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Chapter 1

Introduction

In this thesis we consider two problems. First we study the frequency content
of the round off error generated by the quantization step in an analog to digital
(A/D) conversion. Not only do we consider the case of a uniform quantizer, that
is a quantizer with equal spaced thresholds, but we also consider the case of a
more sophisticated and popular quantizer called XA modulation. Further, we
extend YA modulation from a quantization scheme for one dimensional signals
to a scheme for two or d dimensional signals.

Next we study algebraic and analytic properties of finite frames. Algebraically
we consider the orbit of a point under the action of a group on a finite dimensional
vector space. In communication theory, orbits have been called geometrically
uniform sets and are seen to have useful properties. Analytically we consider
frames which are minimally correlated, called Grassmannian frames.

These two seemingly different themes of quantization in (A/D) and finite
frames are in fact related. The relation is studied in the paper [BPY]. For

perspective, we give a rough idea of this work in Section 1.4.



1.1 Analog to digital (A/D) conversion

There are many advantages to digital signal processing, yet many signals are
inherently analog. Therefore it is often necessary to perform an A/D conversion.
Mathematically, an analog signal can be thought of as a function f : R — R,
whereas a quantized digital signal is a function ¢ : Z — {ao,...,ap}. An A/D
conversion can be roughly modeled by replacing f : R — R with ¢ : Z —
{ag,...,ap} so that ||f —q| is small for a given norm [-||. It is natural to
break an A/D conversion into two separate steps. First, discretize the domain
of f, that is, replace the continuum of values {f(t) : t € R} with the samples
{f(nT):n € Z}. This is called the sampling step. Second, discretize the range
of f, that is, replace each f(nT) with one of a finite number of predetermined
quantization values, say Q(f(nT)) := ax € {ag,...,an}. This second step is
called the quantization step. We shall consider the case of uniform quantization,
that is, the case in which the quantization values, ay, are equally spaced. See
Figure 1.1 for an example where we use two different predetermined sets, one
with only two values, the other with 6 values. It appears that more information
is retained when we use more quantization values.

The sampling step is well understood. We have the following standard result

[BFO1, Ben97, DD03, 0S99].

Classical Sampling Theorem. Let T, > 0 and assume 0 < 2QT < 1. Let

~

g € PWhor satisfy g =1 on [, Q] and g € L*(R). Then
VfePWo, f(t)=TY f(nT)g(t—nT), (1.1)

where convergence is in L*(R) and uniformly in R.
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Figure 1.1: The two steps in an A/D conversion of the continuous
time signal (A). First sample the time domain (B); second quantize
the range values with only two values {£5} (C), and with six values
{£1.5,+4.5,+7.5}. It appears that less information is lost when we use

more quantization values.
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Figure 1.2: Two examples of quantizing before the sampling step. Note,
in both figures, (C) is the quantization error which is highly correlated
with the signal when we use 2 levels (left) but less correlated when we

use 6 levels (right) .

T is the sampling period, €2 is the sampling frequency, and functions in the Paley-

Wiener class, PWq, are called Q-bandlimited, where
PWo = {g € L*(R) : supp {g} C [-Q,Q]}.

From the Classical Sampling Theorem we know that if we sample with a small
enough period, then, for (2-bandlimited functions, no information is lost by the
sampling step when measuring with either the L? norm or the L> norm. This is
not the case with the quantization step.

In Chapter 2, we shall study the frequency content of the error introduced
during this quantization step. This error, f(nT) — Q(f(nT)), is called the quan-
tization error, where @) is a quantization rule, see Figure 1.2 for an example of
the quantization error when we quantize without sampling. It is common in the
engineering community to assume the quantization error is not correlated with

the signal, [EFKMO03, OS99, ASVDS96, Gra90]. This assumption simplifies the



analysis of the quantization effects. In Chapter 2, we describe a more accurate

model of the quantization error.

1.2 Oversampled quantizers

In Figures 1.1 and 1.2 we see that increasing the number of quantization levels
results in the quantized output retaining more of the information from the orig-
inal signal, which therefore results in a quantization error retaining less of the
information in the signal. Thus increasing the number of levels is one method of
controlling the quantization error. Specifically, we consider the binary expansion

of the signal samples
f(nT) = Z bk2_k,
k=1

where b, € {0,1} and where we have scaled f(nT) to lie in the interval [0, 1].

Now if we fix K € N, then the quantization rule

Q(f(nT)) =Q (Z bk2"“> => b2t (1.2)

corresponds to quantization with 2% equal spaced levels. So increasing the num-
ber of levels, and hence the accuracy of the quantization, corresponds to increas-
ing K and hence retaining more terms of the binary expansion.

Interestingly, increasing K is not the solution of choice in some practical
situations [DD03, ASVDS96]. Instead we fix K = 1, so that we keep only one
term of the expansion (1.2). Specifically, if { f(nT")} is now scaled to lie in [—1, 1],

then the quantization rule becomes

Q(f(nT)) = sign (f(nT)) .



Thus to control the information lost in quantization, we increase the number of
samples we take for a given interval, i.e., we decrease the sampling period T
We then use the redundancy built into the samples to control the quantization
error. A practical method of exploiting this redundancy is called XA modulation,
[DD03, ASVDS96, OS99, Gra90], XA quantization, or error diffusion [EFKMO3].
Specifically, to quantize f(nT) we construct bits, ¢I, and an auxiliary sequence,

Uy, which satisfy the recursion

G = Qun—1 + f(nT)) = sign (un—1 + f(nT)),

where we set ug = ¢ € (—1,1). Note, u,, is sometimes called the internal state
of the YA quantizer, [DD03]; and u,, can also be referred to as the quantization
error since u,, = (un,l + f(nT)) — Q(un,l + f(nT)).

Now to quantize f(nT) we replace each f(nT) with the corresponding ¢Z.
Thus a second type of error is introduced, namely f(nT) — gL, the difference
between the input to and the output from the entire XA scheme, not just the

quantizer (). The recursive nature of the XA scheme results in

Mz

f(nT) —qp) = un —uo < |Jull, (1.3)

n:l
If |lul|,, < oo, then dividing (1.3) by N shows that the average of the samples
~ SOV | f(nT) approaches the average of the bits + SV %, Furthermore, if we
reconstruct f(¢) using f,(t) =T >, ¢ g(t —nT), then (1.1) and the first line of



the XA recursion imply,

(&) = fo(O)] = T |>_(f(nT) = a1)g(t — nT)

n

=T Z(un — Up_1)g(t —nT)

(1.4)

=T Zun(g(t—nT)—g(t—(n—i-l)T))

< Tllullo Y lg(t = nT) = g(t = (n + 1)T)|

=Tllull. )

n

t—nT
/ g'(y)dy‘ < Tllull 19/l
t

—(n+1)T

Again we see that it is crucial to have [Ju|| < oo, for in this case, (1.4) implies
that the sampling period controls the size of the pointwise reconstruction error.

In Chapter 2, we shall show how an analysis of the quantization error in a
uniform quantizer also applies to a XA quantizer. Finally in Chapter 3, we extend

the XA scheme to higher dimensions.

1.3 Frames for Hilbert space

Consider the expansion in the conclusion of the Classical Sampling Theorem,

namely
VfePWo, [f(t)=TY f(nT)g(t—nT),
in the case 272 = 1 and

sin(27wQt)

1 = (Ufigm] ()

g(t) = dorauy =

Then {g(t —nT)}, ., is a basis for PWg, whereas if 27°Q < 1, then {g(t — nT)}
is an over complete spanning set in PWq. In either case, we still have a decom-

position for f. In the over complete case, {g(t —nT')}, ., is called a frame. So



we see that frames are a natural language in which to study the sampling step in
an A/D conversion.

We now introduce the basic definitions of frame theory [DS52, BF03, BF94,
Dau92, Chr02]. Let H be a separable Hilbert space, and let X = {z,, :n €Z} C
‘H where 7 is a countable indexing set. Consider the following map associated

with the set X:
L:H — (*(T)
Y= {(yv xn>}neI'

If L is a well-defined linear map, i.e., if > _; [y, 2,)|* < oo for any y € H, then

we call L a Bessel map and X a Bessel sequence. The adjoint of L is the map

L*:*(I) - H
{eln)} ez = Y clnen.

