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Chapter 1

Introduction

1.1 Background and Motivation

A dyadic wavelet is a function ψ ∈ L2(Rd) such that the family

{
ψm,n (x) := 2md/2ψ (2mx− n) : m ∈ Z, n ∈ Zd

}
is an orthonormal basis for L2(Rd).

The theory of dyadic multiresolution analysis (MRA), introduced by Mallat

and Meyer, produces 2d− 1 wavelets {ψ(1), . . . , ψ(2d−1)} in L2(Rd), in the sense that

{
ψ(1),m,n, . . . , ψ(2d−1),l,p : m, . . . , l ∈ Z, n, . . . , p ∈ Zd

}
forms an orthonormal basis for L2(Rd). This shows that the complexity of the

Mallat-Meyer construction grows exponentially in d. Hence, a single dyadic wavelet

in multidimensional Euclidean space must be a non-MRA wavelet.

In the search of finding single dyadic wavelets in multidimensional Euclid-

ean space, Dai, Larson, and Speegle [20] defined multidimensional wavelet sets. A

wavelet set is a measurable set K ⊂ Rd such that

1∨K = ψ,

is an orthonormal wavelet. Here, 1∨K denotes the inverse Fourier transform of 1K , the

characteristic function of the set K (see Section 1.3 for notation and definitions).
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The first example of a one-dimensional non-MRA wavelet set was given by J. L.

Journé (see [37]).

Wavelet sets have a beautiful geometric characterization, as shown in the fol-

lowing theorem [7].

Theorem 1.1. A measurable set K ⊂ Rd is a wavelet set if and only if

•
{
K + n : n ∈ Zd

}
tiles Rd.

• {2mK : m ∈ Z} tiles Rd.

Dai and Larson obtained wavelet sets by operator-theoretic methods. The

first reaction from the mathematics community was of disbelief and lack of interest.

Wavelet sets were seen as pathological counterexamples in wavelet theory, not only

because they could be extremely complicated and hard to construct, but because of

the lack of multiresolution structure.

Then, several generalized multiresolution theories appeared. First Benedetto

and Li defined and developed the theory of frame multiresolution analysis (FMRA)

[8, 9, 10, 11], [33, 31, 32]. This was followed by Papadakis’ development of the

generalized frame multiresolution analysis (GFMRA) [37, 38, 39], and the develop-

ment of generalized multiresolution analysis (GMRA) introduced by Baggett et al.

[4, 3, 2]. In the most general settings, GFMRA and GMRA are distinct theories.

However, for the dyadic case the two theories coincide. FMRA is a special case of

both GFMRA and GMRA.

The main success of the generalized multiresolution analysis theories is the fact

that every orthonormal wavelet in any dimension is a GFMRA or GMRA wavelet
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[37]. In particular, any wavelet produced from a wavelet set is a GFMRA wavelet.

Due to this fact, Baggett, Medina, and Merrill developed a technique to construct

all wavelet sets [2]. Their analysis involves using a complementary pair of maps

satisfying some intertwining properties.

All multiresolution analysis theories have a feature in common: the core space

V0 is shift-invariant. Given a subspace V ⊂ L2(Rd), we say that V is a shift-invariant

subspace under a subgroup G of Rd if for all f ∈ V and g ∈ G, f (x− g) ∈ V . The

theory of shift-invariant subspaces was developed by C. de Boor, R. DeVore, A.

Ron, and Z. Shen in [12, 13, 40] to tackle problems in approximation theory. There

is a close connection between the theory of frames and the theory of shift-invariant

subspaces. If the group G is discrete, then a subspace V is shift-invariant if and

only if V has a frame consisting of translates of at most countably many functions

of V .

The main object in GMRA theory is an integer-valued function, obtained

from the Spectral Theorem, called the multiplicity function. Because V0 is shift-

invariant under Zd, operation of translating functions in V0 by elements of Zd is

a unitary representation of Zd, and hence we can invoke Stone’s theorem to get

a spectral decomposition of this representation. The unique spectral measure in

this decomposition uniquely determines the multiplicity function. In this setting,

this multiplicity function plays the role of the scaling function. It was proved by

Eric Weber [43] that the Auscher’s dimension function [1] is in fact equal to the

multiplicity function. The dimension function is defined as follows:
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Definition 1.2. Given an orthonormal wavelet ψ in L2(Rd), the dimension function

associated to ψ is given by

Dψ (γ) =
∞∑
j=1

∑
k∈Zd

∣∣∣ψ̂ (2j (γ + k)
)∣∣∣2 .

Observe that Dψ is 1-periodic in each variable. The above definition can be

extended to multiwavelets. It is well known that a multiwavelet is an MRA multi-

wavelet if and only if its associated dimension function equals 1 almost everywhere

in Td. This dimension function was used by Papadakis to prove in [37] that every

orthonormal wavelet in any dimension is a GFMRA, or GMRA, wavelet. The key

observation he made was that the dimension function counts the number of scaling

functions for a GFMRA associated to the wavelet. His method consisted of applying

pointwise Gram-Schmidt to certain vectors, and by doing so one obtains the scal-

ing functions. In [16], M. Bownik, Z. Rzeszotnik, and D. Speegle characterized the

dimension functions of orthonormal wavelets, and in particular, they proved that

the dimension function of a single orthonormal wavelet assumes all values between

zero and its essential supremum. This fact was unknown during the time Manos

Papadakis published [37].

In this thesis we study two related problems: the extension of the theory

of FMRA to higher dimensions and the construction of the scaling functions for

orthonormal wavelets in the space L2(Rd), for d ≥ 1. The first construction of such

scaling functions was given by Manos Papadakis in [37]. Following Papadakis’ ideas

we present a new proof of the main theorem in [37]. This new proof reveals two

important things: the scaling functions given by Papadakis are optimal, that is,
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the number of scaling functions is minimum, something that was not clear in [37],

and connections between the theory of shift-invariant subspaces and the theory of

GMRA (see [14], [4, 3, 2]) are established. This opens the path to construct an

optimal GMRA for a given wavelet set, and in particular this can be done for the

Benedetto-Leon-Sumetkijakan wavelet sets [6, 7]. Hence, we consider the reverse

problem of the Mallat-Meyer theory: given an orthonormal wavelet, construct a

GMRA for such a wavelet.

There are different techniques to construct wavelet frames (e.g., GMRA, Ex-

tension Principles, etc. [3, 4, 22, 34, 30, 41, 37, 38, 40]). In the first part of this

thesis, we shall use the FMRA technique, which, although elementary and limited,

allows us to accomplish our goal of constructing a multidimensional Mallat-Meyer

algorithm for MRA frames by tensor products [5, 35, 21]. This theory depends on

the measure theoretic properties of particular sets associated with natural periodiza-

tions. This measure theoretic point of view first appeared independently in [11] and

[32].

These two problems (i.e., the construction of scaling functions and the exten-

sion of FMRA theory to Rd) are related because the theory of FMRA, as the name

suggests, is a special case of the theory of GFMRA. FMRAs are useful in signal

processing because the perfect reconstruction filter banks associated to them can be

narrow-band. Therefore, FMRA filter banks can achieve quantization noise reduc-

tion simultaneously with reconstruction of a given narrow-band signal. However,

this theory itself is not sufficient to study all orthonormal wavelets as we shall see

in the final chapter.
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1.2 Results

In the first part of this thesis, in chapter 2, we generalize the main results of the

theory of FMRA given in [10, 11], and provide an algorithm by means of tensor

products to construct wavelet frames for L2(Rd). The main results are Theorems

2.2, 2.3, 2.5, 2.6, 2.7 and the construction given in section 2.5 in chapter 2. Section

2.5 gives a formula by means of tensors similar to the Mallat-Meyer expression for the

generators of W0, provided that a certain subset of the d-dimensional torus has zero

measure, i.e., the applicability of such an algorithm depends on the measure theoretic

properties of a subset of the spectrum of the FMRA. Theorem 2.2 characterizes the

generators of W0 in terms of certain equations which we formulate. Theorem 2.3

gives a necessary and sufficient condition for a function ψ to belong to W0 in terms

of filters (see section 1.4 for the definition of a filter). Theorem 2.5 is the dual

version of Theorem 2.2, i.e., the equations in Theorem 2.5 are obtained by taking

the Fourier transform of the ones given in Theorem 2.2. The equations in Theorem

2.3 and 2.5 are a system of linear equations that needs to be solved pointwise in

order to obtain frame generators for W0.

In the second part of this thesis, in chapter 3, we analyze the generalized

multiresolution schemes of Papadakis and Baggett, and construct, for any given

orthonormal wavelet, a GFMRA. This is Theorem 3.14. This construction is par-

ticularly easy to implement when the wavelet has a compactly supported Fourier

transform. In Theorem 3.17, we unify the generalized multiresolution theories of

Papadakis and Baggett by providing an explicit formula of an important unitary
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map given in [3, 19]. In general, this map cannot be formulated explicitly. As a

consequence, the scaling functions obtained by our methods are equivalent to the

ones given in [3, 19]. Another consequence of our approach is an alternative proof of

a classical theorem given in [14] involving a special type of decomposition of shift-

invariant subspaces. This is Theorem 3.19, and, in fact, it can be obtained as a

corollary from the existence of the unitary map mentioned above.

1.3 Notation and Definitions

Definition 1.3. The Fourier transform f̂ : R̂d −→ C of f ∈ L1(Rd) is defined by

∀γ ∈ R̂d, f̂ (γ) =

∫
Rd
f (x) e−2πix·γdx.

This function f̂ is uniformly continuous and vanishes at infinity. R̂d is Rd

considered as the spectral domain of the Fourier transform, and x · γ denotes the

standard inner product on Rd × R̂d. The map f → f̂ restricted to L1(Rd) ∩ L2(Rd)

extends to a unitary map on L2(Rd). The inverse Fourier transform is formally

defined by

f∨ (x) =

∫
Rd
f (γ) e2πix·γdγ.

The term ”inverse” is justified by the following fact: if f ∈ L1(Rd) and f̂ ∈ L1(R̂d),

then

∀x ∈ Rd, f (x) =

∫
Rd
f̂ (γ) e2πix·γdγ.

Now we state the definition of a frame for a separable Hilbert space H:

Definition 1.4. Given a separable Hilbert space H (i.e., it has a countable ortho-

normal basis). A frame for H is a sequence {fi}i∈I ⊆ H of vectors, where I is a
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countable index set, for which there are constants 0 < A ≤ B <∞ such that

∀f ∈ H, A||f ||2 ≤
∑
i∈I

| 〈f, fi〉 |2 ≤ B||f ||2.

If A = B, we say that the frame is tight, and if A = B = 1, we call it a Parseval

frame.

Frames can be seen as overcomplete bases. More precisely, every element

f ∈ H can be represented as

f =
∑
i∈I

aifi, (1.1)

where (ai)i∈I ∈ l2(I) =
{
(ci)i∈I :

∑
i∈I |ci|

2 <∞
}
, and the convergence of (1.1) is

independent of the order of summation. The main difference between a frame and

a basis of any kind is that the coefficients in (1.1) are not unique, and in the case of

a basis they are unique. There are many definitions for bases, but we are interested

in Riesz bases because of the stability they provide:

Definition 1.5. A Riesz basis (or exact frame) is a sequence {fi}i∈I ⊆ H of vectors

for which there are constants A,B > 0 such that

A
∑
i

|ci|2 ≤

∥∥∥∥∥∑
i

cifi

∥∥∥∥∥
2

≤ B
∑
i

|ci|2 ,

for all sequences {ci} with finite number of nonzero entries.

If the constants in the definition of a Riesz basis are A = B = 1, it can be

shown that the Riesz basis is in fact an orthonormal basis, i.e.,

∀i, j ∈ I, 〈fi, fj〉 = δij
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where δi,j is the Kronecker delta. There is the following characterization of Riesz

bases in terms of continuous bijective operators defined on a Hilbert space and

orthonormal bases:

Theorem 1.6. A sequence of vectors {fi}i∈I ⊆ H is a Riesz basis if and only if

there is a bounded bijective operator T : H → H and an orthonormal basis {ei}i∈I

such that

∀i ∈ I, fi = Tei.

For a given y ∈ Rd, τy is the translation operator defined formally by τyf (x) =

f (x− y), for a function f defined on Rd. The dilation operator D is defined formally

by Df (x) = 2d/2f (2x). It turns out that these operators are isometries on L2(Rd),

by the invariance of the Lebesgue measure and the change of variable formula,

respectively.

We define the map X in the following way: for f ∈ L2(Rd),

X (f) (γ) =
{
f̂ (γ + k)

}
k∈Zd

.

Then X (f) (γ) ∈ l2(Zd) for almost every γ in R̂d. The periodization of |ϕ̂|2, for

ϕ ∈ L2(Rd), is defined as Φ (γ) = ‖X (ϕ) (γ)‖2
l2(Zd). It is clear that if ϕ ∈ L2(Rd), then

Φ∈L1(Td); and ‖Φ‖L1(Td) = ‖ϕ‖2
L2(Rd) by the Parseval-Plancherel theorem. A′(Zd)

is defined to be the set of all Fourier coefficients of bounded periodic functions, and

the space L∞ is defined as

L∞ =

{
f : Rd −→ C : ∃B > 0,

∑
n∈Zd

|f (x− n)| ≤ B a.e.

}
.

For ϕ ∈ L2(Rd), let V0 = span{τnϕ : n∈Zd} be the closed linear span of the

sequence {τnϕ}n∈Zd . Then it is elementary to prove that {τnϕ} is an exact frame
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(or a Riesz basis) for its closed linear span if and only if there exist constants A,B,

with 0 < A ≤ B <∞ for which

A ≤ Φ ≤ B a.e.

A similar result is true for frames of translates [8, 11, 17, 18, 40]. In order to

state this result we use the“pullback” notation [f > 0] to designate the set of points

x in the domain of f for which f is positive. Then {τnϕ}n∈Zd is a frame for its closed

linear span if and only if there exist constants A,B, with 0 < A ≤ B <∞ for which

A ≤ Φ ≤ B a.e. on [Φ > 0] .

