I

‖ T (ei) ‖2
2< ∞.

We denote by L2(H1,H2) the space of all Hilbert-Schmidt operators: H1 → H2.

Proposition 4.2. Let T ∈ L2(H1,H2).

(i) The series
∑

i∈I ‖ T (ei) ‖2
2 is independent of the orthonormal basis (ei)i∈I

used. Thus, we can define

‖ T ‖H(H1,H2)= (
∑
i∈I

‖ T (ei) ‖2
2)

1
2 .

(ii) If T ∗ : H2 → H1 is the adjoint operator of T , then T ∗ is Hilbert-Schmidt

and

‖ T ∗ ‖H(H2,H1)=‖ T ‖H(H1,H2) .

(iii) The operator T is compact and we have ‖ T ‖O(H1,H2)≤‖ T ‖H(H1,H2),

where ‖ T ‖O(H1,H2) is the operator norm of T .

(iv) If X and Y are two Hilbert spaces, S : X → H1 a bounded operator, and

R : H2 → Y a bounded operator. Then the operator RTS : X → Y is Hilbert-

Schmidt. Furthermore, we have

‖ RTS ‖H(X,Y )≤‖ R ‖O(H2,Y )‖ T ‖H(H1,H2)‖ S ‖O(X,H1) .
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Example 4.3. For f ∈ H1 and g ∈ H2 we denote by Eg,f : H1 → H2 the rank one

operator, defined by Eg,f (x) =< x, f >1 g for each x ∈ H1. The operator Eg,f is

Hilbert-Schmidt, and ‖ Eg,f ‖H(H1,H2)=‖ f ‖1‖ g ‖2. Any finite combination of rank

one operators, is called a finite rank operator and is also Hilbert-Schmidt.

Proposition 4.4. (i) For every F1, F2 ∈ L2(H1,H2) the series
∑

i∈I < F1(ei), F2(ei) >2

is absolutely convergent and independent of the particular orthonormal basis used to

define it; we hence define

< F1, F2 >=
∑
i∈I

< F1(ei), F2(ei) >2 .

(ii) The map (F1, F2) →< F1, F2 > defines an inner product on L2(H1,H2),

and with this inner product L2(H1,H2) is a Hilbert space.

(iii) The map T → T ∗ is an isometric bijective antilinear map: L2(H1,H2) →

L2(H2,H1).

Theorem 4.5. The topological tensor product H1 ⊗ H2 can be interpreted as the

Hilbert space L2(H2,H1).

The interpretation of Theorem 4.1 is based on the identification f ⊗ g ' Ef,g.

I shall use this theorem as a definition of H1 ⊗H2.

Remark 4.6. By Proposition 4.4(iii) we have the identification L2(H1,H2) '

L2(H2,H1), hence H1 ⊗H2 ' H2 ⊗H1.
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4.2 The tensor product of bounded operators

If X and Y are two Banach spaces, we denote by L(X, Y ) the space of all

bounded operators: X → Y . The norm of each T ∈ L(X, Y ) shall be denoted by

‖ T ‖O(X,Y ). If X = Y we denote L(X) = L(X,Y ) and ‖ T ‖O(X)=‖ T ‖O(X,Y ).

If F1 ∈ L(H1), F2 ∈ L(H2) and H ∈ L2(H2,H1), then, by Proposition 4.2(iv),

F1HF ∗
2 ∈ L2(H2,H1). We define the operator F1⊗F2 : H1⊗H2 → H1⊗H2 by the

rule F1 ⊗ F2(H) = F1HF ∗
2 . For example, for every f ∈ H1 and g ∈ H2, we have

F1 ⊗ F2(f ⊗ g) = F1Ef,gF
∗
2 = EF1(f),F2(g) = F1(f)⊗ F2(g).

Proposition 4.7. (i) If F1 ∈ L(H1) and F2 ∈ L(H2), then the operator F1 ⊗ F2 ∈

L(H1 ⊗H2) and ‖ F1 ⊗ F2 ‖O(H1⊗H2)=‖ F1 ‖O(H1)‖ F2 ‖O(H2).

(ii) If F1, G1 ∈ L(H1) and F2, G2 ∈ L(H2),then

(F1 ⊗ F2)(G1 ⊗G2) = F1G1 ⊗ F2G2.

For a proof of Proposition 4.7 we refer to [14].

Let X be a Banach space and (FN)N>0 be a sequence in L(X). We say that

(FN)N>0 converges in the strong operator topology to F , if FN(x) → F (x) for each

x ∈ X. Under the strong operator topology, L(X) is complete. The following

theorem is an new result.

Theorem 4.8. Let (FN)N>0 be a bounded sequence in L(H1) and (GN)N>0 be a

bounded sequence in L(H2). If the sequence (FN)N>0 converges in the strong operator

topology to F ∈ L(H1) and the sequence (GN)N>0 converges in the strong operator
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topology to G ∈ L(H2), then the sequence (FN ⊗ GN)N>0 converges in the strong

operator topology to F ⊗G.

From now on, I shall denote by ‖ H ‖ and < H, K > the norm and inner

product, respectively, for L2(H2,H1).

Proof. There exist two constants C1 and C2 such that:

lim
N→∞

‖ FN(f)− F (f) ‖1= 0 and ‖ FN(f) ‖≤ C1 ∀f ∈ H1;

lim
N→∞

‖ GN(g)−G(g) ‖2= 0 and ‖ GN(g) ‖≤ C2 ∀g ∈ H2.

For each H ∈ H2 ⊗H1 = L2(H2,H1), we have

‖ FN ⊗GN(H)− F ⊗G(H) ‖=‖ FNHG∗
N − FHG∗ ‖

=‖ (FNH − FH)G∗
N + F (HG∗

N −HG∗) ‖

≤‖ FNH − FH ‖‖ G∗
N ‖ + ‖ F ‖‖ HG∗

N −HG∗ ‖

≤ C2 ‖ FNH − FH ‖ + ‖ F ‖‖ HG∗
N −HG∗ ‖ .