Intuitively, L can be considered an analysis operator, and L* a synthesis operator.
The frame operator is the map S : H — H defined as L*L. So, for any y € H,

S(y) = L* (L) = L* (W, %) }ner) = DO (Y, 2n) T

nezl

Finally, the Grammian operator is the map G : (*(Z) — (*(Z) defined by G =
LL*. Note that both S and G are self adjoint.

A Bessel sequence X is a frame for H if there exist constants A, B with
0 < A < B < oo such that for any y € 'H

Allyl* <Y [y.za)l” < Byl

nel

Thus, given any frame, we have four natural maps: L, L*, S, and G. If the
indexing set 7 is finite then X is called a finite frame. Also, if A = B then X is

called a tight frame, or, if we wish to emphasize the bound, an A-tight frame.



The lower frame bound implies that S is invertible. Thus, we have the two
frame reconstruction formulas,

Yy = Ss_ly = Z <S_1<y)axn> Ln = Z <y,S_1(xn)>xn

nel nel

and
y=8"1Sy=5" (Z (y, ) a:) = (y,2a) S (@n).
nel nel
The set {S™(x,)} is also a frame, and it called the dual frame. In general, it is

difficult to invert the frame operator and compute the dual frame.

1.4 A/D conversion and finite frames

At the beginning of Section 1.1 we saw that frames are linked with the sam-
pling step of an A/D conversion. Also,in the third paragraph of this thesis, we
mentioned that finite frames have a nontrivial intersection with A/D conversion.

We now give a brief description of the main idea in the paper [BPY] which
studies this intersection. View each vector in R¢ as a distinct signal and consider
only signals in a bounded region, say R = {v € R?: ||v|| < 2}. Then, given a
finite frame {xk}fle for R?, we can expand each vector in R in terms of the frame,
ie, v = Z]kvz1 (v,x1) S7 x). The coefficients, (v,zy), of this frame expansion
correspond to the sampling step in an A/D conversion. Notice that since v is
bounded by two, the coefficients are also bounded by two. Next we consider
the discrete set D = {Z]kvzl LTy 1 €L € {jzl}}. D consists of all possible 2-bit
quantizations of vectors in R, see Figure 1.3 for the complexity of patterns for
different choices of D. Now given a v € R, we want to study methods for choosing

a ¢ € D which is close to v. We can translate the quantization schemes used in



2 2 2

1 1 1

0 0 0
-1 -1 -1
-2

-2 0 2 -2 0 2 -2 0 2

Figure 1.3: All possible quantizations in R? for N = 3,...,11, using

the quantization levels {£1}, and the harmonic frames z;, = 2e*™*/~

where k =1,..., N.
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A /D conversion to this setting and study which points of D are chosen by the

schemes. This is an active field of research.

1.5 Geometrically uniform frames

Let X be the Nth roots of unity considered in Section 1.4. We note that Xy

has a high degree of symmetry, i.e., if we rotate the frame by the angle %’r, we
obtain the same frame again. In fact, if we let z = (1,0)7 and consider rotating
x by 0, QW”, cee w we obtain the frame Xy. Note, these N rotations form a
group isomorphic to Z/NZ.

In attempting to construct finite frames with a high degree of symmetry, we
can generalize the example of the Nth roots of unity to an arbitrary finite sub-
group of Oy4(R), the d x d orthogonal matrices. Let us introduce some definitions

from group theory. Let G be a group and X be a set. G acts on X if there is a

function G x X — X, denoted by (g, x) — gz, such that

(i) (gh)z = g(hx), for all g,h € G and x € X,

(ii) 1z =z, for all x € X, where 1 is the identity of G.
For any = € X, the orbit of x by G is the set
Orbg(z) ={gr € X : g € G}.

Let G be a finite subgroup of Ogq(R). Then G acts on the set R?. For any
r € R4, the set, Orbg(z), is called a geometrically uniform (GU) set. These sets
arise in coding theory and have a high degree of symmetry. In Chapter 3, we
construct examples of GU sets. It would seem that such sets could play a role in

the quantization sets in Figure 1.3.

11



1.6 Grassmannian frames

As suggested in [SHO3], one way to construct frames which are similar to or-
thonormal bases is to consider the properties that define orthonormal bases and
relax them slightly. For example, assume that for n = 1,...,d, ||z,||g« = 1 and

that span {z, :n =1,...,d} = R% Consider the following properties:

d
Yy ERY Y= (yxa), (1.5)
n=1
Vm #n, (xp,x,)=0. (1.6)

If we assume that {x,} satisfies either (1.5) or (1.6), we can conclude that {z,}
is an orthonormal basis. Now, if we relax (1.5) so that

N
d
d _ E
\V/yER ) y_N <y7$n>l’na

n=1
where N > d, then {z,} is no longer an orthonormal basis, but
) d < d
lyl* = <y, N; (y, ) $n> = N; [y, )l
ie., {z,} is an J-tight frame.
Relaxing condition (1.6) gives a different type of frame, called a Grassmannian
frame, which is also a generalization of an orthonormal basis. In Chapter 5, we

study these frames in detail.

1.7 Results

We now list the results in this thesis.
In Chapter 5, we prove that Grassmannian frames exist for every N > d. We

completely characterize all two dimensional Grassmannian frames up to rotations

12



and sign changes. We also expand a theorem in [SH03], which provides a lower
bound for the maximum correlation depending only on the number of frame
elements N and the dimension of the space d. Furthermore we give a complete
and detailed proof of this theorem which is not present in [SHO3]. Next we take
on the task of constructing 3 dimensional Grassmannian frames. We develop
new theory for explicitly reducing the maximum correlation of a four element
frame in R3. We then use this theory to provide another proof that the (4,3)
-Grassmannian bound is 1/3.

Since the results used in the (4,3) case do not immediately apply to N > 4,
we need to use some notions from convex analysis when N > 4. Using these
notions, we extend the algorithm of explicitly reducing the maximum correlation
of a frame, to any N and d. We then use these ideas to give an explicit proof of
the (5, 3)-Grassmannian bound. Finally we prove the (6,3) bound.

Also, in Chapter 5, we apply the method of reducing the maximum correlation
in a given frame to the case N > 3 and d < 2. We observe that cyclically applying
the algorithm to N elements results in an arrangement which is a subset of a
Grassmannian frame with greater than N elements.

The apparently ad hoc methods and proofs in Chapter 5 are state of the art
in the subject. In fact, we must first answer these basic combinatorial questions
before proceeding to more advanced analytic questions. The results in Chapter
5 are in some sense parallel to the research program begun by J. Conway, R.
Hardin, and N. Sloane, see [CHS96].

In Chapter 4, we construct specific examples of GU frames. We consider both
Abelian and non-Abelian groups. In R3, we use the classification of all subgroups

of SO3 and O3 to construct three dimensional GU frames. We also show that any
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finite frame can be orthogonally transformed into a frame with a diagonal frame
operator. This generalizes the situation for A-tight frames where S = Al,.

In Chapter 3, we provide an alternate proof of a two dimensional generaliza-
tion of the one dimensional ¥A modulator. A similar generalization has been
also studied independently in [Y1102]. We then use the ideas in this proof to
construct different quantization schemes. Also, we prove that a specific class of
signals will make the original generalization unstable.

We begin the thesis in Chapter 2 by giving detailed calculations for power
spectra of quantization error in the case of sinusoidal inputs. We then show how

this is applied to XA modulation.

1.8 Notation

In this section we list the notation and standard theorems used through this
thesis.