This result can be generalized in the case of several ϕis in terms of the Gramian

matrix

GX (γ) =

(∑
n∈Zd

ϕ̂k (γ − n) ϕ̂j (γ − n)

)
1≤k,j≤N

= (〈X (ϕk) (γ) ,X (ϕj) (γ)〉)1≤k,j≤N ,

whereX = {ϕi}Ni=1. Letm (γ) ,m+ (γ) , andM (γ) be the smallest, smallest positive,

and largest eigenvalues of GX (γ) , respectively. Then
{
τnϕi : n ∈ Zd, 1 ≤ i ≤ N

}
is

a frame for its closed linear span if and only if there exist constants A,B, with

0 < A ≤ B <∞, for which

A ≤ m+ (γ) ≤M (γ) ≤ B a.e.

holds in a particular set called the spectrum of spank∈Zd {τkϕ : ϕ ∈ X} [12, 13,

14, 15]. The spectrum is defined in the next section. In the case the translations

of elements of X form a Riesz basis, m+ (γ) can be replaced by m (γ) , and the

inequalities hold a.e.
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1.4 Shift Invariant Subspaces

We shall use the shift-invariant approach in section 2.3 to prove Theorem 2.7. Here

are the main concepts and definitions needed for Theorem 2.7. For more details

about the shift-invariant subspace theory see [12, 13, 14, 15, 29].

If W ⊂ L2(Rd) and γ ∈ R̂d, we set

X (W ) (γ) = {(X (f)) (γ) : f ∈ W} ,

and hence X (W ) (γ) ⊂ l2(Zd) for almost all γ. If W ⊂ L2(Rd) is a linear subspace

of L2(Rd), then, by the linearity of X , X (W ) (γ) is a linear subspace of l2(Zd).

SpX ,γ (W ) is defined to be

SpX ,γ (W ) = span {(X (f)) (γ) : f ∈ W} .

For W ⊂ L2
(
Rd
)
, we define S (W ) as

S (W ) = spank∈Zd {τkf : f ∈ W} ,

the shift-invariant space generated by W. If W is a finite set, we say that S = S (W )

is a finitely generated shift-invariant space (FSI). The length of a shift-invariant

subspace S is defined to be len S = min card {W : S = S (W )}. For S, a shift-

invariant subspace of L2
(
Rd
)
, the spectrum of S, σ (S) , is defined by

σ (S) =
{
γ ∈ Td : dimSpX ,γ (W ) > 0

}
,

where dim indicates dimension. In the case of an FMRA (defined in the next

chapter), σ (V0) = [Φ > 0] =
{
γ ∈ Td : Φ (γ) > 0

}
.
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Let H be a Hilbert space and let F be a linear subspace of H. Then F⊥, the

orthogonal complement of F in H, is defined as

F⊥ = {x ∈ H : ∀f ∈ F, 〈x, f〉 = 0} .

The continuity of the inner product implies that F⊥ is a closed linear subspace

of H. We now state some results which we shall need in section 2.3 in chapter 2.

Theorem 1.7. Let S be a finitely generated shift-invariant space and let T be a

shift-invariant subspace of S. Then T⊥ is also shift-invariant and, for almost every

γ ∈ R̂d,

X (S) (γ) = X (T ) (γ)
⊕

X
(
T⊥) (γ) .

Theorem 1.8. Given any FSI S, there is a finite subset W ⊂ L2(Rd), for which

the multi-integer translates of W are a frame for S.

Theorem 1.9. For a shift-invariant subspace S ⊂ L2(Rd), we have

len S = ess-sup
{
dimX (S) (γ) , γ ∈ Td

}
.

The map DS (γ) = dimX (S) (γ) is the dimension function of the subspace S.

These theorems, together with their proofs, can be found in [12], [40], and [13],

respectively.

1.5 The Haar Multiresolution

The first example of a wavelet was given by Alfred Haar in 1910. This type of

decomposition is what we call a time-scale decomposition. Time-scale analysis is
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better suited for spaces where the Fourier transform or Fourier series are not well

behaved. The Haar system is elegant, beautiful, and simple. It is also an excellent

example of a multiresolution analysis which we define below

The Haar wavelet is

ψ (t) =


1 if t ∈

[
0, 1

2

)
−1 if t ∈

[
1
2
, 1
]

0 otherwise.

(1.2)

and set

ψj,k (t) = 2
j
2ψ
(
2jt− k

)
, j, k ∈ Z. (1.3)

An interval of the form [k2−j, (k + 1) 2−j] , j, k ∈ Z, is called a dyadic interval.

Notice that [k2−j, (k + 1) 2−j] is the support of ψj,k. The j-th level consists of those

intervals whose length is 2−j; and for a fixed j, distinct dyadic intervals are disjoint

or intersect at most in one point. More precisely,

Proposition 1.10. Given [k2−j, (k + 1) 2−j] and
[
n2−l, (n+ 1) 2−l

]
, n, l, j, k ∈ Z.

Then the intersection [k2−j, (k + 1) 2−j] ∩
[
n2−l, (n+ 1) 2−l

]
is either:

(i) a singleton,

(ii)
[
n2−l, (n+ 1) 2−l

]
, if the intervals are equal, or

(iii) one is contained either in the right half or in the left half of the other.

As a consequence of the previous proposition, we can conclude that the Haar

system is an orthonormal system for L2(R):

Theorem 1.11. {ψj,k}j,k∈Z is an orthonormal set in L2(R).
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Proof. Assuming that j ≤ l we obtain, by setting p = l − j,m = n − 2pk, and

x = 2jt− k, that

〈ψj,k, ψl,n〉 =

∫
R
ψj,k (t)ψl,n (t) dt =

∫
R
ψ (x)ψp,m (x) dt. (1.4)

Note that for every j, k ∈ Z,

∫
R
ψj,k (t) dt = 0 and

∫
R
|ψj,k (t)|2 dt = 1.

by the definition of ψ. Hence, in any of the three cases in the above proposition,

equation (1.4) is zero or one (in the case that m = 0 and p = 1). This proves the

orthonormality of the system {ψj,k}j,k∈Z.

The next step is to prove that this set is in fact an orthonormal basis for

L2(R). In order to do this we consider the following two families of closed subspaces

of L2(R):

Vn := span {ψj,k : j < n ; k ∈ Z} (1.5)

and

V ′
n := functions in L2 (R) constant in

[
k2−n, (k + 1) 2−n

]
for all k ∈ Z. (1.6)

The next properties are shared by both families (1.5) and (1.6):

... ⊂ Vn ⊂ Vn+1 ⊂ ... (1.7)

f (t) ∈ Vn ⇐⇒ f (2t) ∈ Vn+1 (1.8)

f (t) ∈ V0 ⇐⇒ f (t+ k) ∈ V0. (1.9)

Moreover,
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Lemma 1.12. For every n ∈ Z, Vn = V ′
n.

Proof. In light of (1.8), which is valid for both families, it suffices to show that

V0 = V ′
0 . Every ψj,k for j < 0 is constant in intervals of the form [m,m+ 1] for

m ∈ Z, so it is clear that V0 ⊂ V ′
0 . To show the other inclusion, observe that every

f ∈ V ′
0 can be written as

f =
∑

m∈Z
α (m)1[m,m+1] with convergence in L2 (R) . (1.10)

Hence, by (1.9), it is suffices to show 1[0,1] ∈ V0. The key observation here is to look

at the following series:

∑
j<0

2
j
2ψj,0 (t) =

∑
j<0

2jψ
(
2jt
)
.

Since ‖2jψ (2jt)‖L2(R) = 2j and j < 0, this is an absolutely convergent series in

L2 (R) . Now, considering (1.2), we obtain

∑
j<0

2
j
2ψj,0 (t) = 0 if t ≤ 0,

and ∑
j<0

2
j
2ψj,0 (t) =

∑
j<0

2j = 1 if 0 < t < 1.

Moreover, for t ∈ (2p, 2p+1) for p = 0, 1, 2, ... we have

∑
j<0

2
j
2ψj,0 (t) = −2−p−1 +

∑∞

j=p+2
2−j = 0.

Hence, ∑
j<0

2
j
2ψj,0 = 1[0,1] a.e. in L2 (R)

so that 1[0,1] ∈ V0 as desired.
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Using the density in L2 (R) of the set
⋃∞
n=−∞V

′
n, as well as the previous theorem

and lemma, we obtain:

Theorem 1.13 (Haar). The system {ψj,k}j,k∈Z is an orthonormal basis for L2 (R) .

This means that every f ∈ L2 (R) has a unique decomposition of the form

f =
∑
j∈Z

∑
k∈Z

〈f, ψj,k〉ψj,k.

Since every ψj,k belongs to Lp (R) for p ≥ 1, every f ∈ Lp (R) can be represented

as above with convergence in Lp (R) [36], but the study of the convergence of this

series for every f ∈ Lp (R) is beyond the scope of this thesis.

Note that the following is satisfied for the above family {Vj} of closed subspaces

of L2 (R):

1. ∀j ∈ Z, Vj ⊂ Vj+1,

2.
⋃∞
j=−∞Vj = L2 (R) ,

3.
⋂∞
j=−∞ Vj = {0} ,

4. f (t) ∈ Vj ⇐⇒ f (2−jt) ∈ V0

5. ∀k ∈ Z, f (t) ∈ V0 ⇐⇒ f (t+ k) ∈ V0

6. The integer translates of ϕ = 1[0,1] form an orthonormal basis for V0.

A family {Vj} with a function ϕ (not necessarily ϕ = 1[0,1]) satisfying (1)-(6) is

called a multiresolution analysis (MRA). ϕ is a scaling function. Mallat and Meyer

[35, 36] developed an algorithm to construct a wavelet for a given MRA, and this is
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the tool used by Daubechies [21] to construct arbitrary smooth compactly supported

wavelets. We outline the Mallat-Meyer algorithm:

First, note that ϕ (t) ∈ V1, hence, ϕ
(
t
2

)
∈ V0. Therefore, the following equation

holds:

ϕ

(
t

2

)
=
∑
n∈Z

a (n)ϕ (t− n) , (1.11)

so that, by change of variables,

ϕ (t) =
∑
n∈Z

a (n)ϕ (2t− n) . (1.12)

Equivalently,

ϕ̂ (γ) = H0

(γ
2

)
ϕ̂
(γ

2

)
, (1.13)

or

ϕ̂ (2γ) = H0 (γ) ϕ̂ (γ) , (1.14)

where

H0 (γ) =
∑
n∈Z

a (n) e−2πinγ.

Since
∥∥ϕ ( t

2

)∥∥
L2(R)

=
√

2, we obtain that
∑

n∈Z |a (n)|2 = 2, because the translates

ϕ (t− n) form an orthonormal basis for V0, and so

‖H0‖L2(T) =
√

2.

The equivalent equations (1.11) - (1.14) are called scaling equations. The

function H0 is called a filter. This function H0 satisfies

|H0 (γ)|2 + |H0(γ + 1/2)|2 = 1, for almost every γ ∈ R. (1.15)
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Observe that, in the case that ϕ̂ is continuous at zero, |ϕ̂ (0)| = 1. Now, iterating

equation (1.13) N times we obtain

ϕ̂ (γ) =
∏N

j=1H0

( γ
2j

)
ϕ̂
( γ

2j

)
,

and hence,

ϕ̂ (γ) =
∏∞

j=1H0

( γ
2j

)
. (1.16)

It is clear that only very special sequences {a (n)}n∈Z definingH0 could give rise

to scaling function by means of (1.16). Hence, certain filters produce MRAs. These

filters are called MRA filters. Such filters were used by Daubechies to construct

compactly supported wavelets with arbitrary degree of smoothness, as mentioned

above.

A function f belongs to V0 if and only if

f = K0ϕ̂

for some unique periodic L2 (T) function K0. The coefficients of the Fourier expan-

sion of K0 are also the coefficients of the frame expansion of f. The same f belongs

to V1 if and only if f (x) = g (2x) , for some g ∈ V0. This is equivalent to

f̂ (γ) = Mf

(γ
2

)
ϕ̂
(γ

2

)
,

for some L2 (T) function Mf . If we define W0 to be the orthogonal complement of

V0 in V1, then W0

⊕
V0 = V1. In the case f = ϕ, Mf = H0. The next proposition

characterizes the space W0 :

Proposition 1.14. A function f belongs to W0 if and only if

f̂ (γ) = eπiγυf (γ)H0

(
γ

2
+

1

2

)
ϕ̂
(γ

2

)
, (1.17)
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for some L2 (T) function υ (γ) and for H0 defined by (1.13). Moreover,

‖f‖L2(R) = ‖υ‖L2(T) .

Proof. f belongs to W0 if and only if f belongs to V1 and f (x) ⊥ ϕ (x− k) for every

k in Z, i.e.,

0 = 〈f, τkϕ〉 =
〈
f̂ , ekϕ̂

〉
=
∫

Tek (γ)
∑

k∈Zf̂ (γ + k) ϕ̂ (γ + k)dγ. (1.18)

Here,

ek (γ) = e2πikγ.

Note that

∑
k∈Z
∫

T

∣∣∣f̂ (γ + k)
∣∣∣ ∣∣∣ϕ̂ (γ + k)

∣∣∣ dγ =
∫

R

∣∣∣f̂ (γ + k)
∣∣∣ ∣∣∣ϕ̂ (γ + k)

∣∣∣ dγ ≤ ‖f‖2 ‖ϕ‖2 ,

and, hence,
∑

k∈Zf̂ (γ + k) ϕ̂ (γ + k) represents an integrable function on the torus.

The right side of the last equality of (1.18) is the k-th Fourier coefficient of

∑
k∈Z

f̂ (γ + k) ϕ̂ (γ + k)

Thus, by the uniqueness of Fourier series,

∑
k∈Zf̂ (γ + k) ϕ̂ (γ + k) = 0 a.e.

Now f̂ (γ) = Mf

(
γ
2

)
ϕ̂
(
γ
2

)
and ϕ̂ (γ) = H0

(
γ
2

)
ϕ̂
(
γ
2

)
a.e., and, hence,

∑
k∈ZMf

(
γ

2
+
k

2

)
ϕ̂

(
γ

2
+
k

2

)
H0

(
γ

2
+
k

2

)
ϕ̂

(
γ

2
+
k

2

)
= 0 a.e.
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Making the substitution ξ = γ
2
, this sum splits as follows:

0 =
∑

k∈ZMf

(
ξ +

k

2

) ∣∣∣∣ϕ̂(ξ +
k

2

)∣∣∣∣2H0

(
ξ +

k

2

)
=
∑

k∈ZMf (ξ + k) |ϕ̂ (ξ + k)|2H0 (ξ + k)

+
∑

k∈ZMf

(
ξ + k +

1

2

) ∣∣∣∣ϕ̂(ξ + k +
1

2

)∣∣∣∣2H0

(
ξ + k +

1

2

)
.