If (gn)n>0 is an orthonormal basis of H1, then

‖ FNH − FH ‖2=
∑
n>0

‖ FNH(gn)− FH(gn) ‖2
1 . (4.1)

Since the sequence (FN)N>0 converges in the strong operator topology to F , then

lim
N→∞

‖ FNH(gn)− FH(gn) ‖2
1= 0 for each n > 0. (4.2)

By Proposition 4.2(iv), we have

‖ FNH − FH ‖≤‖ FN − F ‖O(H1)‖ H ‖≤ 2C1 ‖ H ‖ .
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In the other hand, we have

‖ H ‖2=
∑
n>0

‖ H(gn) ‖2 .

Then, by (4.1), we obtain

∑
n>0

‖ FNH(gn)− FH(gn) ‖2
1≤ 4C2

1

∑
n>0

‖ H(gn) ‖2< ∞. (4.3)

Since (4.2) and (4.3) are satisfied, by Lebesgue’s Dominated Theorem we obtain

lim
N→∞

‖ FNH − FH ‖= 0.

Similarly, we can show that

lim
N→∞

‖ HG∗
N −HG∗ ‖= 0.

Therefore,

lim
N→∞

‖ FN ⊗GN(H)− F ⊗G(H) ‖= 0.

We conclude, that the sequence (FN ⊗ GN)N>0 converges in the strong operator

topology to F ⊗G.

The following lemma is a new result.

Lemma 4.9. For each k ∈ {1, 2} let Fk be a nonzero bounded operator on Hk, fk

be a unit vector such that Fk(fk) 6= 0, Uk : H1 ⊗H2 → Hk and Vk : Hk → H1 ⊗H2,

defined for each f ∈ H1, g ∈ H2, and H ∈ H1 ⊗ H2, by U1(H) = H(F2(f2)),

V1(f) = Ef,f2, U2(H) = H∗(F1(f1)), and V2(g) = Ef1,g. Then:

(i) ‖ U1 ‖O(H1⊗H2,H1)≤‖ F2(f2) ‖2, ‖ U2 ‖O(H1⊗H2,H2)≤‖ F1(f1) ‖1, and the

operators V1 and V1 are isometric.
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(ii) U1[F1 ⊗ F2]V1 =‖ F2(f2) ‖2
2 F1 and U2[F1 ⊗ F2]V2 =‖ F1(f1) ‖2

1 F2.

(iii) UkVk =< Fk(fk), fk > IHk
, for each k ∈ {1, 2}.

Proof. If H ∈ H1 ⊗ H2, then ‖ U1(H) ‖1=‖ H(F2(f2)) ‖1≤‖ H ‖‖ F2(f2) ‖2; and

‖ U2(H) ‖2=‖ H∗(F1(f1)) ‖1≤‖ H∗ ‖‖ F1(f1) ‖2=‖1≤‖ H ‖‖ F1(f1) ‖2. Thus we

obtain (i)

(ii) If f ∈ H1 and g ∈ H2, then

[U1(F1 ⊗ F2)V1](f) = [U1(F1 ⊗ F2)](Ef,f2) = U1(EF1(f),F(f2))

= EF1(f),F2(f2)(F2(f2)) =‖ F2(f2) ‖2
2 F1(f).

And

[U2(F1 ⊗ F2)V2](f) = [U2(F1 ⊗ F2)](Ef1,g) = U2(EF1(f1),F2(g))

=‖ F1(f1) ‖2
1 F2(f).

Thus, we obtain (ii).

(iii) If f ∈ H1, then

U1V1(f) = U1(Ef,f2) = Ef,f2(F2(f2)) =< F2(f2), f2 >2 f.

If g ∈ H2, then

U2V2(g) = U2(Ef1,g) = Eg,f1(F1(f1)) =< F1(f1), f1 >1 g.

This completes the proof.

Remark 4.10. The operators U1 and V1 are linear while the operators U2 and V2

are antilinear.
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In the following Lemma I summarize some facts that I shall use later. The

proof of this lemma is straightforward.

Lemma 4.11. (i) If (f, g) ∈ H1 ×H2, then (Ef,g)
∗ = Eg,f .

(ii) Let f, f ′ ∈ H1 r {0} and g, g′ ∈ H2 r {0} . If Ef,g = Ef ′,g′, then there

exist two nonzero constants a and b such that f ′ = af and g′ = bg.

(iii) If (f, g) ∈ H1 ×H2 and (F, G) ∈ L(H1)× L(H2), then

FEf,g = EF (f),g and Ef,gG = Ef,G∗(g).

(iv) If (f, g) ∈ H1 ×H2 and H ∈ H1 ⊗H2 = L2(H1,H2), then

< H, Ef,g >=< H(g), f >1=< g, H∗(f) >2 .

(v) If H ∈ H1 ⊗H2 and fk, f
′
k ∈ Hk for each k ∈ {1, 2}, then

Ef1,f ′1HEf2,f ′2 =< H, Ef ′1,f ′2 > Ef1,f1 .

The following theorem is a new contribution to the theory of the tensor prod-

uct.

Theorem 4.12. The operator F1⊗F2 is invertible in L(H1⊗H2) if and only if the

operator Fk is invertible in L(Hk) for each k ∈ {1, 2}.