The Fourier transform of f on R is

f(y) = / F(t)e s,

with corresponding inversion formula

f6 = [ feemna,

The torus is Toq = @/(QQZ) We take any fixed interval of length 22 to be the
representatives of Ton. Functions on Ty are 2(2-periodic functions on R. The

Fourier transform of f on Z is

Py= 3" flnjezmmien),

n=—oo
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with corresponding inversion formula

I :
— F 27rm'y/(2§2)d )
flnl = 54 / . (v)e gl

The representation, F', is called a Fourier series with Fourier coefficients,

{f[n]}nez

The deterministic autocorrelation of a function f:7Z — R is

R ——
rylk] = Jim o~ +1n§_ij[n+k]f[nL

If f is p-periodic on Z, then the autocorrelation is defined as

o] = %Zf[n + KFT,

for k=1,2,...,p.
The power spectrum of f is the Fourier transform of the autocorrelation func-
tion,

[e.e]

Sp(1) = > rglhe e

k=—o00

In some physical situations, the function f cannot be measured, yet the autocor-
relation 7y can be measured. In these cases, the power spectrum of f contains
information about the magnitude, but not phase, of the frequency components
found in f. A common interpretation of the integral fab S¢(y)dy is the average
power contained in the frequency band [a, b].

For this thesis, a function f is said to be uniformly distributed white noise if
the power spectrum of f is a Dirac delta measure at 0.

The z-transform of a function z : Z — C is X : C — C, defined by

n=—0oo

Note that X (e*™) is the Fourier transform of z, i.e., X (*™) = Z().
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A Bessel function of order m is denoted J,,,(z), and is defined as the coeffi-

iz sin(z)

cients of the Fourier series of the 2m-periodic function e , e,

pizsin(@) _ i T (2)e

A function f(m) = O(g(m)) as m — oo means, there exist a constant B > 0
such that lim,,, o ‘%‘ = B.

The floor of a number z, is denoted |z ], and is defined as the greatest integer
less than or equal to x. The fraction part of z is () = x — |x].

The unit sphere in R? is S9! = {z € R*: [|z]| = 1}.

The Dirac vector basis, or canonical basis for R? is D = {5k}2:1, where 0y [n]
equals one if £k = n, and 0 otherwise.

A d x d matrix U is orthogonal if the columns of U are orthonormal, i.e.,
UTU = 1, where U7 is the transpose of U and I, is the d x d identity matrix. If
U is orthogonal, then for any x,y € RY, ||Uz|| = ||z|| and (Uz, Uy) = (x,y).

The set of all d x d orthogonal matrices forms the orthogonal group,
O4={U € GL(d,R) : U"U =1},
where GL(d,R) is the group of d x d invertible matrices. Because
1 =det(I) = det(UTU) = det(U)?,

we note det : Oy — {+1, —1}, and is a group homomorphism with kernel equal to
the special orthogonal group SOy, = {U € Oq4 : det(U) = +1}, which is therefore
a subgroup of index 2 in O4. We think of SO, as rotations and O,y \ SOy as
reflections.

A dxdmatrix A is symmetric if AT = A. The spectral theorem for symmetric

matrices is
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Theorem 1.1 (Spectral Theorem). A d x d symmetric matric A has the
following properties:

(a.) A hasn real eigenvalues counting multiplicities.

(b.)  The dimension of the eigenspace for each eigenvalue A equals the mul-
tiplicity of A as a root of the characteristic equation det(A — AI) = 0.

(c.)  The eigenspaces are mutually orthogonal, in the sense that eigenvectors
corresponding to different eigenvalues are orthogonal.

(d.) A is orthogonally diagonalizable, i.e., there is an orthonormal basis of

eigenvectors for A.
We also use the following classical result from ergodic theory,

Theorem 1.2 (Weyl). If v is irrational, and h : R — C is I-periodic and

Riemann integrable, then

lim —— > h((lm):/o h(z)dz.

NH002N+11€

Intuitively the sequence {(k~v)} fills the unit interval so the sums converge to
the integral.

Finally, we briefly define the groups that appear in this thesis. A group is
Abelian if for every x,y € G, xy = yx.

Z/nZ denotes the additive group of integers modulo n and is defined as the
set {0,1,...,n — 1} with the group law being defined as addition mod n, i.e.,
a + b = r where r is the remainder after dividing a + b by n.

Ds,, denotes the dihedral group of order 2n and is defined as the set of sym-
metries of a regular n-gon. More precisely, if R is rotation by %’T, S is reflection

through the x-axis, and the group law is symmetry composition, then R" is the

identity, SR = R"1S, and Do, = {1,R,R?,...,R", S, SR, SR? ..., SR"}.
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S, denotes the symmetric group of degree n and is defined as the set of all
bijections or permutations of {1,...,n} with the group law being defined as
function composition.

A, denotes the alternating group of degree n. A, is a subgroup of S,, and is
defined as the set of all even permutations in .S,,. A permutation is even if it can
be written as a composition of an even number of 2-cycles. A permutation o is a
2-cycle if o fixes all but two of the elements in its domain {1,...,n}.

Z/nZ is Abelian, D,, and S, are non-Abelian for n > 3, and A, is non-
Abelian for n > 4. Finally A4, S4, and As are isomorphic to the rotational
symmetries of a tetrahedron, cube/octahedron, and icosahedron/dodecahedron,

respectively.

18



Chapter 2

Quantization and Power Spectra

It is important to understand, in detail, the information loss at the quantization

step of an A/D conversion. We begin by recalling the first order XA quantization,

en = €p_1+ f(nT) —qF
(2.1)

¢y = Qlen-1+ f(nT)),
where @), called the quantizer, is some thresholding function such as sign(-), f(nT)
is a sample from a bandlimited function, ¢! is the associated output bit from the
quantizer, and e, is the quantization error which is also called the internal state
in [DDO03] and is labeled u,, there. To motivate this change in notation (from
Uy, to e,), introduce the sequence w,, = f(nT) + e,_1, called the modified input.

Then we can rewrite (2.1) as

;

Wy = f(?’LT) +en_1

qf = Q(wy) (22)

_ T
€n = Wy — G, -
\

Studying the recursion (2.2) we see how the YA scheme can be split into the

following three steps:
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1. modify the input by adding previous quantization errors,

2. apply the quantization rule to the modified input,

3. compute the current quantization error.

The recursion (2.2) is the one dimensional analog of a common way to write
error diffusion schemes which are used to halftone images. Also, e, in (2.2) is
consistent with the notation in [Gra90].

The first line of (2.1),
en = en1+ f(nT) — g, (2.3)

displays a relationship between the two types of error found in XA schemes. The
first kind of error, f(nT) — ¢Z, is the difference between the input and output
of the entire scheme. The second type of error, e,, is the error which we have
referred to as the quantization error. It is the difference between the input and
output of Q). In order to understand the relationship between these two types of
errors, following the development in [EFKMO03], we take the z-transform of (2.3).

Thus we obtain,

E(z) = E(2)2' + X(2) — B(2), (2.4)
where
E(z) = n_ioo enz ",
X6 = 3 S0
and _
B(z) = i g2 "

20



We can rewrite (2.4) as
X(z) — B(z) = H(2)E(z2), where H(z)=1-z. (2.5)

Thus, if we know E(z), the frequency content of e,, then we can derive X (z) —
B(z), the frequency content of f(nT) — ¢.. Since H(z) = 0 at z = 1, this
frequency domain representation of (2.3) shows that the XA scheme is trying to
minimize X (1) — B(1) =>>" _ f(nT)=>>>7 gl

Also notice that if we solve for E(z) in (2.5) we obtain

E(z) = K(2)(X(2) — B(z)), where K(z)=

1-— z;
and we see that K (z) has a pole at z = 1, which suggests that XA can be roughly

viewed as an error minimization that gives higher priority to the DC component.

2.1 A quantization error calculation

For ¥A modulation, we seek to understand the frequency components found in
en. We shall do this by first isolating the quantizer, that is, considering the second
line of (2.2) separate from the rest of the recursion. This is the approach taken

in [Gra90]. To this end, let M be a positive even integer and let A be a positive

real number. Consider the function @ : R — {ay,as,...,ap} given by
M
Q(w) = ajla(w),
j=1
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graph of Q(w) for M=6, and A=0.33333 graph of e(w) for M=6, and 4=0.33333

QW)

Figure 2.1: Graph of @ (left) and e (right), with M =6 and A = 1/3.

where

A
aj=(-M+2j-1)Fifj=1..M

A A
Aj: |:a‘]_§7a’j+§) lfj:27,M_1,

We call Q) a uniform quantizer with M levels and A spacing. If M = 2 and
A =1, then @ = sign(-). For other choices of M and A, the graph of @ is a
staircase with M levels, rising at an angle of 7, see Figure 2.1. We can also write
@ in terms of the floor function ||,
A+ %)), Hfwe[-MA/2,MA)2)
Qw) = (2.6)

sign(w)PED2 - otherwise.