Using the periodicity of Mf and H0 this implies that

0 = Mf (ξ)H0 (ξ)
∑

k∈Z |ϕ̂ (ξ + k)|2 (1.19)

+H0

(
ξ +

1

2

)
Mf

(
ξ +

1

2

)∑
k∈Z

∣∣∣∣ϕ̂(ξ + k +
1

2

)∣∣∣∣2
= Mf (ξ)H0 (ξ) +Mf

(
ξ +

1

2

)
H0

(
ξ +

1

2

)
.

Each of these steps are reversible, and, hence, f belongs to W0 if and only if f

belongs to V1 and (1.19) holds. On the other hand, (1.19) is the orthogonality

(pointwise) of the vectors
(
Mf (ξ) ,Mf

(
ξ + 1

2

))
and

(
H0 (ξ) , H0

(
ξ + 1

2

))
, so that

(
Mf (ξ) ,Mf

(
ξ +

1

2

))
= c (ξ)

(
H0

(
ξ +

1

2

)
,−H0 (ξ)

)
(1.20)

for some 1-periodic complex valued function c. Using the periodicity of the functions

in (1.20) we obtain

(
Mf

(
ξ +

1

2

)
,Mf (ξ)

)
= c

(
ξ +

1

2

)(
H0 (ξ),−H0

(
ξ +

1

2

))

so that Mf (ξ) = c (ξ)H0

(
ξ + 1

2

)
and c (ξ) = −c

(
ξ + 1

2

)
. Summarizing, f ∈ W0 if

and only if

f̂ (γ) = Mf

(γ
2

)
ϕ̂
(γ

2

)
and Mf (γ) = c (γ)H0

(
γ +

1

2

)
,
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where c is a 1-periodic function satisfying c (γ) = −c
(
γ + 1

2

)
. This condition is

equivalent to b (γ) = e−2πiγc (γ) being one half periodic. Setting υf (γ) = b
(
γ
2

)
, υf

is 1-periodic and

f̂ (γ) = eπiγυf (γ)H0

(
γ

2
+

1

2

)
ϕ̂
(γ

2

)
as claimed. ‖f‖L2(R) = ‖υ‖L2(T) can be easily proved using (1.15).

The system {ψ (x− k)}k∈Z ⊂ W0 is an orthonormal system if and only if∑
k

∣∣∣ψ̂ (γ − k)
∣∣∣2 = 1 a.e. More precisely,

Lemma 1.15. The system {ψ (x− k)}k∈Z ⊂ W0 is an orthonormal basis for W0 if

and only if |υψ (γ)| = 1 a.e., where υψ a 1-periodic function given by (1.17) and ψ

satisfies (1.17).

Proof.

1 =
∑

k

∣∣∣ψ̂ (γ − k)
∣∣∣2

= |υψ (γ)|2
[∣∣∣∣Mψ

(
γ

2
+

1

2

)∣∣∣∣2∑k∈Z

∣∣∣ϕ̂(γ
2

+ k
)∣∣∣2 +

∣∣∣Mψ

(γ
2

)∣∣∣2∑k∈Z

∣∣∣∣ϕ̂(γ2 +
1

2
+ k

)∣∣∣∣2
]

= |υψ (γ)|2
[∣∣∣∣Mψ

(
γ

2
+

1

2

)∣∣∣∣2 +
∣∣∣Mψ

(γ
2

)∣∣∣2] = |υψ (γ)|2 .

Hence, {ψ (x− k)}k∈Z ⊂ W0 is an orthonormal system if and only if |υ (γ)| = 1 a.e.

To prove that {ψ (x− k)}k∈Z is complete in W0, let f ∈ W0. Then

f̂ (γ) = eπiγυf (γ)H0

(
γ

2
+

1

2

)
ϕ̂
(γ

2

)
,

so that

f̂ (γ) = eπiγυf (γ)H0

(
γ

2
+

1

2

)
ϕ̂
(γ

2

)
= υ−1

ψ (γ) υf (γ)

[
eπiγυψ (γ)H0

(
γ

2
+

1

2

)
ϕ̂
(γ

2

)]

= υ−1
ψ (γ) υf (γ) ψ̂ (γ) = Kf (γ) ψ̂ (γ) .
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Here, Kf (γ) = υ−1
ψ (γ) υf (γ) . This Kf is an L2 (T) function since υψ (γ) is unimod-

ular a.e. Taking the inverse Fourier transform we see that every function in W0 is a

series of the form

f (x) =
∑

k∈Zkf (k)ψ (x− k) in L2 (R) ,

where {kf (n)}n∈Z is in l2 (Z) . This completes the proof.

Now,

Vj
⊕
Wj = Vj+1,

Dj (V0

⊕
W0) = Dj (V0)

⊕
Dj (W0) = Vj

⊕
Dj (W0) ,

and hence,

Dj (W0) = Wj.

Moreover, since

∀j ∈ Z, Vj ⊂ Vj+1,
⋃∞
j=−∞Vj = L2 (R)

and ⋂∞

j=−∞
Vj = {0} ,

we get that

span {ψj,k}j∈Z,k<p = Vp

and

L2 (R) =
⊕

j∈ZWj.
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Chapter 2

Frame Multiresolution Analysis (FMRA)

2.1 Overview

Frames were introduced in the 1950s to deal with problems in nonharmonic Fourier

series [25]. They are an appropiate tool to deal with problems where redundancy,

robustness, oversampling, and /or nonuniform sampling play a role.

A feature that makes FMRAs potentially useful in signal processing is the fact

that the perfect reconstruction filter banks associated to them can be narrow band,

whence FMRA filter banks can achieve quantization noise reduction simultaneously

with reconstruction of a given narrow-band signal [8, 9, 10, 11].

In sections 2.2 and 2.3 we generalize the main results of the theory of FMRA

proved in [10, 11] to Rd. Our main results are Theorems 2.2, 2.3, 2.5, 2.6 in sec-

tion 2.2 and Theorems 2.7 in section 2.3. Sections 2.4 and 2.5 are devoted to the

construction of wavelet frames for L2
(
Rd
)

in the spirit of Mallat-Meyer algorithm.

Theorems 2.2, 2.3, 2.5, and 2.6 provide the equations necessary to state quan-

titative sufficient conditions in order that an FMRA should give rise to a wavelet

frame for L2
(
Rd
)
. In fact, Theorem 2.6, which summarizes Theorems 2.2, 2.3, and

2.5 gives sufficient conditions for translates of a given finite set of functions to be a

wavelet frame for a basic subspace W0 of L2
(
Rd
)
.

Theorem 2.7 was proved independently by Benedetto and Treiber [11], and
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Kim et al. [31, 32]. It states that a neccesary and sufficient condition to obtain

wavelets by a generalized Mallat-Meyer algorithm is that a set related to the spec-

trum of the core subspace V0 of the FMRA should have measure zero.

2.2 Frame Multiresolution Analysis

Definition 2.1. A frame multiresolution analysis (FMRA) (Vj, ϕ)j∈Z of L2(Rd) is

an increasing sequence of closed linear subspaces Vj ⊂ L2(Rd) and an element ϕ ∈ V0

for which the following hold:

1. ∪jVj = L2(Rd) and ∩Vj = {0},

2. f ∈ Vj ⇐⇒ Df ∈ Vj+1, where Df(x) = 2d/2f(2x),

3. ∀k ∈ Zd, f ∈ V0 ⇐⇒ τkf ∈ V0,

4. {τkϕ : k ∈ Zd} is a frame for V0.

The following results are well known for the case d = 1, see [10, 11]. The

equations in these results are the key for the construction of FMRA frames.

Theorem 2.2. Let (Vj, ϕ) be an FMRA of L2(Rd), let ω = {ψ1, ..., ψm} ⊂ W0, the

orthogonal complement of V0 in V1, and set ψ0 = ϕ.

1. If ∪k∈Zdτkω = {τkψp : 1 ≤ p ≤ m; k ∈ Zd} defines W0, i.e., span (∪k∈Zdτkω) =

W0, then there are g0, ..., gm ∈ l2
(
Zd
)

such that

∀n∈Zd, ϕ (2x− n) =
m∑
p=0

∑
k∈Zd

gp (2k − n)ψp (x− k) in L2(Rd). (2.1)
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2. If there are g0, ..., gm ∈ A′ (Zd
)

such that (2.1) is valid, and if ‖X (ψp) (γ)‖2
l2(Zd)

is essentially bounded for each 1 ≤ p ≤ m, i.e., each ψ̂p
2
∈ L∞, then ∪k∈Zdτkω

is a frame for W0.

Proof. Any f ∈ V1 can be written uniquely as f0 + k0, with f0 ∈ V0 and k0 ∈ W0.

For each m ∈ Zd and for each u∈{0, 1}d, ϕ (2x− 2m− u) is an element of V1. Since

∪k∈Zdτkω = {τkψp : 1 ≤ p ≤ m; k ∈ Zd} generates W0, and since ∪k∈Zdτkϕ is a

frame for V0, there exists a set
{
gi,u ∈ l2

(
Zd
)

: 0 ≤ i ≤ m;u∈{0, 1}d
}

such that for

each m ≥ 0 and each u∈{0, 1}d, we have

ϕ (2x− 2m− u) =
m∑
p=0

∑
k∈Zd

gp,u (k −m)ψp (x− k) .

Now, define {gp}mp=0 by means of the formula

gp (2k + u) = gp,u (k) , 0 ≤ p ≤ m, u∈{0, 1}d, k ∈ Zd.

If n = 2l + u, n, l ∈ Zd, u∈{0, 1}d, then

ϕ (2x− n) = ϕ (2x− 2l − u) =
m∑
i=0

∑
k∈Zd

gp,u (k − l)ψp (x− k)

=
m∑
p=0

∑
k∈Zd

gp (2k − 2l − u)ψp (x− k)

=
m∑
p=0

∑
k∈Zd

gp (2k − n)ψp (x− k) in L2(Rd).

Thus, the proof of (1) is complete. Next, assume that the hypotheses of part (2)

hold. For each f ∈ W0 ⊂ V1, there is {c (n)}n∈Zd ∈ l2
(
Zd
)

such that

f (x) =
∑
n∈Zd

c (n)ϕ (2x− n)

=
∑

u∈{0,1}d

∑
k∈Zd

c (2k + u)ϕ (2x− 2k − u) .
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The previous equation is equivalent to

f̂ (γ) =
∑
k∈Zd

2−d
∑

u∈{0,1}d
c (2k + u) ϕ̂

(
γ
2

)
e−2πik·γe−πiu·γ

=
∑

u∈{0,1}d
2−d

[∑
k∈Zd

c (2k + u) e−2πik·γ

]
e−πiu·γϕ̂

(
γ
2

)
(2.2)

=
∑

u∈{0,1}d
e−πiu·γϕ̂

(
γ
2

)
Cu (γ) in L2(R̂d),

where Cu (γ) = 2−d
∑

k∈Zd c (2k + u) e−2πik·γ ∈ L2(Td), and where the convergence in

L2(R̂d) is in terms of the partial sums of the Cu by the Parseval-Plancherel theorem.

If we take the Fourier transform of (2.1), we obtain for n = 2l + u, u∈{0, 1}d, and

l ∈ Zd, that

ϕ (2x− 2l − u) =
m∑
p=0

∑
k∈Zd

gp (2 (k − l)− u)ψp (x− k)

if and only if

2−dϕ̂
(
γ
2

)
e−2πil·γe−πiu·γ =

m∑
p=0

[∑
k∈Zd

gp (2 (k − l)− u) e−2πik·γ

]
ψ̂p (γ) .

Hence,

ϕ̂
(
γ
2

)
e−πiu·γ = 2d

m∑
p=0

[∑
k∈Zd

gp (2 (k − l)− u) e−2πi(k−l)·γ

]
ψ̂p (γ)

=
m∑
p=0

Gp,u (γ) ψ̂p (γ) ,

where Gp,u (γ) = 2d
∑

k∈Zd gp (2k − u) e−2πik·γ ∈ L2(Td), for all p, u, and the con-

vergence in L2(R̂d) is in terms of the partial sums of the Gp,us. Substituting into
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equation (2.2), we have

f̂ (γ) =
∑

u∈{0,1}d

(
e−πiu·γϕ̂

(
γ
2

))
Cu (γ)

=
∑

u∈{0,1}d

(
m∑
j=0

Gp,u (γ) ψ̂j (γ)

)
Cu (γ)

=
m∑
p=0

 ∑
u∈{0,1}d

Gp,u (γ)Cu (γ)

 ψ̂j (γ)

=
m∑
p=0

Ep (γ) ψ̂p (γ) ,

where Ep (γ) =
∑

u∈{0,1}d Gp,u (γ)Cu (γ) .Using the hypothesis that gp ∈ A′ (Zd
)
, 0 ≤

p ≤ m, we see that Ep ∈ L2(Td). Now, for N ∈ N, we define

f̂N (γ) =
m∑
p=0

∑
|n|≤N

E∨
p (n) e−2πin·γ

 ψ̂p (γ) =
m∑
p=0

EN
p (γ) ψ̂p (γ) ,

where EN
p (γ) =

∑
|n|≤N E

∨
p (n) e−2πin·γ (the N-th symmetric partial sum of Ep (γ)),

n= (n1, ..., nd) ∈ Zd, and |n| =
∑d

i=1 |ni|. Clearly, f̂N ∈ L2(R̂d) and

lim
N→∞

||f̂N − f̂ ||L2(bRd) = 0,

since each ψ̂p
2
∈ L∞ and since

||f̂N − f̂ ||L2(bRd) ≤
m∑
p=0

||ψ̂p
(
Ep − EN

p

)
||L2(bRd)

=
m∑
p=0

∑
n∈Zd

(∫
[0,1]d

τn|ψ̂p|2
∣∣Ep − EN

p

∣∣2) 1
2

=
m∑
p=0

||
√

Φp

(
Ep − EN

p

)
||L2(Td)

≤
m∑
p=0

||
√

Φp||L∞(Td)||
(
Ep − EN

p

)
||L2(Td),
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where Φp = P
(
|ψ̂p|2

)
, 0 ≤ p ≤ m. Hence, the Parseval-Plancherel theorem implies

that

f =
m∑
p=0

∑
n∈Zd

E∨
p (n) τnψp in L2(Rd).