Proof. Suppose that the operator Fk is invertible in L(Hk) for each k ∈ {1, 2}. By

Proposition 4.7(ii), we have

(F1 ⊗ F2)(F
−1
1 ⊗ F−1

2 ) = (F1F
−1
1 ⊗ F2F

−1
2 ) = IH1 ⊗ IH2 = IH1⊗H2 .
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Similarly we have (F−1
1 ⊗ F−1

2 )(F1 ⊗ F2) = IH1⊗H2 . Therefore, the operator F1 ⊗ F2

is invertible in L(H1 ⊗H2) and

(F1 ⊗ F2)
−1 = F−1

1 ⊗ F−1
2 .

Conversely, suppose the operator F1 ⊗ F2 is invertible in L(H1 ⊗ H2). Then

Fk 6= 0 for each k ∈ {1, 2}. Let fk be a unit vector such that Fk(fk) 6= 0. Let U1,

V1, U2, and V2 be the operators defined in Lemma 4.11. Consider the operators:

U ′
1 : H1 ⊗H2 → H1 given by U ′

1(H) = H(f2), H ∈ H1 ⊗H2;

V ′
1 : H1 → H1 ⊗H2 given by V ′

1(f) = Ef,F2(f2), f ∈ H1;

U ′
2 : H1 ⊗H2 → H2 given by U ′

2(H) = H∗(f1), H ∈ H1 ⊗H2;

V ′
2 : H2 → H1 ⊗H2 given by V ′

2(f) = EF1(f1),g, g ∈ H2.

Let

F ′
1 =

1

‖ f2 ‖2
2

U ′
1[F1 ⊗ F2]

−1V ′
1 ;

F ′
2 =

1

‖ f1 ‖2
1

U ′
2[F1 ⊗ F2]

−1V ′
2 .

First, we observe that the operators F ′
1 and F ′

2 are bounded. Now let f ∈ H1, hence

F ′
1F1(f) =

1

‖ f2 ‖2
2

U ′
1[F1 ⊗ F2]

−1V ′
1(F1(f))

=
1

‖ f2 ‖2
2

U ′
1[F1 ⊗ F2]

−1(EF1(f),F2(f2)).

By Lemma 4.11(i), we have F1 ⊗ F2(Ef,f2) = EF1(f),F2(f2). Therefore,

F ′
1F1(f) =

1

‖ f2 ‖2
2

U ′
1(Ef,F2f2) =

1

‖ f2 ‖2
2

Ef,f2(f2) = f.

74



Similarly, we can show that F ′
2F2(g) = g for each g ∈ H2. Thus,

F ′
1F1 = IH1 and F ′

2F2 = IH2 . (4.4)

By using Proposition 4.7(ii), we obtain

(F ′
1 ⊗ F ′

2)(F1 ⊗ F2) = (F ′
1F1 ⊗ F ′

2F2) = IH1 ⊗ IH2 = IH1⊗H2 .

Hence, (F ′
1 ⊗ F ′

2) = (F1 ⊗ F2)
−1. Consequently, we have

(F1F
′
1 ⊗ F2F

′
2) = (F1 ⊗ F2)(F

′
1 ⊗ F ′

2) = IH1⊗H2 .

Therefore, if (f, g) ∈ H1 ×H2 r {(0, 0)}, by using Lemma 4.11(iii), we obtain

EF1F ′1(f),F2F ′2(g) = (F1F
′
1 ⊗ F2F

′
2)(Ef,g) = Ef,g.

By using Lemma 4.11(ii), there exist two positive constants a and b such that

F1(F
′
1(f)) = af and F2(F

′
2(g)) = bg.

These equations show that the operators F1 and F2 are surjective. By (4.4), the

operators F1 and F2 are injective. This complete the proof of Theorem 4.8.

4.3 Frames

All results of this section are stated and proved in [17].

Definition 4.13. A sequence (fi)i∈I is a frame for a Hilbert space H if there exist

constants A,B > 0, called frame bounds, such that for all f ∈ H

A ‖ f ‖2≤
∑
i∈I

|< f, fi >|2|≤ B ‖ f ‖2 .
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The largest possible value for A and the smallest possible value for B are called

optimal frame bounds. If A = B, then we say the frame is tight.

Example 4.14. An orthonormal basis is a tight frame with frame bounds A =

B = 1, the union of any two orthonormal bases is a tight frame with frame bounds

A = B = 2, and the union of an orthonormal basis with n arbitrary unit vectors is

a frame with frame bounds A = 1 and B = 1 + n.

Frames generalize orthonormal bases. However, these trivial examples already

show that in general the frame elements are neither orthogonal to each other nor

linearly independent.

Definition 4.15. For any sequence (fi)i∈I, the coefficient operator or analysis op-

erator C is given by C(f) = (< f, fi >)i∈I, the synthesis operator or reconstruction

operator D is defined for a finite sequence (cj)j∈J by
∑

j∈J cjfj, and the frame

operator S is defined on H by S(f) =
∑

i∈I < f, fi > fi.

Proposition 4.16. Suppose that (fi)i∈I is a frame for H.

(i) C is a bounded operator from H into l2(I) with closed range.

(ii) The operators C and D are adjoint to each other; that is , D = C∗.

Consequently, D extends to a bounded operator from l2(I) into H and satisfies

‖
∑
i∈I

cifi ‖2≤ B
∑
i∈I

| ci |2 .

(iii) The frame operator S = C∗C = DD∗ maps H into H and is a positive

invertible operator satisfying AIH ≤ S ≤ BIH and B−1IH ≤ S−1 ≤ A−1IH. In

particular (fi)i∈I is a tight frame if and only if S = AIH.

76



(iv) The optimal frame bounds are Bopt =‖ S ‖O(H) and Aopt =‖ S−1 ‖−1
O(H)

Definition 4.17. Let {fi, i ∈ I} be a countable set in a Banach space X. The

series
∑

i∈I fi is said to converge unconditionally to f ∈ X if for every ε > 0 there

exists a finite set J ⊂ I such that

‖ f −
∑
i∈J

fi ‖< ε for all finite sets K ⊇ J.