N[

Now, consider the quantization error function e(w) = w—Q(w). By inspecting

the graph of e in Figure 2.1, we notice that e is a A-periodic function in the
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interval [—%A, %A) This interval is called the no-overload interval for () and

e. We have

Proposition 2.1. Let Q(w) = 3V

i=1ai1a;(w) be a uniform quantizer with M

levels and A spacing, and let e(w) = w — Q(w). For any w in the no-overload

interval, i.e., w € [-MA/2, MA/2), we have

e(w) = —A (% - <%>) , (2.7)

—A wilw
e(w) = Z ﬁg /A, (2.8)
10

Proof. To prove (2.7), use (2.6). Hence for w in the no-overload interval,
w A w
elw) =w = Q)= A(3) - (5” [KD

-2 (5-5+15) -2 (-(3)

To prove (2.8), since w is assumed in the no-overload interval, e is a A-periodic

and

function of w, hence e has the Fourier series representation

A, M M
e(w) = Z ﬁe%“wm, for w € {—7A, ?A)
10

where w is the value of the input. O

In view of this proposition, our goal is to choose the input sequence, w,,, so
that equation (2.8) simplifies and makes computation of the power spectrum of

e(w,) relatively easy.

2.2 Constant input

For the remainder of Chapter 2, let M and A be fixed and let () be an M level A

spaced uniform quantizer. Then, given an input w,, let e,, := e(w,,) = w, —Q(w,)
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be the quantization error sequence associated with w,. With the goal that was
stated at the end of the previous section in mind, first consider w,, = ¢, where ¢

1S a constant.

Proposition 2.2. Let w, = c for alln € Z, and let e,, be the associated quantizer

error sequence. Then the autocorrelation of e, is

re(k) = le = Q(e)",

and the power spectrum of e, is

Se() = |e = Q(e)]* do(7)

Proof. Since w,, = ¢, where c¢ is a constant, we have that

en = e(wy,) = e(c) = c— Qlc).

Hence the autocorrelation is

N

> enr = lim e = Q).

n=—

re(k)

— 1

Thus, the power spectrum is

Se=(re)" =le = Q) (7" = | — Q(c)| bo.
O

Therefore, as we would expect, all the power in the quantization error is

concentrated in the DC component, i.e., 0 frequency.

2.3 Sinusoidal input

Next, consider the input w, = Asin(nwg + ) where wy = 277, 70 > 0, 0 € R,

and 0 < A < %A. For this choice of A, w, lies in the no-overload interval, hence
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the Fourier representation (2.8) is valid for each term in the sequence {w,}. Using

this representation, we show

Proposition 2.3. Let 79 > 0, wg = 27y, 0 € R, and 0 < A < %A. Let

w, = Asin(nwy + 0) and let e, be the associated quantization error sequence.

Then
Z bmei(wom)n
where
_ Agi2m+1)0 LA/A]
b2m+1 = m 1+2 Z COS ((2m + 1) Slnil(Ak/A)) (29)
k=
and by, = 0.

Proof. Substituting this sinusoidal input into the Fourier expansion of the quan-

tization error (2.8), we have

A
Vn, e, :=e(w,) = Z 2mle2mmSm("“’ow)/A (2.10)

Now, we can generate the Bessel functions of order m by considering the Fourier

transform of the 2m-periodic function e?*5%. Then the synthesis equation gives

zzsmm o Z J zmm. (211>

m=—0oQ

Next, letting z = 27lA/A and x = nwy + 0 in (2.11), we can simplify (2.10) as

follows:

A
BRZZQ—

Z T (271 AJA)e"™ W0+9>]

m=—0o0

— Z [Z QTZA/A) im6 zmnwo
m=—o00 [ I£0
_ Z b, eileommn (2.12)

m=—00
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where b,, Z#O = T (2l A/ A)e™? . Now,
—Ae™ [N Jn(27lAJA) N T (27(—1) A/ A)
b = : —+
(> ; :

21 — [
—Ae™ [N T (271A)A) [ym (27 +l YA/A)
=— (g s Z (2.13)
0, if m is even
= (2.14)

—Aeimd < ?21 M) , if m is odd,

) l

where (2.13) follows since Bessel functions satisfy the symmetry
I (—=2) = (=1)"Jn(2) = J_m(2).

We have to verify (2.14). The first claim for m even, is clear. For odd indices,

we shall show in Lemma 2.4 that

_ Agi@m+1)0 L4/A] L
Domi1 = P T 142 ; cos ((2m + 1) sin ™ (Ak/A)) | ;
and this formula shows that b,, ~ O(1/m), as m — 0. O

Lemma 2.4. Let J,,(2) be the Bessel function of order m defined in (2.11). For
m=—1,0,1..., let S(m) =32, M. Then

S(m) = 5% (6-2[m] ~ dolm)

A/A]

142 Z cos ((2m + 1)sin™" (kA/A))
k=1

_|_

2m+1
Proof. We first consider the analysis equation for the Fourier representation

(2.11) and obtain the integral formula

| Y 4
Jm(z) — %/ ezzsmxefzmxdl,

1 ™ - s
=5 B cos(zsinx — mx)dx + % /7r sin(zsinx — mx)dx (2.15)
1 s
= —/ cos(zsinx — mx)dx (2.16)
T Jo
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where (2.16) follows since if ©(x) = zsinx — mx, then
O(—z) = zsin(—z) + mz = —(zsinz — mx) = —O(x)

and therefore cos(©(x)) is even and sin(6(z)) is odd. So, if we split ["_ into
fir + fo7r in (2.15), then the cos integrals combine and the sin integrals cancel.

Next, we can further simplify (2.16) using the sum formulas for cos and sin. We

obtain
L [" : : : :
Im(z) = —/ cos(z sin ) cos(ma) + sin(z sin x) sin(ma)dx
T Jo
1

w/2
=— / cos(z sin x) cos(max) + sin(z sin x) sin(mz)dz
T Jo

1 s
+ = / cos(z sin ) cos(ma) + sin(z sin x) sin(mz)dz
/2

1 /2
=— / cos(z sin x) cos(mx) + sin(z sin ) sin(mz)dx

T Jo
1 w/2

+ — / (—1)"™ cos(z sin ) cos(ma) + (—1)™ ! sin(z sin z) sin(ma)dx
T Jo
= OW/2 cos(zsinx) cos(max)dz, if m is even
= OW/Q sin(z sin x) sin(ma)dz, if m is odd.

Using this to simplify S(m), which was defined as the infinite sum in the formula

for boyyiq (equatlon (2.12)), we have

S(m) = / sin (@zsm a:) sin((2m + 1)z)dz

— g/O sin((2m + 1)x) (i sin (2 <l 3 5in) l)> dx (2.17)

™
=1

From a standard calculation in Fourier analysis, the sum on the right side of
equation (2.17) has the closed formula,

0o .
Z Sln

=1

g for 0 < 6 < 2m;

l\D|>l

Y
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and so (2.17) becomes

/2 r  2n{4sinx
S(m) = 2/0 sin((2m + 1)x) (— - M) dx

T 2 2

w/2 /2 A
= / sin((2m + 1)z)dz —2/ sin((2m + 1)) <Z sin x> de.
Jo 0

1(m) a(m)
Now, I;(m) = Wlﬂ In order to compute Iy(m) we first need a formula for

(£sinz) for z € [0,7/2]. Observe, for = € [0,7/2], that
A A A
<Zsinx>—Zsinx—k, Whenkgzsinx<k+l,

i.e., when sin™' (£2) < z < sin™" <%>. Therefore, set K = |A/A], assume

|A/A| # A/A, and set

060:07

A
aj = sin ! <Zk)’ fork=1,2,..., K,

a1 = 7/2,

see Figure 2.2. Then we have

A (A
x sinz :Z Zsmx—k Loy ansn) (7). (2.18)

k=0

Using (2.18), we can compute I(m),

K
A
/ sin((2m + 1)z Z (— sinz — k’) Loy ,apr) (@)de
0 =0

K Akt1 A K Apt1
= Z/ sin((2m + 1)m)—sinxdm—2/ ksin((2m + 1)z)dz,
« A o
k=0 O g _ k=07 )
Is(m) 54Tm)
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5