Because f ∈ W0,
∑

n∈Zd E
∨
0 (n) τnψ0 =

∑
n∈Zd E

∨
0 (n) τnϕ = 0. Hence,

f =
m∑
p=1

∑
n∈Zd

E∨
p (n) τnψp in L2(Rd),

where
{
E∨
p (n)

}
n∈Zd ∈ l2

(
Zd
)
, for p ∈ {1, ...,m}. So far we have proved that

∪k∈Zdτkω generates W0. This mean that the linear operator T ∗
W0

: l2
(
Zd
)
→ W0,

T ∗
ω ({ck}) =

∑m
p=1

∑
k ckτkψp, is a surjection onto W0. Its adjoint, TW0 , is bounded

since ψ̂p
2
∈ L∞, 1 ≤ p ≤ m. This implies that T ∗

W0
is also bounded. The open

mapping theorem guarantees that T ∗
W0

is also bounded below on N
(
T ∗
W0

)⊥
, since

the restriction of this map to N
(
T ∗
W0

)⊥
is an invertible operator. It follows that

∪k∈Zdτkω is a frame for W0 (see Proposition 3.4 in [11]).

Theorem 2.3. Let H0 ∈ L∞
(
Td
)
, and let (Vj, ϕ) be an FMRA, where H0 and ϕ

satisfy

ϕ̂(γ) = H0

(γ
2

)
ϕ̂
(γ

2

)
a.e. in L2(R̂d). (2.3)

Define W0 as the orthogonal complement of V0 in V1. Further, for {h1 [n]} ∈ l2
(
Zd
)
,

let ĥ1 = H1 ∈ L2
(
Td
)
, and let ψ ∈ V1 be defined as

ψ̂(γ) = H1

(γ
2

)
ϕ̂
(γ

2

)
a.e. in L2(R̂d). (2.4)

Then ψ ∈ W0 if and only if

∑
u∈{0,1}d

τu
2

(
H1H0Φ

)
= 0 a.e. in L2(Td). (2.5)
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Proof. Set ek (γ) = e−2πik·γ. Then ψ ∈ V ⊥
0 (in V1)

⇐⇒ ∀k ∈ Zd,
〈
ψ̂, ekϕ̂

〉
= 〈ψ, τkϕ〉 = 0

⇐⇒ ∀k ∈ Zd,
〈
H1

( ·
2

)
ϕ̂
( ·

2

)
, ekH0

( ·
2

)
ϕ̂
( ·

2

)〉
= 0

⇐⇒ ∀k ∈ Zd, 〈H1ϕ̂, e2kH0ϕ̂〉 = 0

⇐⇒ ∀k ∈ Zd,

∫
Rd
H1H0|ϕ̂|2e2k = 0

⇐⇒ ∀k ∈ Zd,

∫
[− 1

2
, 1
2 ]
d
H1H0Φe2k = 0

⇐⇒ ∀k ∈ Zd,
∑

u∈{0,1}d

∫
[0, 12 ]

d
τu

2

(
H1H0Φ

)
e2k = 0

⇐⇒
∫
[0, 12 ]

d

∑
u∈{0,1}d

τu
2

(
H1H0Φ

)
e2k = 0.

The result follows by the L1− uniqueness theorem for Fourier series.

Remark 2.4. After periodizing the modulus squared of (2.3), equation (2.3) is equiv-

alent to the following equation:

Φ =
∑

u∈{0,1}d
τ−u

2

[(
|H0|2 Φ

) ( ·
2

)]
. (2.6)

This equation will be needed for a remark after Theorem 2.7.

Theorem 2.5. Let (Vj, ϕ) be an FMRA, let H0 ∈ L∞(Td) satisfy ϕ̂(γ) = H0

(
γ
2

)
ϕ̂
(
γ
2

)
in L2(R̂d), and let ω = {ψ1, ..., ψm} ⊂ W0 and Hp ∈ L2(Td), 1 ≤ p ≤ m, satisfy

ψ̂p (γ) = Hp

(
γ
2

)
ϕ̂
(
γ
2

)
in L2(R̂d). Suppose that ĝp = Gp ∈ L∞(Td), 0 ≤ p ≤ m.

Then (2.1) holds if and only if

∀u ∈ {0, 1}d,
m∑
p=0

τ− 1
2
u(HpΦ)Gp = Φδ (0, u) . (2.7)

Here, δ (0, u) is the Kronecker delta.
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Proof. Equation (2.1) is equivalent to the following equation:

∀ n ∈ Zd, ϕ̂(γ) = 2d
m∑
p=0

∑
k∈Zd

gp (2k − n) e−2πi(2k−n)·γψ̂p (2γ)

= 2d
m∑
p=0

∑
k∈Zd

gp (2k − n) e−2πi(2k−n)·γHp (γ) ϕ̂(γ). (2.8)

Adding these equations over all v ∈ {0, 1}d we obtain

2dϕ̂(γ) = 2d
m∑
p=0

∑
v∈{0,1}d

∑
k∈Zd

gp (2k − v) e−2πi(2k−v)·γHp (γ) ϕ̂(γ)

= 2d
m∑
p=0

∑
q∈Zd

gp (q) e−2πiq·γHp (γ) ϕ̂(γ)

= 2d
m∑
p=0

Gp (γ)Hp(γ)ϕ̂(γ).

Here, Gp (γ) =
∑

q∈Zd gp (q) e−2πiq·γ, 0 ≤ p ≤ m. The second equality follows from

the fact that any q ∈ Zd can be written as 2k − v, where k ∈ Zd and v ∈ {0, 1}d

are uniquely determined. Now, let v ∈ {0, 1}d and u ∈ {0, 1}d \ {0} be fixed.

Multiplying (2.8) by e−πiv·u, we have

ϕ̂(γ)e−πiv·u = 2d
m∑
p=0

∑
k∈Zd

gp (2k − v) e−2πi(2k−v)·γe−πiv·uHp (γ) ϕ̂(γ)

= 2d
m∑
p=0

∑
k∈Zd

gp (2k − v) e−2πi(2k−v)·(γ−u
2 )Hp (γ) ϕ̂(γ).

On the other hand,
∑

v∈{0,1}d e
−πiv·u = 0 for a fixed u ∈ {0, 1}d \ {0} since e−πiv·u =

(−1)v·u . In fact,
∑

v∈{0,1}d e
−πiv·u =

∑
v∈{0,1}d (−1)v·u ; and so, for a fixed u ∈

{0, 1}d \ {0} , half of the {v · u}v∈{0,1}d are even and half are odd, and so the original

sum of exponentials is zero.
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Hence,

0 = (
∑

v∈{0,1}d
e−πiv·u)ϕ̂(γ)

= 2d
m∑
p=0

∑
v∈{0,1}d

∑
k∈Zd

gp (2k − v) e−2πi(2k−v)·(γ−u
2
)Hp (γ) ϕ̂(γ)

= 2d
m∑
p=0

∑
q∈Zd

gp (q) e−2πiq·(γ−u
2
)Hp (γ) ϕ̂(γ)

= 2d
m∑
p=0

Gp(γ −
u

2
)Hp(γ)ϕ̂(γ)

= 2d
m∑
p=0

Gp (ξ)Hp(ξ +
u

2
)ϕ̂(ξ +

u

2
).

Summarizing the previous calculations, we have verified that

φ̂(ξ) =
m∑
p=0

Gp (ξ)Hp(ξ)ϕ̂(ξ), a.e. ξ ∈ R̂d (2.9)

and

0 =
m∑
p=0

Gp (ξ)Hp(ξ +
u

2
)ϕ̂(ξ +

u

2
), a.e. ξ ∈ R̂d (2.10)

are equivalent to (2.1).

To prove the theorem, assume (2.1), i.e., assume (2.9) and (2.10). Multiplying

(2.9) and (2.10) by ϕ̂(ξ) and ϕ̂(ξ + u
2
), respectively, we obtain

|φ̂(ξ)|2 =
m∑
p=0

Gp (ξ)Hpj(ξ)|ϕ̂(ξ)|2 a.e. ξ ∈ R̂d

and

0 =
m∑
p=0

Gp (ξ)Hp(ξ +
u

2
)|ϕ̂(ξ +

u

2
)|2, a.e. ξ ∈ R̂d.

By the periodicity of the Gps and the Hps, the change of variable ξ → ξ+k produces

|ϕ̂(ξ + k)|2 =
m∑
p=0

Gp (ξ)Hp(ξ)|ϕ̂(ξ + k)|2, a.e. ξ ∈ R̂d
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and

0 =
m∑
p=0

Gp (ξ)Hp(ξ +
u

2
)|ϕ̂(ξ + k +

u

2
)|2, a.e. ξ ∈ R̂d.

Summing over all k in Zd, we have

Φ(ξ) =
m∑
p=0

Gp (ξ)Hp(ξ)Φ(ξ), a.e. ξ ∈ R̂d

and

0 =
m∑
p=0

Gp (ξ)Hp(ξ +
u

2
)Φ(ξ +

u

2
), a.e. ξ ∈ R̂d,

i.e.,
m∑
p=0

τ− 1
2
u(HpΦ)Gp = Φδ (0, u) , a.e. on Td.

This proves the“only if” part.

Conversely, if equation (2.7) has a solution Gp ∈ L∞(Td), 0 ≤ p ≤ m, then

1 =
m∑
p=0

Gp (ξ)Hp(ξ), a.e. ξ ∈ [Φ > 0]

and

0 =
m∑
p=0

Gp (ξ)Hp(ξ +
u

2
), a.e. ξ ∈

[
τ−u

2
Φ > 0

]
.

Clearly, ϕ̂(ξ) 6= 0 implies that Φ(ξ) 6= 0; and therefore [ϕ̂ 6= 0] ⊆ [Φ > 0] and[
τ−u

2
ϕ 6= 0

]
⊆
[
τ−u

2
Φ > 0

]
. This implies that the previous two equations hold a.e.

on [Φ>0] and on
[
τ−u

2
Φ > 0

]
, respectively. This yields (2.9) and (2.10), and, hence,

the proof is complete.

Combining Theorems 2.3 and 2.5 we obtain the following result:

Theorem 2.6. Let (Vj, ϕ) be an FMRA, let ω = {ψ1, ..., ψm} ⊂ W0, and let Hp,

0 ≤ p ≤ m, be as above. Assume that ψ̂p
2
∈ L∞, 1 ≤ p ≤ m. If there are ĝp = Gp ∈

L∞(Td), 0 ≤ p ≤ m, such that (2.7) holds, then ∪k∈Zdτkω is a frame for W0.
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Once we have a frame for W0, standard methods can be used to construct an

FMRA frame for all of L2(R̂d), e.g., [8, 9, 10, 11, 18, 22, 33, 31, 32, 40].

2.3 Measure-Theoretic Criterion for Wavelets

The main idea of FMRAs is to apply the ideas of classical multiresolution analysis

to contruct wavelet frames by means of a generalized Mallat-Meyer algorithm. The-

orem 2.6 is a characterization of when such a construction is possible. As will be

seen, this construction is not always guaranteed, but depends solely on the measure

properties of a certain set which is intimately related to the spectrum of V0. On the

other hand, for the one dimensional case, H. O. Kim et al. construct two wavelets

generating L2 (R) independently of the measure of the aforementioned set [32].

In [10], Benedetto and Li applied the theory of FMRAs to the analysis of

narrow band signals. Then, in [11], Benedetto and Treiber presented the main

results of the theory of FMRAs from a functional analytic perspective. The proof

of the main result in [11] gives a recipe for constructing wavelet frames when a

natural measure theoretic criterion is satisfied, see Theorem 2.7. In this case, the

construction in [11] can be extended to Rd, for d > 1, by tensor products. We shall

make this construction in section 2.5.

Theorem 2.7. Suppose (Vj, ϕ) is an FMRA of L2(Rd), and let H0 ∈ L∞(Td) have

the property that ϕ̂(2γ) = H0 (γ) ϕ̂ (γ) a.e. Set

Γ =
{
γ∈Td : Φ(2γ) = 0, Φ

(
γ +

u

2

)
> 0, u∈{0, 1}d

}
.

Then, there is a set of wavelet functions ω = {ψ1, ..., ψm} ⊂ W0, m ≤ 2d − 1, for
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which the translations of ω are a frame for W0 if and only if |Γ| = 0.

Proof. (H. O. Kim, R. Y. Kim, J. K. Lim)

(a) We shall show that len V1 ≤ 2d. We know that V0 = span
{
τkϕ : k ∈ Zd

}
.

Now, V1 = DV0 which implies that V1 = span
{
Dτkϕ : k ∈ Zd

}
. The relations

∀k ∈ Zd, Dτ2k = τkD give us

Dτ2k+uϕ = Dτ2kτuϕ = τkDτuϕ = τkϕu, k ∈ Zd, u ∈ {0, 1}d .

Here we are using the fact that every n ∈ Zd can be written uniquely in the form

2k + u, with k ∈ Zd and u∈{0, 1}d. Also, ϕu = Dτuϕ. Therefore,

V1 = span
{
τkϕu : k ∈ Zd, u ∈ {0, 1}d

}
.

since card {0, 1}d is 2d, len V1 ≤ 2d.

(b) We shall show that len V0 ≤ 1. From ϕ (2γ) = H0 (γ)ϕ (γ), we obtain

X (V0) (γ) = span

{ (
H0

(
1

2
(γ − k)

)
ϕ̂

(
1

2
(γ − k)

))
k∈Zd

}
which implies that X (V0) (γ) is at most one dimensional :

(c) The−k th component of X (ϕu) (γ) is given by 2−
d
2 e−2πiu· 1

2
(γ−k)ϕ̂

(
1
2
(γ − k)

)
so that

X (V1) (γ) = span

{ (
e−2πiu· 1

2
(γ−k)ϕ̂

(
1

2
(γ − k)

))
k∈Zd

: u ∈ {0, 1}d
}
.

If we compute,

(X (ϕu) (γ))−k = ϕ̂u (γ − k) = D̂τuϕ (γ − k) =

∫
2
d
2ϕ (2x− u) e−2πix·(γ−k)dx

=

∫
2−

d
2ϕ (y) e−2πi 1

2
(y+u)·(γ−k)dy =

∫
2−

d
2ϕ (y) e−2πi 1

2
u·(γ−k)e−2πi 1

2
y·(γ−k)dy

= 2−
d
2 e−2πi 1

2
u·(γ−k)

∫
ϕ (y) e−2πiy· 1

2
(γ−k)dy = 2−

d
2 e−2πiu· 1

2
(γ−k)ϕ̂

(
1

2
(γ − k)

)
.
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(d) We now compute σ (V1) . For c ∈ l2
(
Zd
)

define

cu (k) =


c (k) if k = 2m+ u, m ∈ Zd,

0 otherwise.