Proposition 4.18. Let {fi, i ∈ I} be a countable set in a Banach space X. Then

the following are equivalent:

(i) f =
∑

i∈I fi converges unconditionally to f ∈ X.

(ii) For every enumeration, i.e., a bijective map π : N → I, the sequence of

partial sums
∑N

n=1 fπ(n) converges to f ∈ X.

In particular, the limit f is independent of the enumeration π.

Proposition 4.19. Let (fi)i∈I be a frame for H. If

f =
∑
i∈I

cifi and (ci)i∈I ∈ l2(I),

then the series
∑

i∈I cifi converges unconditionally to f ∈ H.

Proposition 4.20. Suppose that (fi)i∈I is a frame for H. Then the following are

equivalent:

(i)The analysis operator C maps onto l2(I).

(ii) There exist constant A′, B′ > 0 such that the inequalities

A′ ∑
i∈J

| ci |2≤‖
∑
i∈J

cifi ‖2≤ B′ ∑
i∈J

| ci |2

hold for all finite sequences (ci)i∈J .
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(iii) (fi)i∈I is the image of an orthonormal basis under an invertible bounded

operator.

Any frame satisfying one of the conditions of Proposition 4.20 is called a Riesz

basis.

Now let H = L2(Rd), where d is a positive integer. A translation of g ∈ L2(Rd)

by a ∈ R is Tag(x) = g(x− a), a modulation of g by b ∈ R is Mbg(x) = e2πib.xg(x),

where b.x is the dot product of b and x. Translations and modulations define bijective

isometries on ∈ L2(Rd). A composition TaMb is called a time-frequency shift of g.

Definition 4.21. Let g ∈ L2(Rd)r {0} and α, β > 0. The Gabor system generated

by g, α and β is

G(g, α, β) = { TαmMβng : m,n ∈ Zd}.

If a Gabor system is a frame for L2(Rd), then it is called a Gabor frame.

Theorem 4.22 (Lyubarskii and Seip-Wallstén Theorem). Let ϕ(x) = 2
1
4 e−x2

be the

Gaussian function on R.

G(ϕ, α, β) is a Gabor frame for L2(R) if and only if αβ < 1.

4.4 The tensor product of frames

To each pair of sequences ((fn)n>0, (gn)n>0) in a Hilbert space H, we associate

a linear operator F defined by

F (f) =
∑
n>0

< f, fn > gn, for each f ∈ H such that F (f) ∈ H.

The following lemma is new result.
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Lemma 4.23. Let F be the operator associated with the pair ((fn)n>0, (en)n>0) where

(fn)n>0 is a sequence and (en)n>0 is an orthonormal basis in H.

(i) The sequence (fn)n>0 is a frame with frame bounds A and B if and only if

the operator F is bounded and, for each f ∈ H, we have

A ‖ f ‖2≤‖ F (f) ‖2≤ B ‖ f ‖2 . (4.5)

(ii) Suppose that (fn)n>0 is a frame. The sequence (fn)n>0 is a Riesz basis if

and only if the operator F is bijective.

Proof. Suppose that (fn)n>0 is a frame with frame bounds A and B. Then, for each

f ∈ H, we have

A ‖ f ‖2≤
∑
n>0

|< f, fn >|2≤ B ‖ f ‖2 . (4.6)

In particular, the series
∑

n>0 |< f, fn >|2< ∞. Therefore, the operator F is defined

on H and for each f ∈ H we have

‖ F (f) ‖2=
∑
n>0

|< f, fn >|2 .

Thus, (4.5) follows from (4.6).

Conversely, assume that F is bounded and that (4.5) holds for each f ∈ H.

Since for each f ∈ H: ‖ F (f) ‖2=
∑

n>0 |< f, fn >|2, then (4.6) follows from (4.5).

This finishes the proof of (i).

(ii) Since (fn)n>0 is a frame then by (i) the operator F is bounded and satisfies

(4.5) for each f ∈ H. The adjoint of F is defined by

F ∗(f) =
∑
n>0

< f, en > fn for each f ∈ H.
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The operator F ∗ is bounded, since F is; and we have

F ∗(en) = fn for each n > 0.

If F is bijective then so is F ∗. Therefore (fn)n>0 is a Riesz basis, as it is the image

of the orthonormal basis (en)n>0 by the bounded bijective operator F ∗.

Conversely, if (fn)n>0 is a Riesz basis, then there exist an orthonormal basis

(gn)n>0 and a bounded linear bijection G such that G(gn) = fn for each n > 0.

Since (en)n>0 and (gn)n>0 are two orthonormal bases, there exists a unitary operator

U such that U(gn) = en for each n > 0. Then F ∗U(gn) = fn for each n > 0.

Therefore, F ∗U = G as they coincide on the orthonormal basis (gn)n>0. Therefore,

F ∗ is bijective and hence so is F . This completes the proof.

Remark 4.24. If (fn)n>0 is a frame and (en)n>0 is an orthonormal basis for H, by

using Proposition 4.19, the series
∑

n>0 < f, fn > en is convergent unconditionally

to F (f) for each f ∈ H.

By using the frame inequalities, we can deduce that the operator F is injective

and has a closed range.

Now let H1 and H2 be two Hilbert spaces. If k ∈ {1, 2}, we denote by ‖ . ‖k

and <,>k the norm and the inner product of Hk, respectively. Now I state the main

new result of this chapter.

Theorem 4.25. For each k ∈ {1, 2} let (fk
n)n>0 be a sequence in Hk.