Figure 2.2: Computing <§ sin(:c)> with A =5 and A = 1. The curve

is y = Hsin(x), ap = 0, and a5 = 7/2.

and we can compute I3(m) using standard trigonometric formulas. In fact,

b3

)

Bl
S

[

=

29
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Furthermore, Sy(m) has a telescoping property,

Ap+1

Su(m) = Z —k COZEST; 1)x)

(3

Ko g K
= Z cos((2m + 1)) + Z
k=0

= —i cos ((Qm + 1)%) +

2m 1 cos((2m + 1)ay)

0
2 1
] cos((2m + 1)0)

+ Z ko(k=1) cos((2m + 1)ay)

S(m) = Ii(m) + I(m)

= I1(m) + I3(m) + Sy(m)

1 A 9 LA/A]
BT +ox —[0_1 — do) + ] Z cos ((2m + 1)sin™" (kA/A))
k=1
Ol
Now using this result, since bg,, 1 = %S (m), we obtain the formula

(2.9) in Proposition 2.3.
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2.4 Growth of b,

With formula (2.9), we see that {b,,} € (*(Z),

LA/A]

2( )2 Wi i (2m+1)2 142 ;COS((2m+1)sin_l(k:A/A))

TA  [— 1
<2 = -
<(32) %3 (mn

<2 (gﬁ>2+ . %2) (1+2[A/A])

)2(1+2LA/AJ)

T
A2 1
= —(14+2|A/A
e+ (12]4/a))
< X0

We can also see that (for m # 0,1) the size of by, 11|? is ultimately controlled

JF=0 <(2m1—|— 1>2> e

2.5 Power spectrum of ¢,

by the size of (2 +1)2:

1
|bom i1 |* < )

2m

Next, we compute the power spectrum of the quantization error e, associated
with a sinusoidal input w,, = Asin(nwy + #). We have two cases, wy € 27Q and

wWo ¢ 27’[’@

Proposition 2.5. Let e, = >~ bye' dwom)n be the quantization error associ-

ated with a sinusoidal input w, = Asin(nwy + 0) computed in Proposition 2.3,

and let wy = 2w/ 3, where o < (3. Assume for every p € {0,1,...,0— 1}, we
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have

< Q.

Z bm’ﬁ-i—p

m/E€Z

Then the power spectrum of e, is

B

B-1
Se = (1) = D_lepl*d apy.
p=0
where ¢, = Y e b grp.

Proof. Let v = «/f3, so wy = 2ma/B. Let m = m/B + p where m’ € Z and
p=0,1,...,0—1. Then (2.12) becomes
B-1
e = D D by B (2.19)
p=0 m’'€Z
Clearly, ¢*™ 5™ ATIn — 2TI5PR. g6 that if we let ¢, = 3, /ey bugp, then (2.19)

becomes

B

H
T
L

oric .
en =Y cpe B =% et 0P, (2.20)

=0

=
i
o

Since by assumption |c,| < oo for all p, we have that e, is well defined and
therefore 3-periodic in n.

Now, for a (-periodic function, the deterministic autocorrelation is

14
re(k) = 3 > ersntn. (2.21)
n=0

32



Thus, substituting (2.20) into (2.21), we obtain

B—1
1 . . n
t3 ) cptge™ ot ( (etotr=a)) ) (2.22)
= leple* 10, (2.23)

where (2.23) follows since the sum in parentheses in (2.22) is zero by the geometric

series formula, i.e.,

4 1_ (62m'%(pfq))”
(ewo(p—q))” — — 1-1 —0.

@

1 — 25 (—a) 1 — 25 (P—a)

=

3
I
o

From equation (2.23) we can compute the power spectrum of e,. First

(6x)" (k) = et?m%0 50 setting Ao = %, we have

ol (85) " (k) = (ﬁz rcp|25%> (0.

Hence if wy = 27a /3, then the power spectrum of e,, is

-1

p=0

Se=(ro)" = |Cp|25%7
O]

Thus, if wy = 2%%, where o < ( and the greatest common divisor of o and (3
is 1, then the quantization error e,, associated with the input w, = Asin(nwy +

6) has power concentrated at 3 evenly spaced deltas of height |c,|* where p =
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0,1,...,8 — 1. The assumption |c,| < oo is necessary since (2.9) shows that

by, ~ O(1/m), as m — oo, and therefore, ¢, ~ Zm,?éo 1/m/.

If wy ¢ 27Q, then a different type of simplification occurs.

Proposition 2.6. Let e, = >~ b 0™ be the quantization error associ-

m=—0Q

ated with a sinusoidal input w, = Asin(nwy + 0) computed in Proposition 2.3,

and let wg ¢ 2wQ. Then the power spectrum of e, is

e}

= ) bl 02ps 100

p=—00

where wy = 2m1Y.

Proof. The deterministic autocorrelation of e, is

N

: 1 _
re(k) :]\}I_I)I(l)o ON + 1 Z Cn+kCn-

n——

Hence, we compute

N
: 1 Z _
Te(k> = 1\}5%0 ON + 1 En+kCn
N

n=-—

N oo 00
— 13 1 iXp(n+k) 7, —iApn
= Jim oo > (Z bye D bye (2.24)

n=—N \p=—00 q=—00

00 00 N
— Z Z bybge Mk (A}LH;O 2N1+1 ZN em(ApAq))

P=—00 q=—00 n=—

N
; 1
_ 2 Jidpk :
= ; |bp|“e (]\}l—rgo N1 ZN 1) (2.25)
N

— . 1
iApk :
2 bbye (zvhféo 2N + 1
P#q n=—N

ei<n(>\p—>\q)>> (2.26)

where the switching of lim and ) > >"* in (2.24) is formal. Now, if we set
h(z) = e*™* and

)‘p _ /\q
27

Vpg = = {(Zp+ Do) = (2g+ 1)) ,
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then since A\, — A\, ¢ 27Q, we have that v, , ¢ Q and therefore Weyl’s uniform
distribution theorem applies, see Section 1.8. Hence the limit in parentheses in
(2.26) becomes

N N
1 o 1
] mi(nYp,q) —
]\}LI%oZN_Fl E:Ne 1&%02]\7—{—1 E N: h(<n7p7q>)

n=— n—-—

— /O h@)d(z) — 0.

Therefore, we have

re(k) = Y |by|e*, (2.27)

p=—00

where b, = Y%, =2 0,01 (2mLA/A)e PP and A, = 27 (2p + 1)70).

We can now compute the power spectrum of e. Since (85,)" = () we have
27

Se = (re)" = ( i |bp|2€iAp(')) = ( i Ll (63—5>v)

p=—o0 p=—00
() = 5 ms
p=—00 p=—00
and 32 = ZHCLEL = 9 ((2p + 1)70). 0

Thus, for wy ¢ @, the quantization error associated with the input w, =
Asin(nwg +0) has frequency components whose magnitude squared is |bp|2 at the

points of the uniformly distributed sequence ((2p + 1)70), where wy = 277o.
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2.6 Power spectra and YA modulation error

Next, we demonstrate how the above analysis can be applied to the XA modulator
(2.1). Rewrite the XA modulator (2.1) and (2.2) as

Wy = Ty, + €1

(2.28)

en = wy, — Q(wy,).
where we have replaced f(nT) by x,, and where ) is an M level, A space uniform
quantizer. We first seek to show that for bounded inputs x,, the modified input

w,, remains in the no-overload interval for Q).