Two multi-integers m,n are congruent mod {0, 1}d if they have the same multi-

remainder u ∈ {0, 1}d, i.e., if m = 2k1 + u and n = 2k2 + u where k1, k2 ∈ Zd and

u ∈ {0, 1}d. It follows that c =
∑

u∈{0,1}d
cu and

〈cu, cv〉 = δ (u, v) ‖cu‖2 ,

where δ is the Kronecker delta. Hence,(
e−2πiu· 1

2
(γ−k)ϕ̂

(
1

2
(γ − k)

))
k∈Zd

=

(
eπiu·ke−πiu·γϕ̂

(
1

2
(γ − k)

))
k∈Zd

= e−πiu·γ
∑

v∈{0,1}d
eπiu·vcv,γ,

where cγ (k) = ϕ̂
(

1
2
(γ − k)

)
and cv,γ is defined as above (only the v-congruent

entries survive). Therefore, X (V1) (γ) = span
{

cu,γ : u ∈ {0, 1}d
}

and

σ (V1) =
{
γ ∈ Td : dimX (V1) (γ) > 0

}
=
{
γ ∈ Td : at least one cu,γ 6= 0

}
.

On the other hand cu,γ 6= 0 implies that ‖cγ‖2 =
∑

u∈{0,1}d
‖cu,γ‖2 > 0 by the

Pythagorean theorem. We compute

σ (V1) =
{
γ ∈ Td : ‖cγ‖2 > 0

}
=

{
γ ∈ Td :

∑
k∈Zd

∣∣∣∣ϕ̂(γ2 − 2k + u

2

)∣∣∣∣2 > 0, for some u

}

=

{
γ ∈ Td :

∑
k∈Zd

∣∣∣ϕ̂(γ
2
− u

2
+ k
)∣∣∣2 > 0, for some u

}

=
{
γ ∈ Td : Φ

(γ
2
− u

2

)
> 0, for some u

}
=
{
γ ∈ Td : Φ

(γ
2

+
u

2

)
> 0, for some u

}
.
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If we now define H0,u = H0

(
γ
2
− u

2

)
, then,

(
H0

(
1

2
(γ − k)

)
ϕ̂

(
1

2
(γ − k)

))
k∈Zd

=
∑

u∈{0,1}d
H0,ucu,γ

because H0 is 1-periodic in each variable. Hence,

X (V0) (γ) = span

 ∑
u∈{0,1}d

H0,ucu,γ

 ⊂ span
{
cu,γ : u ∈ {0, 1}d

}
= X (V1) (γ) .

(e) Γ = 1
2

{
γ ∈ Td : dimX (V1) (γ) = 2d and ∀u∈{0, 1}d , H0,u = 0

}
. If we de-

fine Γj :=
{
γ ∈ Td : DV1 (γ) = dimX (V1) (γ) = j.

}
, 1 ≤ j ≤ 2d, then,

σ (V1) =
⋃
jΓj,

a disjoint union. If γ ∈ Γ2d and H0,u = 0 for every u∈{0, 1}d , then we have that

X (V0) (γ) = {0} and X (W0) (γ) = X (V1) (γ) . Hence, DW0 (γ) = dimX (W0) (γ) =

2d, since DV1 (γ) = dimX (V1) (γ) = 2d (γ ∈ Γ2d).

Now,

Θ =
{
γ ∈ Γ2d : ∀u∈{0, 1}d , H0,u = 0

}
=
{
γ ∈ Γ2d : ∀u∈{0, 1}d , H0

(γ
2
− u

2

)
= 0
}

=
{
γ ∈ Γ2d : ∀u∈{0, 1}d , H0

(γ
2

+
u

2

)
= 0
}

=
{
γ ∈ Td : ∀u∈{0, 1}d , Φ (γ) = 0,Φ

(γ
2

+
u

2

)
> 0
}

=
{

2λ ∈ Td : ∀u∈{0, 1}d , Φ (2λ) = 0,Φ
(
λ+

u

2

)
> 0
}

= 2Γ.

Hence, |Θ| = 2d |Γ|, which implies that |Θ| > 0 if and only if |Γ| > 0. It is now clear

that if |Γ| > 0, then DW0 (γ) = 2d in a subset of Td with positive measure. Further,

because of the way Θ is defined, at least 2d wavelets are necessary, since in this case,
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len W0 = 2d. Now, applyng Theorems 1.7, 1.8, and 1.9 concerning shift-invariant

subspaces, we obtain the result.

Remark 2.8. The equation (2.6),

Φ (2γ) =
∑

u∈{0,1}d
|H0|2

(
γ +

u

2

)
Φ
(
γ +

u

2

)
,

is true a.e. The left side of this equation is zero in Γ, and Φ
(
γ + u

2

)
> 0 in Γ.

Hence, H0

(
γ + u

2

)
= 0, i.e.,

Γ ⊂
{
γ ∈ Td : ∀u∈{0, 1}d , H0

(
γ +

u

2

)
= 0
}
.

In other words, Γ can be seen as a subset of the zero set of the low pass filter H0

with the additional geometric condition that its elements γ also have the property

that γ + u
2

is a zero of H0. This observation can also be obtained from the proof of

the previous theorem (see part (e) in the proof of Theorem 2.7).

Because of the conclusions of Theorem 2.6 and Theorem 2.7, it seems reason-

able to point out the distinction between these two results. Theorem 2.6 provides

sufficient conditions in terms of equations (2.1) and (2.7) developed in section 2.2,

that a finite sequence of elements is a frame of W0. Theorem 2.7 provides necessary

and sufficient conditions for the existence of such generators by a measure theoretic

criterion. Theorem 2.7 is an existence theorem and and Theorem 2.6 can be view

as part of a recipe to give explicitly the generators.
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2.4 Tensors

The following calculation allows one to construct a frame of translates in higher

dimensions by means of tensor products. It is a special case of a result found in [27].

Lemma 2.9. Let {τkϕ}k∈Z and {τkϕ′}k∈Z be two frames for L2 (R) with frame

bounds 0 < A ≤ B <∞ and 0 < A′ ≤ B′ <∞ respectively, then {τm (ϕ⊗ ϕ′)}m∈Z2

is a frame for L2 (R2) with frame bounds AA′ and BB′.

Proof. Consider a function of the form f =
∑n

i=1 αi1Ai×Bi , where the Ai × Bi are

disjoint measurable rectangles. The set of functions of this form is dense in L2 (R2) .

Now, lets compute:

∑
m∈Z2

|〈f, τm (ϕ⊗ ϕ′)〉|2 =

∑
k∈Z2

∣∣∣∣∫∫
R2

f (x, y) τk (ϕ⊗ ϕ′) (x, y) dxdy

∣∣∣∣2 =

∑
k∈Z2

∣∣∣∣∣
∫∫

R2

n∑
i=1

αi1Ai×Bi (x, y) τm (ϕ⊗ ϕ′) (x, y) dxdy

∣∣∣∣∣
2

=

∑
m∈Z2

n∑
i=1

∣∣∣∣∫∫
Ai×Bi

αi1Ai×Bi (x, y) τm (ϕ⊗ ϕ′) (x, y) dxdy

∣∣∣∣2 =

∑
k1∈Z

∑
k2∈Z

n∑
i=1

∣∣∣∣∫∫
Ai×Bi

αi1Ai (x)1Bi (y)ϕ (x− k1)ϕ
′ (y − k2) dxdy

∣∣∣∣2 =

∑
k1∈Z

∑
k2∈Z

n∑
i=1

|αi|2
∣∣∣∣∫∫

Ai×Bi
1Ai (x)1Bi (y)ϕ (x− k1)ϕ

′ (y − k2) dxdy

∣∣∣∣2 =

∑
k1∈Z

∑
k2∈Z

n∑
i=1

|αi|2
∣∣∣∣∫
Bi

1Bi (y)ϕ
′ (y − k2) dy

∫
Ai

1Ai (x)ϕ (x− k1) dx

∣∣∣∣2 =

∑
k1∈Z

∑
k2∈Z

n∑
i=1

|αi|2
∣∣∣∣∫
Bi

1Bi (y)ϕ
′ (y − k2) dy

∣∣∣∣2 ∣∣∣∣∫
Ai

1Ai (x)ϕ (x− k1) dx

∣∣∣∣2 =

∑
k1∈Z

∑
k2∈Z

n∑
i=1

|αi|2 |〈1Bi , τk2ϕ′〉|
2 |〈1Ai , τk1ϕ〉|

2 =
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n∑
i=1

|αi|2
∑
k2∈Z

|〈1Bi , τk2ϕ′〉|
2
∑
k1∈Z

|〈1Ai , τk1ϕ〉|
2

Now, A′ |Bi| ≤
∑

k2∈Z |〈1Bi , τk2ϕ′〉|
2 ≤ B′ |Bi| and A |Ai| ≤

∑
k1∈Z |〈1Bi , τk2ϕ〉|

2 ≤

B |Ai| ; hence,

AA′
n∑
i=1

|αi|2 |Ai| |Bi| ≤
n∑
i=1

|αi|2
[∑
k2∈Z

|〈1Bi , τk2ϕ′〉|
2
∑
k1∈Z

|〈1Ai , τk1ϕ〉|
2

]
≤ BB′

n∑
i=1

|αi|2 |Ai| |Bi|

that is,

AA′ ‖f‖2 ≤
∑
m∈Z2

|〈f, τm (ϕ⊗ ϕ′)〉|2 ≤ BB′ ‖f‖2 .

Hence, the result follows from the fact that these inequalities are satisfied on a dense

subset of L2 (R2) . By induction, we can extend this argument to Rd, d ≥ 2.

2.5 The Algorithm

Following Lemma 2.9, we shall construct FMRA wavelets by tensor products in the

same way it is done for the classical MRA case. First, assume that (Vj, ϕ) is an

FMRA of L2 (R). Assume the set Γ defined by

Γ =

{
γ∈T : Φ(2γ) = 0, Φ (γ) > 0, Φ

(
γ +

1

2

)
> 0

}
has measure zero, and the wavelet ψ is given by

ψ̂ (2γ) = H1 (γ) ϕ̂ (γ) ,

where H1 (γ) is defined by

H1 (γ) =


e−2πiγH0

(
γ + 1

2

)
Φ
(
γ + 1

2

)
if γ ∈ ∆2,

1 if γ ∈ ∆3 and H0 (γ) = 0,

0 otherwise.
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The sets ∆j, j = 1, 2, 3, 4, are

∆1 =

{
γ∈T : Φ (γ) = 0, Φ

(
γ +

1

2

)
= 0

}
,

∆2 =

{
γ∈T : Φ (γ) > 0 and Φ

(
γ +

1

2

)
> 0

}
,

∆3 =

{
γ∈T : Φ (γ) > 0 and Φ

(
γ +

1

2

)
= 0

}
,

∆4 =

{
γ∈T : Φ (γ) = 0 and Φ

(
γ +

1

2

)
> 0

}
,

and they form a partition of T, see [11, 18]. We now define the d-fold tensor product

V
(d)
1 =

⊗
dV1 associated with the given FMRA of L2 (R). Recall that

V1 = V0

⊕
W0 ⊂ L2 (R) .

Hence, if we set X0 = V0, X1 = W0, and

Xν = Xv1

⊗
Xv2

⊗
...
⊗
Xν1 ,

for ν = (ν1, ..., νd) ∈ {0, 1}d, we have

⊗
dV1 =

⊕
ν∈{0,1}dXν .

With the convention that ψ0 = ϕ, denote

ψν (x1, ..., xd) = ψν1 (x1)ψν2 (x2) ...ψνd (xd) .

By Lemma 2.9, {τkψν}k∈Zd is a frame for Xν , so that {τkψν}k∈Zd,ν∈{0,1}d is a frame

for V
(d)
1 .

In order to write these wavelets as a Mallat-Meyer algorithm, we compute Φ(d)
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obtained by the periodization of the square of the modulus of ϕ̂ (γ1) ...ϕ̂ (γd):

Φ(d) (γ1, ..., γd) =
∑

(k1,...,kd)∈Zd
|ϕ̂ (γ1 + k1) ...ϕ̂ (γd + kd)|2

=
∑

(k1,...,kd)∈Zd
|ϕ̂ (γ1 + k1)|2 ... |ϕ̂ (γd + kd)|2

=
∑
k1∈Z

...
∑
kd∈Z

|ϕ̂ (γ1 + k1)|2 ... |ϕ̂ (γd + kd)|2

=

[∑
k1∈Z

|ϕ̂ (γ1 + k1)|2
]
...

[∑
kd∈Z

|ϕ̂ (γd + kd)|2
]

= Φ (γ1) ...Φ (γd) .

We then define Φν by Φν (γ1, ..., γd) = Φν1 (γ1) ...Φνd (γd), where

Φνj (γj) =


1 if νj = 0

Φ (γj) if νj = 1,

and Hν by Hν (γ1, ..., γd) = Hν1 (γ1) ...H
νd (γd), where

Hνj (γj) =


H0 (γj) if νj = 1

H0 (γj) if νj = 0.

The sets ∆
(d)
j , j = 1, 2, 3, 4, for the tensor product, take the form

∆
(d)
1 =

{
γ∈Td : ∀u ∈ {0, 1}d , Φu

(
γ +

u

2

)
= 0
}
,

∆
(d)
2 =

{
γ∈Td : Φ(d) (γ) > 0 and ∃u ∈ {0, 1}d \ {0} , Φu

(
γ +

u

2

)
> 0
}
,

∆
(d)
3 =

{
γ∈Td : Φ(d) (γ) > 0 and Φ

(
γ1 +

1

2

)
= ... = Φ

(
γd +

1

2

)
= 0

}
,

∆
(d)
4 =

{
γ∈Td : Φ(d) (γ) = 0 and ∃u ∈ {0, 1}d \ {0} with Φu

(
γ +

u

2

)
> 0
}
.

Moreover, the filters Hν (γ1, ..., γd) = Hν1 (γ1) ...Hνd (γd) , for ν 6= (0, ..., 0) are given

41



by

Hν (γ) =



e−2πiγ·νHν
(
γ + ν

2

)
Φν

(
γ + ν

2

)
if γ ∈ ∆2,∏

νp=0

H0 (γp) if γ ∈ ∆3, H
νj (γj) = 0, νj = 1,

0 otherwise,

where, by convention, the product
∏

νp=0H0 (γp) = 1 in the case none of the νp is

0, i.e., ν = (1, ..., 1). H0 is the low pass filter on T. Thus, the FMRA wavelets, ψν ,

ν 6= (0, ..., 0), defined above can now be formulated as in the Mallat-Meyer algorithm

as follows:

ψ̂ν (2γ) = Hν (γ) ϕ̂(d) (γ) ,

where ϕ(d) (x1, ..., xd) = ϕ (x1) ...ϕ (xd).