(i) The sequence (f 1
i ⊗ f 2

j )i,j>0 is a frame for H1 ⊗H2 if and only if (fk
n)n>0

is a frame for Hk for each k ∈ {1, 2}.
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Moreover, if Ak and Bk are the frame bounds of (fk
n)n>0, k ∈ {1, 2}, then A1A2

and B1B2 are the frame bounds of (f 1
i ⊗ f 2

j )i,j>0.

(ii) The sequence (f 1
i ⊗ f 2

j )i,j>0 is a Riesz basis for H1 ⊗ H2 if and only if

(fk
n)n>0 is a Riesz basis for Hk for each k ∈ {1, 2}.

Proof. (i) Suppose that (f 1
i ⊗ f 2

j )i,j>0 is a frame for H1 ⊗H2 with frame bounds A

and B. Then, for each H ∈ H1 ⊗H2, we have

A ‖ H ‖2≤
∑
i,j>0

|< H, f 1
i ⊗ f 2

j >|2≤ B ‖ H ‖2 . (4.7)

If (f, g) ∈ H ∈ H1 ×H2 r {(0, 0)}, then

‖ f ⊗ g ‖=‖ f ‖1‖ g ‖2 . (4.8)

We have

∑
i,j>0

|< f ⊗ g, f 1
i ⊗ f 2

j >|2=
∑
i,j>0

|< f, f 1
i >1|2|< g, f 2

j >2|2

= (
∑
i>0

|< f, f 1
i >1|2)(

∑
j>0

|< g, f 2
j >2|2). (4.9)

Since (f, g) 6= (0, 0), hence, by (4.7), the left most member of (4.9) is finite and

nonzero. Therefore each term of the product of the right most member of (4.9) is

finite and nonzero. Fix g ∈ H2 r {0} and let f ∈ H1 r {0}. Then, by using (4.7),

(4.8) and (4.9), we obtain

A ‖ g ‖2
2∑

j>0 |< g, f 2
j >2|2 ‖ f ‖2

1≤
∑
i,j>0

|< f, f 1
i >1|2≤ B ‖ g ‖2

2∑
j>0 |< g, f 2

j >2|2 ‖ f ‖2
1 .

Since the last inequalities are obviously satisfied for f = 0, we conclude that (f 1
n)n>0

is a frame for H1. Similarly, we can show that (f 2
n)n>0 is a frame for H2.
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Conversely, suppose that (fk
n)n>0 is a frame for Hk with frame bounds Ak and

Bk, k ∈ {1, 2}. Then, for each (f, g) ∈ H1 ×H2, we have

A1 ‖ f ‖2
1≤

∑
i>0

|< f, f 1
i >1|2≤ B1 ‖ f ‖2

1 . (4.10)

A2 ‖ g ‖2
2≤

∑
j>0

|< g, f 2
j >2|2≤ B2 ‖ g ‖2

2 . (4.11)

For each k ∈ {1, 2}, let (ek
n)n>0 be an orthonormal basis for Hk; and consider

F k(f) =
∑
n>0

< f, fk
n > ek

n, for each f ∈ Hk, (4.12)

the bounded operator associated with ((fk
n)n>0, (e

k
n)n>0), as defined in the beginning

of this section. For each k ∈ {1, 2}, consider the sequence (F k
N)N>0, of bounded

linear operators, defined by

F k
N(f) =

N∑
n=0

< f, fk
n > ek

n, for each f ∈ Hk. (4.13)

The sequence (F k
N)N>0 converges in the strong operator topology to F k and we have

‖ F k
N ‖O(Hk)≤‖ F k ‖O(Hk). Hence, by Theorem 4.8, the sequence (F 1

N ⊗ F 2
N)N>0

converges in the strong operator topology to F 1 ⊗ F 2.

On the other hand, we have F k
N =

∑N
n=0 Eek

n,fk
n

for each k ∈ {1, 2}. Therefore,

for each H ∈ H1 ⊗H2, we have

F 1
N ⊗ F 2

N(H) = F 1
NH(F 2

N)∗ = (
N∑

i=0

Ee1
i ,f1

i
)H(

N∑
j=0

Ef2
j ,e2

j
)

=
N∑

i,j=0

Ee1
i ,f1

i
HEf2

j ,e2
j

=
N∑

i,j=0

< H, Ef1
i ,f2

j
> Ee1

i ,e2
j
.
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The second equality follows by Lemma 4.11(i) and the last equality is a consequence

of Lemma 4.11(v). Thus, we have

F 1
N ⊗ F 2

N(H) =
N∑

i,j=0

< H, f 1
i ⊗ f 2

j > e1
i ⊗ e2

j .

Since, the sequence (F 1
N ⊗ F 2

N)N>0 converges in the strong operator topology to

F 1 ⊗ F 2, we can write

F 1 ⊗ F 2(H) =
∑
i,j>0

< H, f 1
i ⊗ f 2

j > e1
i ⊗ e2

j for each H ∈ H1 ⊗H2. (4.14)

Hence, F 1⊗F 2 is the operator associated with the pair ((f 1
i ⊗f 2

j )i,j>0, (e
1
i ⊗e2

j)i,j>0).

By Proposition 4.7, the operator F 1 ⊗ F 2 is bounded. And since (e1
i ⊗ e2

j)i,j>0 is an

orthonormal basis for H1 ⊗H2, see [14], we obtain

‖ F 1 ⊗ F 2(H) ‖=
∑
i,j>0

|< H, f 1
i ⊗ f 2

j >|2, for each H ∈ H1 ⊗H2. (4.15)

Now, for each H ∈ H1 ⊗H2 = L2(H2,H1), we have

‖ F 1 ⊗ F 2(H) ‖2=‖ F 1H(F 2)∗ ‖2=
∑
j>0

‖ F 1H(F 2)∗(e2
j) ‖2

1 .