Proposition 2.7. Let B > 0, and let {z,} be a sequence bounded by B, i.e.,
|z, < B. Let M € N, let A < %, and let () be the associated M level, A
spaced uniform quantizer. Let |eg| < %, and for n > 1, let w, and e, be defined
by the SA recursion (2.28). Then |e,| < £, hence we can deduce w, lies in the

no-overload region for Q, i.e., |w,| < MT

Proof. First note that A < % implies that B < (M_;)A, hence |e,_1| < %
implies

A (M-1)A A MA
|wn|:|xn+en—1|§|$n|+|€n_1|§B+§§#+§: =

Thus, if the quantization error is bounded by %, then the modified input w, is
in the no-overload interval. Proceeding by induction, we first note that the base
case, n = 0, is satisfied by assumption, i.e., |eg| < %.

For the induction step, let n > 0 and assume |e,_;| < 2. By the above

observation, w, lies in the no-overload interval, hence (2.7) is valid, i.e.,
1 w
98 (3-(2))
e(wy) (2 A )

36



Hence,

Y

|en| = le(wn)] = A’ <%> _%
——

€[0,1]
——
€[-1/2,1/2]

so by induction, |e,| < £ for all n € N. O

By virtue of Proposition 2.7, we can use Equations (2.7) and (2.8) to derive

a formula for the quantizer error in a XA for a given bounded input x,,.

Proposition 2.8. Under the same assumptions as Proposition 2.7, if eq =

s ()

Proof. By Proposition 2.7, since w, is in the no-overload interval, we have that

en = —A (%—<%>) :_—2A+A<%>, (2.29)

where the second equality follows from (2.28). Now, let y,, = e, + 5. Then (2.29)

A
9

then

implies

o & yn—l_l
y”_A<A+ A 2>‘

Now by induction, we have y, = A<% Yo Tk — %>, since for n = 0, yo =

eo—A/2=0and forn >0, ify, 1 =A <l Z;i‘ T — ”T_1>, then

A
n—1
Tn  Yno1 1 Tn 1 n—1 1
n=A0(— —=—)=A(— — — — =
¥ <A A 2> <A+<Aklxk > )73
n—1 n
T 1 n—1 1 1 n
=A{ 24+ = — —ZVY=A( = B
(3380 (im3)
Substituting this into e,, = vy, — % we have,
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Now, since (2.7) is equivalent to (2.8), we have
—A (F+3r A
e, = = 2l kzlxk)/
Z 2mil
I
_ Z —A e—ﬂinl/Ae27rilaro/A . 627rilzn/A
2mil ‘
1#0

So, to compute the power spectrum of the quantization error arising from a YA
modulator with a bounded input, we must simplfy the above expression. This is

a possible direction of future research.
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Chapter 3

Quantization in Higher Dimensions

Next we consider the problem of quantizing two dimensional functions. Thus
we could consider either z : Z2 — R, z : Z — R?, or x : Z* — R?. We shall
only study the first case here. We would like to develop schemes which behave
similar to the XA scheme in one dimension. For example, given a two dimensional
sequence of samples z,,,, on {0,1,..., M} x {0,1,..., N}, we wish to construct
a binary sequence, g, n, satisfying the stability condition that if the input x,,,
is bounded, then the sum of the differences x,,,, — ¢y n, is bounded. That is, for
any B, there is a Cp such that |2,,,| < B implies Y > (Zmn — gmn) < Cp.

See (1.4) for a brief explanation as to why this bound is important.

3.1 Standard scheme

We first generalize the one dimensional XA recursion which quantizes a function
xz : Z — [—1,1] by producing a function ¢ : Z — {%1} such that > (z, —

¢,) < 2 = m[—1,1]. Thus, we first consider a function = : {0,1,..., M} X
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{0,1,...,N} — [-1,1] as an (M + 1) x (N + 1) matrix

oo .- To,N

Trpo --- TMN
We construct (M + 1) x (N + 1) matrices u, ¢ as follows. Given ugo = ¢, where
¢ is a constant, construct the Oth column and Oth row of v and ¢ using a one
dimensional ¥A scheme. That is, for column 0 and for m > 0, define u,,, and

gm0 recursively by,

Um0 = Um—1,0 T Tm,0 — Gm,0

(3.1)
dm,0 = Q(um—l,O + xm,())

where Q(y) = sign(y). Likewise, for row 0 and for n > 0, define ug, and go,

satisfying

Ug,n = Uon—1 + Lon — qon

(3.2)
Gon = Q(Uon—1+ Ton)-

Thus we have the leftmost row and topmost column of both u and ¢ defined, i.e.,

Uo,0 -.. UgN qo,0 ... QqoN
? ? ) : ? ?
UM,0 ? ? qm,0 ? 7

Next, to define the inside of u and ¢, for n,m > 1, use the initial data on the

edges of v and ¢ and recursively construct u,,,, and g,,, to satisfy

Umpn = Un—1n — Un—1n-1 + Um,n—1 + Tmn — Gmn

(3.3)

dmn = Q(um—l,n — Um—1,n—1 + Umn—1 + xm,n);
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m-2r O 0 O B

I
n-2 n-1 n
columns

Figure 3.1: Graphical representation of the 2 dimensional XA recursion.
Different schemes can be constructed by considering more nonzero entries

when recursively defining w,y, ,,.

see Figure 3.1. Note, we have some freedom in what order we will construct the
Um,n and @¢n . We can work down rows, across columns or along consecutive
reverse subdiagonals (similar to a common rule used to enumerate the rational
numbers). Also note that because we are using (3.3), we have the following
constraint. When we are constructing the (m,n)-entry, we must have already
constructed the (m —1,n), (m,n —1) and (m — 1,n — 1)-entries. (Note that the
diagonal scheme does generalize to an infinite dimensional input function z,,,
easily.)

Using the above recursions, we have

Proposition 3.1. Let x : {0,...,. M} x {0,...,N} — [—1,1], and let u,, and

Gmn be defined by recursions (3.1), (3.2), and (3.3). For any 1 < m < M and
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n

m
Z (T — Qjk) = 0,0 — U — U0 + Uy (3.4)
7j=1 k=1

Furthermore,
Z Z (xj}k - Qj,k) = Um,n — U0,0- (35)

Proof. Now at any point (m,n) € {0,1,..., M} x {0,1,..., N}, (3.3) implies

=1 \k=1
m n
= E E :[Uj,k—uy Lk U1 k-1 — Ujg—1]
7=1 k=1
m n
=0 g (ki) = ik U1kt — ko]
=1 k=1
m n m n m n
ZE , (wjx u]—lk)+§ (i1 o1 — Ujp) + E (Uj e — Ujp—1)
j=1 k=1 - — =1 1
~ J . ~ , ~ ,
dy do ds

and if we closely inspect these sums, we see cancellation due to telescoping,

n m n
=32 (30 = j-10) = 3_(tmsc = o),
k=1 j=1 k=1
m n m
Z (ujp = wjn-1) = Z(Uj,n — Uj0),
7=1 k=1 j=1
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and

3

da

n
D (W1 k1 — )
1 k=1

J

M: i

<

Il
—
e

(uj—l,k;—l — 'UJj_Lk; + uj—l,k‘ - U’]yk)

(uj 1,k—1 — Uj—1k +§ E u] 1.,k — u]k

k=1 j5=1

—_

3

NE

<.

Il
—
e

Il
—

NE

(Uj—1,0 — Uj—1n) + Z(Uo,k — U k)-
1 k=1

<.
Il

So when we add dy, ds, d3, we have

n

m
Z (Tjk — qjx)

7=1 k=1

:d1+d2+d3

u]n U]O+uj 1,0 — Uj— 1n)+ E (um,k_uo,k+u0,k_um,k)
k=1

M= WMS

m
(wj—10 — ujo) + E Ujp — Uj1,5) + 0
1 7=1

<
Il

= Up,0 — Um,0 — Uo,n + Um,n s
and we have shown (3.4). Furthermore, since the Oth row and column satisfy the

one dimensional XA recursion, by induction,

U0,0 — Um0 — U0 + Umn = (Y00 — Um,o) + (U0 — Uon) + (Umn — Uoyp)

= (Z(%‘,o - Qj,o)) + (Z(%,k - C]o,k:)) + (Umn — U0,0)-

j=1 k=1

Thus, if we bring the sums to the other side of the equation in (3.4), we have

proven (3.5). O

If we let Aj(ujx) = wjp —wj—1k, and Ag(u;x) = wjr—u;x_1, then we see that

the first line of recursion (3.3) becomes ;) — q;r = A;Ag(u;jx), [Y1102]. Since
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Z;n:l Y p; and AjAy are inverses of each other, we see a heuristic reason why
recursion(3.3) implies Proposition 3.1. By this reasoning, it is intuitively clear
how we would generalize to quantizing functions whose domain is a subset of Z?,
i.e., d-dimensional X A.