Remark 2.10. This argument can be generalized to the case (Vj (1) , ϕ1) , ..., (Vj (d) , ϕd)

of d distinct FMRAs of L2 (R). The idea is the same, but beginning with

Φ(d) (γ1, ..., γd) = Φ1 (γ1) ...Φd (γd) .

However, the notation becomes cumbersome. If one of the sets

Γj =

{
γ∈T : Φj(2γ) = 0, Φj (γ) > 0, Φj

(
γ +

1

2

)
> 0

}

has measure zero, then Theorem 2.7 says that a set of FMRA wavelets for L2
(
Rd
)
,

with cardinality less than or equal 2d−1, exists. Moreover, if Γk, k 6= j, has positive

measure, then it is impossible to construct via tensor products a set of wavelet gen-

erators with cardinality less than or equal 2d − 1, since we need at least two wavelet

generators for W0 (k) = V0 (k)⊥ ∩ V1 (k) by Theorem 2.7.
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Example 2.11. Let ϕ̂ (γ) = 1[− 1
4
, 1
4)

(γ) . Then

H0 (γ) = 1[− 1
8
, 1
8)

(γ) , Φ (γ) = 1[− 1
4
, 1
4)

(γ) , and H1 (γ) = 1[− 1
4
, 1
4)

(γ)− 1[− 1
8
, 1
8)

(γ) .

This gives

ψ̂ = 1[− 1
2
, 1
2)

(γ)− 1[− 1
4
, 1
4)

(γ) .

Example 2.12. Example 1 can be extended to any dimension. Let Q =
[
−1

4
, 1

4

)d
,

the cube of volume
(

1
2

)d
center at the origin, and define

ϕ̂ (γ) = 1Q (γ) .

Then

H0 (γ) = 1 1
2
Q (γ) , H1 (γ) = 1Q (γ)− 1 1

2
Q (γ) ,

and

ψ̂ (γ) = 12Q (γ)− 1Q (γ) .

Note that in this case ∆2 has measure zero. In particular, if the support of ϕ̂ lies

inside the cube centered at the origin and with volume
(

1
2

)d
, the algorithm produces

one wavelet. This is because the translations by the vectors u
2

of this cube intersect

the others by either a vertex, an edge, or a face. All of these latter sets have measure

zero. For perspective, in the classical MRA theory the required number of wavelet

functions is 2d − 1.
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Chapter 3

General Multiresolution Analysis Structures

3.1 Overview

A collection of closed subspaces {Vj}∞j=−∞ of L2
(
Rd
)

is called a Generalized Mul-

tiresolution Analysis (GMRA) if the following is satisfied:

(a) Vj ⊂ Vj+1, for all j ∈ Z,

(b) D (Vj) = Vj+1,

(c) ∪jVj = L2(Rd) and ∩jVj = {0},

(d) V0 is invariant under the lattice Zd, i.e. τnV0 ⊂ V0 for all n ∈ Zd, or V0 is shift

invariant.

If instead of (d) we have that,

(d’) There exist a sequence {ϕi : i ∈ I} of functions, possibly finite such that

{ϕi (x− k) : k ∈ Zd, i ∈ I} is a frame for V0.

then, {Vj}∞j=−∞ is called a Generalized Frame Multiresolution Analysis (GFMRA).

For the dyadic case, there is no difference between these definitions, since

every space invariant by the unitary operators τn, n ∈ Zd contains a set of functions

{fi : i ∈ I} for which {fi (x− k) : k ∈ Zd, i ∈ I} is a frame, and any space generated
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by the translates of functions {fi : i ∈ I} is automatically invariant under the lattice

Zd.

Possibly the main tool in the theory of generalized multiresolution analysis

is the dimension function defined in the introduction. It is well known that the

dimension function and the multiplicity function coincides for the dyadic case [43].

Hence, its importance, as shown in [2, 4], relies in the fact that the dimension

function gives as much information as a scaling set of functions. In fact, the essential

supremum of the dimension function is the minimum number of scaling functions

needed to generate the core subspace V0. Also, this function can be used to construct

a generalized frame multiresolution analysis for a given orthonormal wavelet [37].

The dimension function can be obtained from the Spectral Theorem [28], and

these approach reveals a beautiful connection between the theory of wavelets and ab-

stract harmonic analysis. A well known structural theorem about the core subspace

V0 is revealed by this approach [14].

The first part of this chapter is devoted to the proof of the Spectral Theo-

rem and how dimension functions characterize spectral measures. We shall use the

approach of Henry Helson [28]. The discusssion and presentation is informal and

intuitive. The standard way to present Spectral theory is by using Banach Algebras

techniques, and Henry Helson accomplish his goal avoiding such technicalities. The

presentation is beautiful and the reading is relatively easy.

Then, using the the dimension function, we construct an optimal scaling set

of functions. This is theorem 3.14. After that, we give an explicit formula for

an important unitary isomorphism mentioned in [4, 19]. This is theorem 3.17.
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Theorem 3.17 establishes a deeper connection between GMRAs and GFMRAs in

their apparently distincts approaches. In general, it was claimed in [4, 19] that an

explicit formula for this map cannot be given.

We finish with a new proof of a structural theorem for shift invariant subspaces

[14]. This result is theorem 3.19 and can be seen as a corollary of the existence of

the unitary isomorphism mentioned above.

3.2 The Spectral Theorem

The finite dimensional spectral theorem says that every normal operator T can be

diagonalized, i.e., there is a basis of orthonormal eigenvectors for T . This result, as

stated, is false in the infinite dimensional case. We shall reformulate this result so

that it generalizes to linear operators on general separable Hilbert spaces.

Let T be a normal operator on a finite dimensional Hilbert space. If σ (T ) is

the spectrum of T, and λ ∈ σ (T ) , denote by Pλ as the orthogonal projection onto

the eigenspace of λ, that is, the eigenspace of λ the set of vectors v satisfying

Tv = λv.

It follows from the finite dimensional spectral theorem that,

Pλ1Pλ2 = 0 if λ1 6= λ2,

I =
∑

λ∈σ(T )

Pλ,

T =
∑

λ∈σ(T )

λPλ.

The third equation is the spectral decomposition of T. If T is unitary, it can

46



be shown that σ (T ) ⊂ {z ∈ C : |z| = 1} and any λ ∈ σ (T ) has the form λ =

e2πixλ , for some unique xλ ∈
[
−1

2
, 1

2

)
. The spectral decomposition becomes T =∑

λ∈σ(T ) e
2πixλPλ. This expression is also valid for a cyclic group of unitary operators,

i.e., operators of the form U = T n for some integer n. Specifically, we have,

∀n ∈ Z, T n =
∑

λ∈σ(T )

e2πinxλPλ.

This is the form of the spectral theorem that we want to extend to arbitrary

separable Hilbert spaces. In the infinite dimensional setting the sum is replaced by

an integral and the projections are replaced by a projection-valued measure.

Our goal is to decompose all unitary operators as a “continuous sum” or an

“integral” using a projection-valued measure. When we have a family of unitary

operators, we decompose each member of the family using the same projection-

valued measure, but each member is decomposed with a different integrand. More-

over, the spectral theorem asserts that there is a one-to-one correspondence between

projection-valued measures and unitary groups of operators.

Definition 3.1. Let (Ω,B) be a Borel space, that is, a topological space with

a sigma algebra generated by the open sets. Let H a separable complex Hilbert

space, and denote by L(H) as the space of continuous linear operators on H. A

projection-valued measure, sometimes called a spectral measure or a resolution of the

identity, is a map P : B → L(H) such that:

• For all E ∈ B, P (E) is an orthogonal projection,

• P (∅) = 0 and P (Ω) = IH , the identity map in H.
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• P (E ∩ F ) = P (E)P (F ), where P (E)P (F ) denotes composition,

• P (∪Ej) =
∑
P (Ej) for all countable families {Ej} of disjoint Borel sets.

Example 3.2. Let E be a Borel set on Rd, H = L2(Rd), and define, for all f ∈ H,

P (E) f = 1Ef. Then P is a projection-valued measure. It is called the canonical

projection-valued measure.

For u, v ∈ H and E ∈ B, the map E 7→ 〈P (E)u, v〉 defines a scalar bounded

complex measure. In particular, the previous map is a positive bounded measure

when u = v.

Theorem 3.3. Every projection-valued measure, up to unitary equivalence, is com-

pletely determined by a measure class and a multiplicity function defined a.e. with

respect to this class.

In order to prove this theorem, we have to define the terminology needed and

state several well known results. The term measure class and multiplicity function

are explained later in the next discussion.

Let H be a Hilbert space, (Ω,B) a Borel space and define, for 1 ≤ p < ∞,

Lp (Ω, µ,H) to be the space of all weakly measurable vector functions F : Ω → H

(that is, ∀u ∈ H, fu(x) = 〈F (x), u〉 is measurable) such that

‖F‖Lp(Ω,µ,H) =

[∫
‖F (x)‖pH dµ (x)

] 1
p

<∞.

Note that Lp (Ω, µ,H) is a Banach space. L∞ (Ω, µ,H) is the space of all bounded

vector functions, i.e.,

‖F‖L∞(Ω,µ,H) = ess sup
x∈Ω

‖F (x)‖H <∞.
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In the case p = 2, for any F,G in L2 (Ω, µ,H) , we can define an inner product

〈F,G〉L2(Ω,µ,H) =

∫
〈F (x) , G (x)〉H dµ (x) .

If Ω = Td, and p = 1, the relation

F (x) ∼
∑
n∈Zd

cn (F ) e2πin·x, cn (F ) ∈ H

implies that, for all v ∈ H, the Fourier series for 〈F (x) , v〉 is given by

∑
n∈Zd

〈cn (F ) , v〉 e2πin·x

where

〈cn (F ) , v〉 =

∫
〈F (x) , v〉 e−2πin·xdx.

The right side of the last equality is bounded by ‖F‖L1(Ω,µ,H) ‖v‖H , so 〈cn(F ), ·〉

defines a bounded conjugate-linear functional on H. This unique element cn (F ) in

H is what we call the n-th vector coefficient for the vector Fourier series of F . A

range function J is a mapping from Ω to the collection of closed subspaces of H.

Let PJ(x) be the orthogonal projection onto J (x). We say that J is measurable if

∀u ∈ H, PJ(x)(u) is a weakly measurable operator function.

For each measurable range function J , define MJ to be the set of all vector

functions F ∈ L2 (Ω, µ,H) such that F (x) ∈ J (x) for almost every x ∈ Ω. Then,

it follows that MJ is a closed subspace of L2 (Ω, µ,H). Moreover, MJ behaves like

an “ideal ring” in the sense that hMJ ⊂ MJ for every bounded measurable scalar

function h ∈ L∞(Ω). This fact characterizes the subspaces MJ .

Theorem 3.4. Let M be a closed subspace of L2(Td, dx, l2(Zd)) such that M is
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invariant under multiplication by bounded measurable scalar functions, that is,

∀h ∈ L∞
(
Td
)
, hM ⊆M. (3.1)

Then, M = MJ for some measurable range function J .

For the proof of this theorem, see [28]. The following result motivates the

definition of the dimension function, which is used with the spectral theorem in the

implementation of GMRAs.

Theorem 3.5. Let J be a measurable range function. Then there is a sequence

{Gk}k∈N ⊂ L2 (Ω, µ,H) such that {Gk (x)}k∈N forms an orthonormal basis for J (x)

at the points where J (x) is infinite dimensional, {Gk (x)}k≤n is an orthonormal

basis for J (x) when this space has dimension n, and Gk (x) vanishes if k > n.

DJ (x) = dim J (x) is called the dimension function of J .

The proof of this result can be found in [28].

Example 3.6. Assume that H is infinite dimensional and let {e1, e2, ...} be an ortho-

normal basis for H. Let D be any measurable function taking values in {0, 1, 2, ...,∞}.

Define J (x) to be subspace of H generated by {e1, ..., en}, if D (x) = n < ∞ and

J (x) = H if D (x) = ∞. Then, by the measurability of D, J is a measurable range

function. We call J the standard measurable range function with dimension func-

tion D.

Two range functions J and K are unitarily equivalent if there are unitary

isomorphisms, depending on x, U (x) : MJ(x) −→ MK(x) such that they commute

with all bounded measurable scalar functions. The following two theorems give a
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criteria to tell if two range functions are equivalent. We omit the proofs of these

results. They can be found in [28].

Theorem 3.7. Let µ and µ′ be two mutually absolutely continuous σ− finite mea-

sures on Ω. MJ ⊂ L2 (Ω, µ,H) and MK ⊂ L2 (Ω, µ′, H) are equivalent if and only

if DJ = DK a.e.

Theorem 3.8. If µ and µ′ are not mutually absolutely continuous, then J and K

cannot be equivalent.

Given a spectral measure P defined on a Borel space (Ω,B). For fixed v, u ∈ H,

∀E ∈ B, mu,v (E) = 〈P (E)u, v〉

defines a complex finite measure on B. Hence, if h is a bounded measurable function

on Ω, the integral ∫
Ω

h (x) dmu,v (x)

is finite for every u, v ∈ H. Moreover, the following is satisfied:

Theorem 3.9. For every bounded measurable function h on Ω, there is a unique

normal operator T such that

〈Tu, v〉 =

∫
Ω

h (x) dmu,v (x) (3.2)

for every v, u ∈ H, and ‖T‖ ≤ ‖h‖∞ . The map κ that sends h to T is an algebra

∗-homomorphism, i.e., κ
(
h
)

= T ∗ where h denotes the complex conjugate of h. It

follows that if h is real, then T is self-adjoint. Also, κ (1Ω) = IH .

We abbreviate (3.2) by T =
∫

Ω
h (x) dP (x) .
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Proof. For a bounded function h, set

∀v, u ∈ H, F (u, v) =

∫
Ω

h (x) dmu,v (x) .

Then F is a conjugate linear functional in the second variable. Also,

|F (u, v)| =
∣∣∣∣∫

Ω

h (x) dmu,v (x)

∣∣∣∣ ≤ ‖h‖∞ |mu,v| (Ω) .

|mu,v| (Ω) can be proved to be less than or equal ‖u‖ ‖v‖, by the definition of mu,v.