Then, by (4.10), we obtain

A1

∑
j>0

‖ H(F 2)∗(e2
j) ‖2

1≤‖ F 1 ⊗ F 2(H) ‖2≤ B1

∑
j>0

‖ H(F 2)∗(e2
j) ‖2

1,

i.e.,

A1 ‖ H(F 2)∗ ‖2
1≤‖ F 1 ⊗ F 2(H) ‖2≤ B1 ‖ H(F 2)∗ ‖2

1 .

By Proposition 4.2(ii) and the identification H1 ⊗H2 ' H2 ⊗H1, we obtain

A1 ‖ F 2H∗ ‖2
1≤‖ F 1 ⊗ F 2(H) ‖2≤ B1 ‖ F 2H∗ ‖2

1,
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i.e.,

A1

∑
i>0

‖ F 2H∗(e1
i ) ‖2

2≤‖ F 1 ⊗ F 2(H) ‖2≤ B1

∑
i>0

‖ F 2H∗(e1
i ) ‖2

2 .

Therefore, by (4.11), we obtain

A1A2

∑
i>0

‖ H∗(e1
i ) ‖2

2≤‖ F 1 ⊗ F 2(H) ‖2≤ B1B2

∑
i>0

‖ H∗(e1
i ) ‖2

2,

i.e.,

A1A2 ‖ H∗ ‖2≤‖ F 1 ⊗ F 2(H) ‖2≤ B1B2 ‖ H∗ ‖2 .

Thus, by Proposition 4.2(ii) and the identification H1 ⊗H2 ' H2 ⊗H1, we have

A1A2 ‖ H ‖2≤‖ F 1 ⊗ F 2(H) ‖2≤ B1B2 ‖ H ‖2 .

Finally, by using (4.15), we obtain

A1A2 ‖ H ‖2≤
∑
i,j>0

|< H, f 1
i ⊗ f 2

j >|2≤ B1B2

∑
i>0

‖ H ‖2 .

This shows that (f 1
i ⊗ f 2

j )i,j>0 is a frame for H1 ⊗H2 with frame bounds A1A2 and

B1B2.

(ii) For each k ∈ {1, 2}, let (fk
n)n>0 be a frame and (ek

n)n>0 an orthonormal

basis for Hk. By (i), (f 1
i ⊗ f 2

j )i,j>0 is a frame for H1 ⊗H2. Let F k be the operator

associated with ((fk
n)n>0, (e

k
n)n>0), for each k ∈ {1, 2}. Then F 1⊗F 2 is the operator

associated with ((f 1
i ⊗ f 2

j )i,j>0, (e
1
i ⊗ e2

j)i,j>0), as was shown in (i). By Theorem 4.7,

the operator F 1 ⊗ F 2 is bijective if and only if F k is for each k ∈ {1, 2}. Therefore,

statement (ii) follows by using Lemma 4.23.

Since all series, involved in the proof of Theorem 4.25, either had positive

terms or converged unconditionally, we can restate Theorem 4.25 in a more general

form as follows.
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Theorem 4.26. Let I1 and I2 be two countable sets. For each k ∈ {1, 2} let (fk
i )i∈Ik

be a sequence in Hk.

(i) The sequence (f 1
i ⊗ f 2

j )(i,j)∈I1×I2 is a frame for H1 ⊗ H2 if and only if

(fk
i )i∈Ik

is a frame for Hk for each k ∈ {1, 2}.

Moreover, if Ak and Bk are the frame bounds for (fk
i )i∈Ik

, k ∈ {1, 2}, then

A1A2 and B1B2 are the frame bounds for (f 1
i ⊗ f 2

j )(i,j)∈I1×I2.

(ii) The sequence (f 1
i ⊗ f 2

j )(i,j)∈I1×I2 is a Riesz basis for H1 ⊗H2 if and only

if (fk
i )i∈Ik

is a Riesz basis for Hk for each k ∈ {1, 2}.

The following result was conjectured by I. Daubechies and A. Grossmann

[7] and then was proved independently by Y. Lyubarskii [24] and K. Seip and R.

Wallstén [32].

Lyubarskii and Seip-Wallstén Theorem. Let ϕ(x) = 2
1
4 e−πx2

be

the Gaussian function on R.

G(ϕ, α, β) is a frame for L2(R) if and only if αβ < 1.

The following corollary is a new result extending Lyubarskii and Seip-Wallstén the-

orem to higher dimensions.

Corollary 4.27. Let ϕd(x) = 2
d
4 e−|x|

2
be the Gaussian function on Rd.

G(ϕd, α, β) is a Gabor frame for L2(Rd) if and only if αβ < 1.

Proof. Since L2(Rd1) ⊗ L2(Rd2) ' L2(Rd1+d2), see [14]. And obviously we have

ϕd1 ⊗ϕd2 = ϕd1+d2 . Therefore, Corollary 4.27 is a consequence of Theorem 4.26 and

the Lyubarskii and Seip-Wallstén theorem.
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4.5 Summary

In this chapter I proved the following theorem.

Theorem 4.26. The sequence (fk
i )i∈Ik

is a frame (Riesz basis) for a

Hilbert space Hk, k ∈ {1, 2}, if and only if (f 1
i ⊗ f 2

j )(i,j)∈I1×I2 is a frame

(Riesz basis) for H1 ⊗H2.

This new result improves a result by C.Heil, J.Ramanathan, and P.Topiwala [19].

They prove that the tensor product of a frame with itself is a frame. Incidentally, I

proved two new contributions to theory of tensor products. The first contribution

is Theorem 4.8 concerning the convergence of the tensor product of two convergent

sequences. The second contribution is Theorem 4.12, where I proved that the tensor

product of two bounded operators is bijective if and only if each part of this tensor

product is a bounded bijective operator. To prove Theorem 4.12 I used Lemma 4.9,

a new synthesis lemma. Lemma 4.23 is a new result giving an interesting connection

between the theory of frames and the theory of operators. In order to prove Theorem

4.26, I used Theorem 4.8, Theorem 4.12, and Lemma 4.23. Using Theorem 4.26, I

was able to extend the Lyubarskii and Seip-Wallstén theorem to higher dimensions.