Since we now have the sum of the quantization errors bounded by the internal
state sequence, u,, ,, we seek to have control over the size of wu,,,, given that our
input x(m,n) is bounded by 1, i.e., x,,, < 1. Interestingly, there is no such

control as Proposition 3.2 shows.

Proposition 3.2. For any B > 0, there exists K = Kg € N and a bounded signal
x:4{0,...,K} x{0,...,K} — [-1,1], such that if wy, and Gm., are defined by

the two dimensional XA recursion (3.1), (3.2), (3.3), then

max  |umn,| > B.
m,ne{0,....K}

Proof. Let B > 0 be given, choose K € N such that K > 1+ Z. For (m,n) €

{0,1,..., K} x{0,1,..., K}, set

(

1—%, ifn=0and m=0,..., K,
1—%, ifm=0andn=0,..., K,
T = (3.6)
-1, ifmn>landm+n< K,
1, ifmn>1land m+n> K,

see figure Figure 3.2 with K = 10. Let ugo = 0, and m,n = 0,..., K, let uy,,
and ¢, , be defined by the two dimensional ¥A recursion (3.1), (3.2), (3.3). Then

by induction we prove that

. itm+n<K,

U = (3.7)
{2—-+}(m+n)—-2K, ifm+n>K.
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10.8

106

10.4

402

m=rows

10

Figure 3.2: An example of the two dimensional signal z,,, defined
in (3.6). Note K = 10 so x,,, = 0.9 along the Oth row and column,

Zm.n = —1 in the shaded upper left, and x,,, = 1 in the unshaded lower

right.

For the base case of our induction we notice that if m = 0 = n thenugy =0 = %.

Next, we induct along the Oth column. Let n = 0 and for m = 1,2,..., K,

assume

m—1+0
Um—1,0 = TR

then by (3.1), (3.6), and the induction hypothesis (3.8),

L (1 m) on (1 m) m
Um0 = Um— Tm,0 — dm,0 = - — sign - = -
0 1,0 0 — gm0 K g K K

and induction give the result along the Oth column. Since the Oth row is defined

by (3.2) which is the same recursion as (3.1) except it runs along the row instead
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of the column, we have

0
Upp = — ;—(n’ forn=0,...,K (3.9)
0
umo:—%, form=0,... K. (3.10)

Now, let P(n) be the statement

m—+n
myn — ) fi :1,...,K— ,
Uy, I or m n

and let Q(m,n) be the statement

Equation (3.10) shows P(n) for n = 0. Now, for any n = 1,2,..., K assume
P(n —1). For this fixed n, we next induct on m. Equation (3.9) shows Q(0,n)
and the base case m = 0 holds. Now, form =1,..., K —n, assume the induction

hypothesis Q(m — 1,n). Then P(n), Q(m — 1,n), and recursion (3.3) imply

Umn = Um—1,n — Um—1,n—1 + Um,n—1 + Tmn — Gmn
m—14+n m+4+n—1 m-1+n-1

T K O
_ (1_m—|—n> —sign(l—m+n>
K K
o om+n
==

where 1 — me > 0, since m < K —n. So, by induction on m, we see that for
this fixed n, Q(m,n) for m = 1,..., K —n, i.e., for this fixed n, P(n). Thus by

induction on n we have proven

U = — Kn’ form+n<K, (3.11)

which is the first line of (3.7). Thus in the region above the reverse diagonal, the

internal state |u,, | is bounded by 1, see Figure 3.3.
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10

-5

-10

0 1 2 3 4 5 6 7 8 9 10

Figure 3.3: The internal state w,,, which satisfies (3.1), (3.2), (3.3)

where Z,,, is defined in (3.6) with K = 10, and so B < 17. Note

-1 < up, <18,
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Next we show that as we cross the reverse diagonal the internal state w,,,
grows larger than the given B.
For j =0,...,K, let m+n = K + j. Proceeding by induction on j, we show

that the second line of (3.7) notice for j = 0, (3.11) implies

1

K K
For any j =1,..., K, assume
1 .
(2—E>(m+n)—2[(, form+n<K-j+1 (3.12)

then for m +n = j, (3.3) and the induction hypothesis (3.12) imply

Umn = Um—1,n — Um—1,n—1 + Um,n—1 + Tmn — Gmn

:2(m+n—K)—L+n+l—sign 2(m+n—K)—m+n+1
K K
—om4n—K) -2 (3.13)
K
where (3.13) follows since
m-+n K+

2(m+n—K) — +1:2(K+j—K)—T—I—1

> 0.

Therefore we have shown (3.7). Finally, (3.7) implies ux x = 2(K — 1) > B, see
Figure 3.3. [

Reflecting on the proof of this proposition, we note that the constructed signal
Tm,n equals 1 when u,,,, grows large, and 1 is the absolute value of the bit g, .

Thus, we next check that requiring z,,, to be bounded away from |g,,,| will
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reduce the size of the bound on the internal state w,,, in this specific example.

That is, let

a, fn=0and m=0,... K,
a, ifm=0andn=0,...,K,
xm,n(a7ﬂ7 7) - (314)
G, ifmmn>1landm+n<K,

v, ifmn>land m+n>K,

\

and compare the result in Proposition 3.2 with the size of the bound on u when
we input the sequence x,,,(a, (,7), with a« =1 —-1/K, § = .9, and v = .9,
into the two dimensional XA scheme (3.1), (3.2), (3.3). For this example, when

K =10, the largest value of u decreases from 18 to 3.

3.2 Constant input

We observed in the last section that a signal x which is constant above and below
the reverse diagonal repectively, and has a large jump across the reverse diagonal
results in large bound for the internal state u. We also observed that if the input
signal z is bounded away from |g|, then, in a specific example, the bound on u
is significantly smaller. Hence, it is plausible that if |z,,,| < a < 1 and uy,, is
defined by the two dimensional XA recursion (3.3), then |u,, | < B,.

In order to obtain some inutition on the relationship between a and B,, we
now reduce to the special case of a constant input signal, z,,,, = a. As Figure 3.4
shows, the bound on u decreases as the distance from a to 1 = |gy, | increases.
Figure 3.4 also shows that the relationship between a and max (u,,) is quite

intricate.
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max and min of u

| |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
The constant a

Figure 3.4: Welet z,,,,, = afor m,n = 0,...50 and construct u,, , using
(3.3). The top curve is a versus the maximum of « while the bottom is

a versus the minimum of w.
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3.3 A different quantization rule

The two dimensional XA recursion in (3.3) is not the only possible generalization
of a one dimensional >A modulator.

The following is a scheme inspired by [DDO03]. Let |z, < a < 1, ugg =
0 = w0, and use (3.1) and (3.2) to construct the Oth row and Oth column of the

matrices Uy, , and v, ,. For m,n > 0, construct u,,, and v,, , using the recursion
(

Umn = Um—1,n + Tmn — Gmn

Um,n = Um,n—1 + Um,n (315>

Gmn = S1E0 (Vm—1.n + T + C'SI0 (Ui 1—1))

\
where C' > 1 + 2a. Note the more complicated quantization rule, and that vy, ,
is like a derivative with respect to m. Now

m

Jj=1 k=1

n n

m
x]k - q]k = E § Um,n - Um—l,n)

1k

<.
Il
—

S

I
NE

((um,n - um,nfl) - (umfl,n - umfl,nfl))
1k

.
Il
Il
—_

= Ug,0 — Um,0 — Uo,n T Umn,

where the last equality follws by (3.4). Hence, we want to show that ||ty | <

oo. Using the same ideas from [DDO03], we show
Lemma 3.3. For anyn > 0, if |vpm_1,] < C+1 then |v,,| < C+ 1.
Proof. By the first line of (3.15),

Ummn = Um—1,n + Tmn — m,n

Umfl,n + mm,n - Sign (,Umfl,n + xm,n + C Sign<um,n71) )
—— —~— ~ ~

g

€[-C-1,C+1]  €[—a,a] Wm,n

€[-C—-1—a,C+1+d]
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where we have set Wy, = Um—1.5 + Tmn + C sig0 (U, n—1). We have three cases,

Case 1. Ump-1+ Tmp € (C,C + 1+ q
Then to compute ¢, = sign(wp,,) we note that regardless of the sign of
Um,n—1, We have that wy,, € (C,C+1+4a]£C C (0,2C + 1 +a]. Hence ¢, =1

and

Ummn = Umn-1+ Tmn—1 € (C,C+14+a]-1=(C—-1,C+a] C[-C—-1,C+1].