Hence, ‖F (u, ·)‖ ≤ ‖u‖ ‖h‖∞ . Define Tu to be the unique element in H for which

∀v ∈ H, F (u, v) = 〈Tu, v〉 .

This is exactly (3.2). By above, the norm of T is at most ‖h‖∞ .

The linearity of κ, κ
(
h
)

= T ∗, and the fact that if h is real implies that T

is self-adjoint are trivial to show. Note that κ (1E) = P (E) . To prove that κ is

multiplicative, we compute on characteristic functions:

κ (1E1F ) = κ (1E∩F ) = P (E ∩ F ) = P (E)P (F ) = κ (1E)κ (1F ) .

By the linearity of κ, it follows that κ is multiplicative on simple functions and κ is a

contraction. Since every bounded function is the uniform limit of simple functions,

it follows that κ preserves multiplication on bounded measurable functions. Now,

the range of κ is a commutative subalgebra of linear operators on H, since bounded

functions commute. Also, every h can be written as h = hRe + ihIm where hRe

and hIm are real-valued bounded measurable functions. Setting κ (hRe) = TRe and

κ (hIm) = TIm, we have that both TRe and TIm are self adjoint commuting operators

and T = TRe + iTIm. Hence, T is normal.
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The next theorem states that any spectral measure can be uniquely deter-

mined, up to unitary equivalence, by a measure class and a particular dimension

function that we shall call the multiplicity function, i.e., we are ready to prove

theorem 3.3.

Theorem 3.10. Every spectral measure on (Ω,B) in H is unitarily equivalent to

the standard spectral measure associated with some finite measure m on B and some

dimension function D.

Proof. For each u ∈ H, let mu be defined for all E ∈ B by

mu (E) = 〈P (E)u, u〉 = ‖P (E)u‖2 .

From the definition of the spectral measure we obtain that mu (Ω− E) = 0 if and

only if P (E)u = u. Denote by Hu the smallest closed subspace of H containing

P (E)u for every E ∈ B. Define Λ (P (E)u) = 1E. This map can be linearly ex-

tended to all finite linear combinations of vectors P (E)u for E ∈ B. For E,F ∈ B,

〈P (E)u, P (F )u〉 = 〈P (E)P (F )u, u〉 = 〈P (E ∩ F )u, u〉

= mu (E ∩ F ) =

∫
1E∩Fdmu = 〈1E,1F 〉

= 〈Λ (P (E)u) ,Λ (P (F )u)〉 .

The above expression shows that the map Λ can be extended to all of Hu and this

extension is an isometry of Hu onto L2 (Ω,mu) . Moreover,

Λ (P (E) v) = 1EΛ (v)

holds for all elements v of the form v = P (F )u. The measures mu and the spaces

Hu for u ∈ H satisfy:
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(a) If mu⊥mv, then Hu⊥Hv,

(b) there is an element u0 ∈ H such that mu � mu0 for all u ∈ H.

(a) follows from the Radon-Nikodym theorem and the fact that mu (Ω− E) = 0 if

and only if P (E)u = u. For (b) let z be the family of subsets Q of H such that

all elements of Q have norm 1 and Hu⊥Hv for distinct elements u and v. Singletons

{u} with norm 1 belongs to z, and z is ordered by inclusion. Zorn’s lemma implies

the existence of a maximal element Q0. This element Q0 is countable since H is

separable. List the elements of Q0 by v1, v2, .... We claim that

H =
⊕∞

i=1Hvi .

Suppose not. Then we can find a unit norm vector w orthogonal to all the spaces

Hvi . Also, P (E)Hvi ⊂ Hvi for all i and for all E. Hence P (E)w is orthogonal to

all Hvi for all E. This contradicts the maximality of Q0. Define

u0 =
∞∑
i=1

vi
i2
.

Then

mu0 (E) =
∞∑
i=1

mvi (E)

i4

and

mvi � mu0 , ∀i.

By the Radon-Nikodym theorem, there is a natural isometry T from L2 (Ω,mvi)

into L2 (Ω,mu0) given by Tf = f
√
dmvi/dmu0 that commutes with multiplication

of bounded functions. Therefore,

TΛ (P (E) v) = T (1EΛ (v)) = 1ET (Λ (v)) (3.3)
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for all v in Hvi , i ∈ Z. So far we have defined an isometric mapping commuting with

multiplication of bounded functions on each Hvi onto the subspaces of L2 (Ω,mvi)

consisting of functions supported on the support of dmvi/dmu0 . If we denote by Ωi

the support of dmvi/dmu0 , then this isometrically maps each Hvi onto L2 (Ωi,mvi) .

Thus elements u of H are associated to sequences (f1, f2, ...) with fi ∈ L2 (Ωi,mvi)

and

‖u‖2 =
∞∑
i=1

∫
Ωi

|fi|2 dmvi .

From (3.3) we see that in this representation, P (E) is just multiplication by 1E on

each component. Let K be a new separable Hilbert space with orthonormal basis

{e1, e2, ...} . To (f1, f2, ...) we associate

F =
∞∑
i=1

fiei.

Such space of functions is invariant under multiplication by scalar functions, that

is, the product of a scalar bounded measurable function by any F defined as above

is also in this space. Hence, this space is of the form MJ for some range function

J and the given spectral measure is unitarily equivalent to the spectral measure

given by multiplication of 1E in MJ , contained in L2 (Ω,mu0 , K). J can be taken

to be a standard range function. Up to unitary equivalence, a spectral measure is

determined by the measure class {mvi}i and a dimension function defined a.e. with

respect to this measure class.

Remark 3.11. The dimension function of J given at the end of theorem 3.10 is

called the multiplicity function of the spectral measure P .

Now we are ready to state the spectral theorem.
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Theorem 3.12 (Stone). Let {Ux}x∈Rd be a weakly continuous parametrized group

of unitary operators defined on a Hilbert space H. Then there is a unique spectral

measure P on Rd such that

Ux =

∫
cRd
e2πix·γdP (γ) .

Theorem 3.12 still true if the parameter group is an arbitrary locally compact

abelian group, that is, the theorem is true for unitary representations of arbitrary

locally compact abelian groups.

If τ denotes the induced unitary representation of the group Zd given by its

action on V0, then the Spectral Theorem says that τ has a unique continuous spectral

decomposition, and can be recovered by the Fourier transform

τn =

∫
Td
e2πi〈n,γ〉dP (γ) ,

of the spectral measure P defined on Td, the dual of Zd, and this spectral measure is

in turn uniquely determined by a multiplicity function m : Td −→ {∞, 0, 1, ...} and

a measure class on Td, for details, see [28]. In [2], it was shown that this measure

class associated with a GMRA in Rd must be absolutely continuous with respect

to the Lebesgue measure. Hence, the multiplicity function, which basically counts

the number of times each character γ in Td occurs in τ , completely characterizes τ .

If the GMRA is just an MRA, translates of the scaling function form an ONB for

V0, and, hence, τ is equivalent to the regular representation of Zd, which acts by

translation on l2
(
Zd
)
. The regular representation contains every character exactly

once so that m ≡ 1 in this case. It is also known that the dimension function

and the multiplicity function are the same in our setting, that is dilation by 2 and
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translation by the group Zd, and moreover, the condition m ≡ 1 characterizes all

MRA wavelets [42].

3.3 The Construction of the Scaling Set

Recall that L2
(
Td, l2

(
Zd
))

is the Hilbert space of all square integrable l2− valued

functions over the d-dimensional torus Td with the following inner product:

∀F,G ∈ L2
(
Td, l2

(
Zd
))
, 〈F,G〉L2(Td,l2(Zd)) =

∫
Td
〈F (γ) , G (γ)〉l2 dγ. (3.4)

The operator X can now be seen as a map X : L2(Rd) −→ L2
(
Td, l2

(
Zd
))

, where,

again

X (f) (γ) =
{
f̂ (γ + k)

}
k∈Zd

. (3.5)

This operator X is an isometry:

‖X (f)‖2
L2(Td,l2(Zd)) =

∫
Td
〈X (f) (γ) ,X (f) (γ)〉l2 dγ (3.6)

=

∫
Td

∑
k∈Zd

∣∣∣f̂ (γ + k)
∣∣∣2 dγ =

∫
[0,1)d

∑
k∈Zd

∣∣∣f̂ (γ + k)
∣∣∣2 dγ

=
∑
k∈Zd

∫
[0,1)d+k

∣∣∣f̂ (γ)
∣∣∣2 dγ =

∫
bRd

∣∣∣f̂ (γ)
∣∣∣2 dγ

=

∫
Rd
|f (x)|2 dx = ‖f‖2

L2(Rd) .

From now on, ψ will denote an orthonormal wavelet for L2(Rd). The dimension

function associated to ψ is given by the following formula:

Dψ (γ) =
∞∑
j=1

∑
k∈Zd

∣∣∣ψ̂ (2j (γ + k)
)∣∣∣2 .
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A simple calculation shows that

{
ψ̂
(
2j (γ + k)

)}
k∈Zd

= X
(
2
−jd
2 D−jψ

)
(γ) .

If we set Ψj = X
(
2
−jd
2 D−jψ

)
, then the following facts are true [16]:

1. Dψ (γ) = dim span {Ψj (γ) : j ≥ 1} =
∑∞

j=1 ‖Ψj (γ)‖2
l2 ;

2.
∫

Td Dψ (γ) dγ = 1
2d−1

;

3. lim infn−→∞Dψ (2−nγ) ≥ 1;

4.
∑

u∈{0,1}d Dψ

(
γ + u

2

)
= Dψ (2γ) + 1 (the consistency equation);

5.
∑

k 1∆ (γ + k) ≥ Dψ (γ) a.e. where ∆ =
{
γ ∈ Td : Dψ (2−jγ) ≥ 1, j ∈ N

}
;

6. Dψ assumes all integer values between its essential supremum and 0;

7. If ψ̂ has compact support, then Dψ is essentially bounded.

Remark 3.13. Using the reproducing formula and Ausher’s geometrical lemma,

see [1], we can prove statement (1); in [2],[3] Baggett et.al. proved (4); (2) follows

from the fact that ψ is an orthonormal wavelet; Bownik, Rzeszotnik, and Speegle

[16] proved (5),(6) and (7). These properties characterize dimension functions.

See [16, 3]. Moreover, (7) implies that the set of scaling functions for a GFMRA

associated to a bounded wavelet set is finite, in particular for the ones obtained by

the neighborhood-mapping construction given in [6, 7]. For more about wavelet sets,

see [2, 6, 7, 16].

58



Let Jψ (γ) = span {Ψj (γ) : j ≥ 1}. Then Jψ is a range function. In our

particular case, Jψ (γ) is a closed subspace of l2
(
Zd
)
. Also, Dψ (γ) = dim Jψ (γ) for

almost every γ in Td. Thus, in light of Theorem 3.3,

∀h ∈ L∞
(
Td
)
, hMJψ ⊆MJψ .

Suppose that we can obtain a set {Φj}∞j=1 ⊆MJψ with the following properties:

1. {Φj (γ)}Nj=1 is an ONB for Jψ (γ) a.e. at points γ where Dψ (γ) = dim Jψ (γ) =

N and Φk (γ) = 0 (the zero sequence) if k > N.

2. {Φj (γ)}∞j=1 is an ONB for Jψ (γ) a.e. at points γ where Dψ (γ) = dim Jψ (γ) =

∞.

Then every function F in MJψ ⊂ L2
(
Td, l2

(
Zd
))

can be written as

F =
∑
j

fjΦj, fj ∈ L2
(
Td
)
, (3.7)

and hence,

‖F‖2
L2(Td,l2(Zd)) =

∑
j

‖fj‖2
L2(Td) . (3.8)

This set {Φj}∞j=1 ⊆ MJψ is what we call a canonical basis for MJψ , and ϕj =

X−1 (Φj) will be our scaling set. It is clear that any basis for MJψ need not be like

this: F and G can be orthogonal (at MJψ) without being pointwise orthogonal (at

Jψ (γ) ⊆ l2
(
Zd
)
) . Now we shall state the main theorem.

Theorem 3.14. For MJψ , a canonical basis {Φj}∞j=1 exists and the functions ϕj =

X−1 (Φj) , 1 ≤ j are the scaling functions for X−1
(
MJψ

)
=
⊕
j≥1

W−j, and this set is

optimal in the sense that the minimum number of scaling functions required for V0

is exactly N , the essential supremum of Dψ.
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Proof. We shall prove the case whereDψ is essentially bounded. The same argument

can be used to prove the general case.

(a) Set Ωp = D−1
ψ ({p}), 1 ≤ p and let N = ess supDψ. Since Jψ (γ) =

spanj≥1 {Ψj (γ)} a.e., the idea is to apply Gram-Schmidt pointwise to a subset of

{Ψj (γ) : j ≥ 1}. For γ ∈ Ωp, since dim spanj {Ψj (γ)} is p, we can find indexes

j1 (γ, p) < j2 (γ, p) < ... < jp (γ, p) such that {Ψjk (γ)}pk=1 is a basis for Jψ (γ) and

j1 (γ, p) is the first index for which Ψj1 (γ) 6= 0, j2 (γ, p) is the first index bigger

than j1 (γ, p) such that Ψj1 (γ) and Ψj2 (γ) are linearly independent, j3 (γ, p) is the

first index bigger than j2 (γ, p) such that Ψj1 (γ), Ψj2 (γ) and Ψj3 (γ) are linearly

independent, and so on. Then, {Ψjk (γ)}pk=1 will be an ordered basis for Jψ (γ) . The

Gram-Schmidt algorithm produces {Φj (γ)}pj=1, an orthonormal basis for Jψ (γ) for

almost every point γ in Ωp. We repeat this proccess at every level p. Note that

Φj vanishes outside Sj = ∪k≥jΩk =
{
γ ∈ Td : Dψ (γ) ≥ j

}
. The following grid

illustrates what our orthonormal basis looks like:

ΩN −→ Φ1 Φ2 Φ3 ... ΦN−1 ΦN

: : : : : : :

Ω2 −→ Φ1 Φ2 0 ... 0 0

Ω1 −→ Φ1 0 0 ... 0 0

Ω0 −→ 0 0 0 ... 0 0

This set {Φj}Nj=1 has the desired properties. Moreover, these functions obtained in

the way described above are measurable (see [28]).