This new result is stated in Corollary 4.27.
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Appendix A

Harmonic analysis on locally compact abelian groups

The main reference of this appendix is [31]. On every locally compact abelian

group G there exists a nonnegative regular measure, unique up to a positive constant,

the so called Haar measure of G, which is translation invariant. From now on, we

choose one Haar measure of G that we shall denote by dx. When we say an integrable

function, we mean integrable with respect to the measure dx. If E is a measurable

set, we denote by | E | the measure of E by dx. Two measurable functions f and

g are said to be equal almost everywhere, if | {t : f(t) 6= g(t)} |= 0. We denote

f = g a.e. This gives an equivalence relation on the set of measurable functions.

We shall always identify a function with its class modulo a.e. A function f is said

to be essentially bounded, if there exists a constant M ≥ 0 such that

| f(x) |≤ M a.e. (1.1)

The lowest M satisfying (1.1) is called the essential bound of f , denoted by ‖ f ‖∞=

M . For every p ∈ [1,∞), we denote

Lp(G) = {measurable functions f :‖ f ‖p=: (

∫
| f(t) |p dt)

1
p < ∞};

and L∞(G) = {measurable functions f :‖ f ‖∞< ∞}.

For every p ∈ [1,∞), we denote by p′ the real number satisfying 1
p

+ 1
p′ = 1.

A.1. For every p ∈ [1,∞], the space Lp(G) is a Banach space. For every

p ∈ [1,∞) the dual of the space Lp(G) is the space Lp′(G).
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The translation by x ∈ G of a measurable function f is defined by the formula

ιxf(t) = f(t− x).

A.2. (i) For each x ∈ G the translation operator f → ιxf is a bijective

isometry on Lp(G), 1 ≤ p ≤ ∞.

(ii) Let p ∈ [1,∞) and f ∈ Lp(G). The map x → ιxf is uniformly continuous

from G into Lp(G).

A.3. The convolution. The convolution of two measurable functions f and

g, if it exists a.e, is defined as follows: (f ∗ g)(x) =
∫

f(x− y)g(y)dy a.e.

(i) Let p ∈ [1,∞]. If f ∈ L1(G) and g ∈ Lp(G), then f ∗ g ∈ Lp(G), and we

have: ‖ f ∗ g ‖p≤‖ f ‖1‖ g ‖p.

(ii) If f, g ∈ L1(G), then f ∗ g ∈ L1(G). Under its space operations and the

convolution, L1(G) is a commutative Banach algebra. If G is discrete, L1(G) has a

unit.

(iii) Let p ∈ [1,∞). If f ∈ Lp(G) and g ∈ Lp′(G), then f ∗ g ∈ C0(G), the

space of continuous functions vanishing at infinity.

A.4. Characters. A complex function γ is called a character of G if

| γ(t) |= 1 and γ(s + t) = γ(s)γ(t) for all t, s ∈ G.

A.5. The dual group. The set of all continuous characters of G forms an

abelian group Ĝ, the so called dual group of G, if addition is defined by

(γ1 + γ2)(t) = γ1(t)γ2(t), t ∈ G and γ1, γ2 ∈ Ĝ.
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A topology and a Haar measure, that we shall denote by dγ, can be defined

on Ĝ to make it a locally compact abelian group.

A.6. The Fourier transform. The Fourier transform of an f ∈ L1(G) is a

measurable function f̂ on Ĝ, defined by

f̂(γ) =

∫
f(t)γ(t)dt a.e.

It can be shown that f̂ is continuous and vanishes at infinity.

A.7. If f, g ∈ L1(G), then (̂f ∗ g) = f̂ ĝ.

A.8. The map f → f̂ is an isometry from L1(G) ∩ L2(G) into L2(Ĝ). By

continuity this map can be extended to an isomeric bijection L2(G) → L2(Ĝ). We

denote by f̂ , and we call it the Fourier transform of f , the image of each f ∈ L2(G)

by this last isometry.

A.9. Bounded measures. A measure µ is said to be bounded on G, if

‖ µ ‖=: sup
f∈C0(G),‖f‖∞≤1

|
∫

fdµ |< ∞.

The set M(G) of all bounded measures on G is a Banach space. It is the topological

dual of C0(G). The space L1(G) can be seen as a subspace of M(G), if we identify

each f ∈ L1(G) with the bounded measure µf defined for each measurable set E by

µf (E) =
∫

1Edµf , where 1E is the characteristic function of E.

A.10. Let (µn)n>0 be a sequence of bounded measures. We say that (µn)n>0

converges weakly or vaguely to a bounded measure µ, if

lim
n

∫
fd(µn − µ) = 0 for all f ∈ C0(G).

Every bounded sequence of bounded measures has a subsequence weakly convergent.
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A.11. If µ is a bounded measure, the total variation of µ is a bounded measure

| µ | defined for all measurable set E by

| µ | (E) = sup
∑

| µ(Ei) |,

the supremum is taken over all finite collections of pairwise disjoint Borel sets Ei

whose union is E. It can be shown that ‖ µ ‖= ∫
d | µ |.

Let λ, µ ∈ M(G) and µ × λ be their product measure on the product group

G2 = G×G. Associate with each Borel set E in G the set E2 = {(s, t) : s + t ∈ E}.

Then E2 is a Borel set of G2. We define µ ∗ λ by

(µ ∗ λ)(E) = (µ× λ)(E2).

A.12. With its space operations and the convolution, M(G) is a commutative

Banach algebra with unit. The unit of M(G) is the δ measure.

A.13. Let p ∈ [1,∞]. If µ ∈ M(G) and f ∈ Lp(G), then µ ∗ g ∈ Lp(G), and

we have ‖ µ ∗ f ‖p≤‖ µ ‖‖ f ‖p.
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Appendix B

Operator theory

In this section we summarize some facts from operator theory. Our main

reference is [14].

In the following, we let H be a Hilbert space and denote its inner product by

<,>. The norm on H is defined by ‖ f ‖= (< f, f >)
1
2 . We denote by L(H) the

space of bounded operators on H; and define, on L(H), the following norm

‖ A ‖= sup
x 6=0

‖ Ax ‖
‖ x ‖ = sup

‖x‖<1

‖ Ax ‖= sup
‖x‖=1

‖ Ax ‖,

called the norm of bounded operators. With this norm, L(H) is a Banach algebra.

Definition B.1. A linear operator T on H is said to be compact, if T (B) is relatively

compact in H, where B is the unit ball of H. We denote by LC(H) the set of all

compact operators on H.

Proposition B.2. Under the norm of bounded operators, LC(H) is a closed sided

ideal of L(H). Moreover if T ∈ LC(H) then so is T ∗, the adjoint operator of T .

Definition B.3. Let T ∈ L(H).

(i) A complex number λ is said to be a spectral value of T , if the operator

(T − λI) has no inverse in L(H), where I is the unit operator of H. We denote by

σ(T ) the set of all spectral values of T .

(ii) A complex number λ is said to be an eigenvalue of T , if there exists a
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nonzero vector x such that Tx = λx. The vector x is then called an eigenvector of

T and λ is the eigenvalue associated to it.

Proposition B.4. If T ∈ L(H), then σ(T ) is a nonempty compact subset of C.

Theorem B.5. Let T be a compact operator. Then

(i) σ(T ) is a nonempty compact and at most countable subset of C .

(ii) All elements of σ(T ), with a possible exception of zero, are isolated.

(iii) If λ is a nonzero spectral value of T , then λ is an eigenvalue.

Theorem B.6 (The spectral decomposition theorem for compact and self-adjoint

operator). For any compact and self adjoint-operator T of H, there exist a sequence

of eigenvalues (λn)n≥1 and a corresponding sequence of eigenvectors (en)n≥1, such

that we have

(i) All terms of the sequence (λn)n≥1 are real.

(ii) |λ1| ≥ |λ2| ≥ ...... ≥ |λn| ≥ ...... > 0; and if the sequence (λn)n≥1 is infinite

then λn → 0.

(iii) The sequence of eigenvectors (en)n≥1 is an orthonormal system.

(iv) The sequence of eigenvectors (en)n≥1 is an orthonormal basis if and only

if the operator T is injective.

(v) For every x ∈ H we have

Tx =
∑

λn < x, en > en =
∑

< Tx, en > en.

Definition B.7. A linear operator T is called Hilbert Schmidt on H, or HS, if for

some orthonormal basis (en)n≥1 for H one has
∑ ‖ T (en) ‖2< ∞. We denote by

L2(H) the space of all HS operator on H.
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If (fn)n≥1 is another orthonormal basis, it can be shown that

∑
‖ T (fn) ‖2=

∑
‖ T (en) ‖2< ∞.

If T is a HS operator, we define its norm to be ‖T‖HS = (
∑ ‖ T (en) ‖2)

1
2 , which is

independent of the orthonormal basis (en) used . L2(H) with this norm is a Banach

algebra. If T, S ∈ L2(H) and (en) is an orthonormal basis, then the formula

< f, g >HS=
∑

< T (en), S(en) >

is independent of the orthonormal basis (en) used, and defines an inner product on

L2(H). Endowed with this inner product, L2(H) is a Hilbert space.

Proposition B.8. (i) A HS operator is a compact operator on H. Moreover, HS

operators are dense in LC(H) with respect to the topology of bounded operators.

(ii) L2(H) is a sided ideal,i.e., a left and right sides ideal, of L(H). Moreover,

we have

‖TA‖HS, ‖AT‖HS ≤ ‖A‖‖T‖HS, for each T ∈ L2(H) and for each A ∈ L(H).

Now let H = L2(G), the Hilbert space of square integrable functions on a

locally compact group G. Let k(x, y) be a measurable function on G × G. The

formula f → ∫
k(x, y)f(y)dy defines a linear mapping K from some subspace D of

L2(G), where the integral makes sense, called an integral operator. The function

k(x, y) is called the kernel of the integral operator K.

Theorem B.9. Let k be a measurable function on G×G. The integral operator

f →
∫

k(x, y)f(y)dy
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defines a HS operator on the Hilbert space L2(G) if and only if the kernel k ∈

L2(G×G).

Definition B.10. Let A be an algebra over the field C of complex numbers. An

involution on A is a map x → x∗ from A into itself such that:

(i) (x∗)∗ = x, for each x ∈ A.

(ii) (x + y)∗ = x∗ + y∗, for each x, y ∈ A.

(iii) (λx)∗ = λx∗, for each x ∈ A.

(iv) (xy)∗ = y∗x∗, for each x, y ∈ A.

Definition B.11. A C∗-algebra is a Banach algebra A together with an involution

x → x∗, such that

(i) ‖ x∗ ‖=‖ x ‖, for each x ∈ A.

(ii) ‖ xx∗ ‖=‖ x ‖2, for each x ∈ A.

Definition B.12. Let A be a C∗-algebra. An element x ∈ A is said to be positive,

if x = yy∗ for some y ∈ A.

Proposition B.13. Let A be a C∗-algebra and let x be a positive element of A. For

each p > 0 there exists y ∈ A such that x = yp.
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