(b) Note that
⊕
j≥1

W−j = spanj≥1

{
D−jτkψ : k ∈ Zd

}
, hence X

(⊕
j≥1

W−j

)
=
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MJψ , because (D−jτkψ)
∧

= e−2jkD
jψ̂, producing the following equation:

X
(
D−jτkψ

)
= 2

jd
2 e−2jkΨj.

Since 2
jd
2 e−2jk is periodic and bounded, by the characterization ofMJψ , X (D−jτkψ) ∈

MJψ for every j ≥ 1. In fact, by the definition of Jψ (γ) ,

Jψ (γ) = spanj≥1 {Ψj (γ)} = spanj≥1

{
2
jd
2 e−2jk (γ) Ψj (γ)

}
= span {Φj (γ) : 1 ≤ j ≤ N} .

(c) The set
{
enΦj : 1 ≤ j ≤ N, n ∈ Zd

}
is a Parseval frame: If Tp : L2 (Sp) −→

L2 (Sp) · Φp ↪→ L2
(
Td, l2

(
Zd
))

is defined by the following equation:

Tpu = uΦp (3.9)

then it follows that this operator is clearly a co-isometry (T ∗
p (vΦp) = v is also an

isometry)

‖Tpu‖2
L2(Td,l2(Zd)) =

∫
Td
〈u (γ) Φp (γ) , u (γ) Φp (γ)〉l2 dγ

=

∫
Td
|u (γ)|2 〈Φp (γ) ,Φp (γ)〉l2 dγ

=

∫
Td
|u (γ)|2 1Sp (γ) dγ

=

∫
Sp

|u (γ)|2 dγ = ‖u‖2
L2(Sp)

.

Now, the set
{
en1Sp : n ∈ Zd

}
is a Parseval frame for L2 (Sp), and therefore we have

that
{
enΦp : n ∈ Zd

}
is a Parseval frame for its closed span (see [26]). Using the

fact that

〈Φp (γ) ,Φq (γ)〉l2 = δpq1Sp∩Sq (γ)
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we obtain that
{
enΦp : n ∈ Zd, 1 ≤ p ≤ N

}
is a Parseval frame for MJψ . Hence, the

functions ϕj = X−1 (Φj) , 1 ≤ j ≤ N are the desired scaling functions. These scaling

functions have an interesting property: using equation (3.4) and the fact that X is

unitary, we easily obtain that

ϕj ⊥ ϕl if j 6= l. (3.10)

This completes the proof.

Note that the previous construction depends only on the invariance of the

space V0: if V is shift-invariant, a set of generators {ϕl} exist. Then MJ is spanned

by {X (ϕl)} and we can apply the Gram-Schmidt algorithm to obtain a set of gen-

erators with exactly the same properties as the ones above exhibited. The problem

is that {ϕl} might be hard to find just from the invariance assumption of V .

Remark 3.15. Setting Φp,i = Φi1Ωp, we obtain the scaling functions provided by

Papadakis in [37]. We claim that:

span
{
enΦp : n ∈ Zd, 1 ≤ p ≤ N

}
= span

{
enΦp,i : n ∈ Zd, 1 ≤ p ≤ N, 1 ≤ i ≤ p

}
.

Any function f in span
{
enΦp : n ∈ Zd, 1 ≤ p ≤ N

}
is of the form

f =
∑
n∈Zd

N∑
p=1

hp,nenΦp, hp,n ∈ L2 (Sp)

Hence, enΦp,i = enΦi1Ωp = 1ΩpenΦi belongs to

span
{
enΦp : n ∈ Zd, 1 ≤ p ≤ N

}
.

For the other inclusion observe the following:

enΦp =
N∑
i=p

enΦi,p
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so that enΦp ∈ span
{
enΦp,i : n ∈ Zd, 1 ≤ p ≤ N, 1 ≤ i ≤ p

}
.

3.4 Connection with Some Other Construction of Scaling Sets

3.4.1 A Scaling Set for a Generalized Multiresolution Analysis

In order to obtain the information that the multiplicity function contains about τ ,

we form the direct sum
∞⊕
j=1

L2 (Sj)

where Sj =
{
γ ∈ Td : m (γ) ≥ j

}
. Denote by η the representation of Zd on

∞⊕
j=1

L2 (Sj)

given by

ηk

(∑
j≥1fj

)
=
∑

j≥1e−kfj, fj ∈ L
2 (Sj) .

Now, from the information about m, we can obtain a unitary map

J : V0 −→
∞⊕
j=1

L2 (Sj) ,

such that

∀k ∈ Zd, J ◦ τk = e−k · J ,

or equivalently,

∀k ∈ Zd, J ◦ τk = ηk ◦ J .

For more details, see [19]. This J map provides the scaling set for V0.

Proposition 3.16. Let φj = J−1
(
1Sj
)

or 0 if Sj = ∅. Then the set
{
τkφj : k ∈ Zd, j ≥ 1

}
is a Parseval frame for V0.
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Proof. Let f ∈ V0, then

∑
k

∑
j |〈f, τkφj〉|

2 =
∑

k

∑
j |〈J (f) , J (τkφj)〉|2

=
∑

k

∑
j |〈J (f) , (J ◦ τk) (φj)〉|2

=
∑

k

∑
j |〈J (f) , (ηk ◦ J) (φj)〉|2

=
∑

k

∑
j

∣∣〈J (f) , e−k1Sj
〉∣∣2

=
∑

k

∑
j

∣∣∣ck (J (f)j 1Sj

)∣∣∣2
= ‖J (f)‖2 = ‖f‖2 ,

where J (f)j is the j-th component of J (f) in
⊕

iL
2 (Si) and ck

(
J (f)j 1Sj

)
is the

k-th Fourier coefficient of J (f)j 1Sj .

Usually, it is hard to write down an explicit expression for the map J , but in

our setting this map has an explicit form.

Theorem 3.17. The map
(⊕N

p=1T
−1
p

)
◦ X , where X is given by (3.5) and Tp

is given by (3.9) is a unitary isomorphism from V0 onto
N⊕
p=1

L2 (Sp), where Sp ={
γ ∈ Td : m (γ) = Dψ (γ) ≥ p

}
, and this intertwines translation with modulation.

In other words,
(⊕N

p=1T
−1
p

)
◦ X has all the properties of the map J given by the

previous proposition.

Proof. We have the following unitary isomorphisms, since the set {Φp}Np=1is a canon-

ical basis for MJψ and Φp vanishes exactly outside Sp =
{
γ ∈ Td : Dψ (γ) ≥ p

}
:

V0 :=
⊕
j≥1

W−j
X'MJψ '

N⊕
p=1

L2 (Sp) · Φp

⊕
T−1
p

'
N⊕
p=1

L2 (Sp) ,
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and X intertwines translation with modulation. The map
⊕N

p=1T
−1
p acts like the

identity map on
N⊕
p=1

L2 (Sp). Hence,
(⊕N

p=1T
−1
p

)
◦ X intertwines translation with

modulation and

{
X−1 (enΦj) : 1 ≤ j ≤ N, n ∈ Zd

}
=
{
τnϕj : 1 ≤ j ≤ N, n ∈ Zd

}
is the Parseval frame for V0 =

⊕
j≥1

W−j similar to the one given in the previous

proposition.

Remark 3.18. There is an important difference between our situation and the situ-

ation in [19]: We start without knowing the GMRA, but we know the wavelet, while

in [19] they start knowing the GMRA, but without having any information about the

wavelet. In the latter situation, it is more difficult to construct the unitary isomor-

phism J . Also, our map depends on the construction given in Theorem 3.14, which

may not be easily constructed as well. But, for wavelet sets with essentially bounded

dimension function, at least, the construction given in Theorem 3.14 is relatively

easy: (i) the entries of the vectors Ψj (γ) are either zero or one, (ii) only finitely

many entries are one and (iii) only finitely many of these vectors, and no more than

N , are nonzero for almost every γ.

3.4.2 Decomposition of V0 into Quasi-Regular Spaces Generated by Quasi-Orthogonal

Generators

• It is well known that any shift-invariant subspace V ⊂ L2(Rd) contains a

(countable or finite) set {ϕj : j ∈ N} such that the translates of these func-

tions form a frame for V . The spectrum of V is denoted and defined by
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σ (V ) :=
{
γ ∈ Td : J (γ) 6= {0}

}
where J (γ) = span {X (ϕj) (γ) : j ∈ N}. In

other words,

σ (V ) =
{
γ ∈ Td : dim J (γ) ≥ 1

}
.

• Given ϕ ∈ L2(Rd), S (ϕ) := span
{
τkϕ : k ∈ Zd

}
is called a principal shift

invariant space (PSI) generated by ϕ.

• A quasi-regular space S is a shift-invariant space with dimension function

D = c1σ(S), for some measurable σ (S) ⊂ Td and some constant integer c. It

is clear that any PSI is trivially a quasi-regular space: If we set

J (γ) = span {X (ϕ) (γ)} ,

then D (γ) = dim J (γ) is either zero, when X (ϕ) (γ) is the zero sequence, or

1, when X (ϕ) (γ)k 6= 0, for some k ∈ Zd.

• A quasi-orthogonal generator is a ϕ ∈ L2(Rd) such that the translates of ϕ

form a Parseval frame for S (ϕ) .

For more details about the theory of shift-invariant subspaces see [14, 23].

Now, we state and give a simpler proof of Theorem 3.3 in [14]:

Theorem 3.19. Any shift-invariant subspace V ⊂ L2(Rd) can be decomposed as

V =
∞⊕
j=1

S (ϕj) ,

where each element ϕj in the decomposition is a quasi-orthogonal generator, σ (S (ϕj+1)) ⊂

σ (S (ϕj)), and DV =
∞⊕
j=1

DS(ϕj). In other words, any shift-invariant subspace

V ⊂ L2(Rd) contains a set {ϕj : j ≥ 1} with the following properties:
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(i)
{
τkϕj : j ≥ 1, k ∈ Zd

}
is a Parseval frame for V ,

(ii) the dimension function of V is the sum of the dimension functions of the

quasi-orthogonal components, and

(iii) ϕj ⊥ ϕl if j 6= l and ∀k, n ∈ Zd, τkϕj ⊥ τnϕl if j 6= l.

Proof. Let τ be the representation induced by the action of Zd on V. By the Spec-

tral Theorem, we can find a unitary map J : V −→
∞⊕
j=1

L2 (Sj), where Sj ={
γ ∈ Td : D (γ) ≥ j

}
( it was shown in [2] that the measure class associated to

the representation induced by the action of Zd on L2(Rd) is absolutely continu-

ous with respect to the Haar measure. Hence, the multiplicity function completely

characterizes this representation and therefore any subrepresentation. This implies

the existence of the unitary map J given above). Setting ϕj = J−1
(
1Sj
)
, and

S (ϕj) = J−1 (L2 (Sj)), we obtain the desired decomposition.

Remark 3.20. By the previous theorem and applying Theorem 3.14,

V0 =
N⊕
j=1

S (ϕj) .

The dimension functions for the components S (ϕj) are given by Dj (γ) = span {Φj (γ)} =

1Sj (γ) . Then, ϕj, 1 ≤ j ≤ N are the quasi-orthogonal generator. Moreover,

Sj+1 = σ (S (ϕj+1)) ⊂ σ (S (ϕj)) = Sj.

In other words, the scalings obtained in Theorem 3.14 are quasi-orthogonal genera-

tors.
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Remark 3.21. The proof in [14] is constructive, while the one presented here is

not. An explicit formula for the map J given above is, again, in general hard to

obtain.

Remark 3.22. The construction used in the proof of the above theorem in [14] can

be seen as a generalization of Theorem 3.14, since we limited our case to GMRAs

and orthonormal wavelets. In the case that this decomposition has a finite num-

ber of nontrivial components, the number of nontrivial components corresponds to

the essential supremum of the dimension function and this number is the minimal

number of components, attaining the optimality.

Remark 3.23. If we begin by knowing the GMRA instead, the construction in [14]

allows you to get the scalings a priori. Then we can apply the generalized conjugate

mirror filter algorithm given in [19] to get the wavelets. Using the fact that the space

V1 is also shif-invariant, with essential supremum of the dimension function at most

equal to N2d ( the relation ∀n ∈ Zd, Dτ2n = τnD implies that the functions

Dτ2k+uϕj = Dτ2kτuϕj = τkDτuϕj = τkϕj,u, k ∈ Zd, u ∈ {0, 1}d , 1 ≤ j ≤ N

where

Dτuϕj = ϕj,u ,

forms a Parseval frame for V1 = DV0 so that
{
ϕj,u : u ∈ {0, 1}d , 1 ≤ j ≤ N

}
is

a set (not neccessarily optimal) of generators for the shift-invariant space V1), the

information about the spectrum of V1 and the fact that V1 = V0

⊕
W0, gives us an

estimate about the the number of wavelets we can obtain. The latest progress in this

matter can be found in the recent work of Baggett et.al. [4].
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3.5 Conclusion and Future Research

3.5.1 Conclusion

In this thesis, the theoretical aspects of frame multiresolution analysis have been

extended to the multidimensional case. To find the wavelet generators we need to

solve pointwise a system of linear equations. When the set Γ has measure zero,

the number of generators do not exceed 2d − 1, and we have a Mallat-Meyer type

algorithm. If Γ has positive measure, then 2d is a lower bound for the numbers of

generators and no algorithm is known in this case.

The theory of frame multiresolution analysis extends the classical theory of

multiresolution analysis, every MRA is a FMRA, but the theory itself has limita-

tions. For example, non-MRA orthonormal wavelets cannot be produced by FMRA.

The reason is that non-MRA orthonormal wavelets need multiscaling MRA schemes,

i.e., GFMRAs. Theorem 3.14 showed how to construct a GFMRA for a given non-

MRA orthonormal wavelet by constructing an optimal scaling set. We also showed

how our construction linked GFMRAs with GMRAs by finding an explicit formula

for an important unitary map in the GMRA theory. In general, it is hard to give

an explicit formula for this map. The main drawback of any multiresolution scheme

is the fact that the frames produced are semi-orthogonal, i.e., the wavelets are or-

thogonal at different resolutions.

69



3.5.2 Future Research

I plan to implement the construction in Theorem 3.14 to the wavelet sets obtained

by the neighborhood-mapping algorithm developed in [6, 7]. Each iteration in the

neigborhood-mapping method produces a tight frame. We can think about this in

terms of a convergent sequence of GMRAs. Also, there is an underlying convergence

of dimension functions. We want to give a meaning to all these statements.
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