Case 2. Ump-1+ Tpmp € [-C —1—a,—C)
Again to compute ¢, = sign(wy,,,) we note that regardless of the sign of
Umn—1, we have that wy,, € [-C —1—a,—C)+C C [-2C — 1 — a,0). Hence

Gmn = —1 and

Vmn = Umn-1+Tmntl € [-C—1—a,—C)+1 = (=C—a,—C+1] C [-C—1,C+1].

Case 3. Vyp—1 + Ty € [—C,C] In this case we do not need to inspect w,y, ,, we

simply note that

Umn = Umn—1+ Tmn 1€ [-C,Cl£1=[-C—-1,C+1].

Unlike the one dimensional case in [DD03], Lemma 3.3 does not translate into
a bound on u,,,. This is because the bound in Lemma 3.3 is a bound for column

n of vy, ,, but the second line of (3.15) shows that vy, , = U n — U n—1 Which is
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a row relationship. So, the rows of u are well behaved, but we have no control
over the growth of the columns. in fact the signal in Proposition 3.2 grows large

for (3.15) just as it did for (3.3).

3.4 Halftoning

The quantization rule considered in Section 3.3 is just one of many possible
choices. In fact, there is a research field in image processing which studies the
effect of different quantization rules, namely digital halftoning by error diffusion.
Digital halftoning, refers to any process by which a continuous gray-scale image
is converted to a binary image by the judicious arrangement of binary picture ele-
ments, see Figure 3.5, [Uli87, EFKMO03, Kit98]. One method of digital halftoning
is called error diffusion. Error difusion uses feedback to pick the binary pic-
ture elements. It is error diffusion which is seen to be a generalization of one
dimensional ¥A modulation.

The first example of an error diffusion quantization rule is due to Floyd and

Steinberg [FS76]. The rule is

_ T

1 5 3
Umn = ﬁum—l,n + Eum—l,n—l + Eum,n—l + Eum—l—l,n—l — Tmn + dm,n

oo 7 1 5 3
mn = s1gn (xm,n - (Eum—l,n + Eum—l,n—l + Eum,n—l + Eum—&—l,n—l))

(3.16)

see Figure 3.6. We note that in (3.16), the sum of the weights is (= +1c+ 2+ = 1
and in (3.3) the sum of the wieghts is 1 — 1+ 1 = 1. The fact that these
weights sum to one means that in both schemes the error in the surronding

pixels Um—1.n, Um—1n-1, - - . is not amplified when it is used to construct w,, ,.
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Figure 3.6: Graphical representation of the Floyd Steinberg error dif-

fusion halftoning scheme, compare with Figure 3.1.

3.5 XA and space filling curves

Assume |f(z1,22)| < 1 and that f is bandlimited to (—€y, ) X (=9, Qs), ic.,

N

f(v1,72) = 0 for |y| > Qk, & = 1,2. Choose T1,T; such that 2738 < 1 for

AR
k =1,2. Let H be the image of Z? under the matrix ' , That is
0 T,
)
T1 0 m
H .= cm,n €7Z » CR?
0 TQ n
Vs
So a reciprocal lattice is
Ti 0 a —~
A= ! ca,beZ p CR2,
— b
T
Notice .
T, O 1 T, 0 Til 0
0 T L\ 7 1

95



k= ‘ 1 ‘ 2 ‘ 3 ‘ 4 5) ‘ 6 ‘ 7 8 ‘ 9
o) = | 00) | 1) | (1) [ 10) | (1) | 041) | (11 | (10) | (1)

Table 3.1: The first nine points of the bijection ¢ in Figure 3.7.

Consider the unit cell, £ C R2 given by

1 1 1 1
E=(—-—,— | X |—=—=—,— .
(o) (Camam)
Now consider the sampling kernel associated with E, defined on R? by

1 .
SE<'T17:E2) — —/ 627r7'(x1'71+33272)d(71 X 72)
1Bl JE
We could instead define sy € C*(R?) such that
sp=1on (—Q,Q;) x (=Q9,Qs), and supp(sg) C F.

Then we have a two dimensional sampling theorem [BFO1]. Namely, if f is

continuous on R?, then

rhj{;lo flxy,z9) — ZZf(mTl,nTQ)sE(:vl —mTy, 9 — nTy)
Iml,|n|<r

where the norm is either L? or L.

A spiral XA Now, given the samples f(m17,nTs) construct qTT,g;ITQ = Qmns
using a spiral which fills out the lattice Z2. That is, let 0 = (01, 03) : Z — Z* be
an ordering of the integer points on the spiral in Figure 3.7, see Table 3.1. If S, =
{(m,n) € Z? : Im|,|n| < r}and if 0S, = {(m,n) € Z*: |m| =r or |n| = r}, then
we see 05, has 4 - 2r points for » > 1 so S, has 4(2+4+ ...+ 2r) + 1 points and
S| = (2r—1)2. So for any r € N, ¢ is a bijection between {1,2,...,(2r — 1)} C

Z and the square {(m,n) € Z* : |m|, |n| < r}.
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T
sl o(121) [ i
o(81)
4+ T B
a(49)
3r I B
a(25)
2F | S— b
a(9)
1r ﬁ B
a(1)

ol . i
1k i
2k i
_3 - -
4 i
51 i

1 1 1 1 1 1 1 1 1 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 3.7: The bijection o : Z — Z? gives a natural ordering to the

points on the spiral.

Now let xy,,, = f(mTy,nT3) and construct g, , using the initial value u, ) = ¢

and the recursion

Ug (k) = Ug(k—1) + Lo(k) — Qo(k)
(k) = Sign (Uo(k—1) + Tok))

The using the one dimensional theory we have

(2r—1)2
> D (fmTynDy) =) = Y (Tt — dow)
< k=1
(2r—1)2
= (o) = Uo(k-1))
k=1

= Uo((2r-1)?) ~ C-

So, within the square with vertices (r, £r), the sum of the ¢,, s is close to the

sum of the samples.
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Next we reconstruct f using the g, ,s, i.e.,

Z Z qm,nSE(fL'l - mT1, Ty — nTg)

[m|,|n|<r

Let s = sp(x1 — 01(k)T, 29 — 02(k)T) and compute for any r > 1,

D> (fmTy,nTy) = ) sp(xr —mTy, 2y — nTy)

Iml,|n|<r
(2r—1)2
- Z (f(mTlu nT2> - Qm,n> Sk
k=1
(2r—1)2
= > (o) = o)) sk
k=1
(2r— 1
Z uo‘ Sk + Z ucr k— 1
(27’ (2r 12 1
Z Ug (k) Sk + Z k) Sk+1
(27“— ) -1
= Z Uo(k) (Sk — Skt1) +}Lo((2r_1)2)8(27«_1)2 + Uo(0)51 -
k=1 - ) >
s

It is not clear if S and 0S are bounded, this is a possible direction for further

research.
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Chapter 4

Finite Frames and Groups

As we stated in the introduction, frames for an infinite dimensional Hilbert space
are a natural language to study the sampling step of an A/D conversion. Now,
we study frames for a finite dimensional Hilbert space. We then specialize to two
classes of finite frames, viz., geometrically uniform (GU) frames and Grassman-

nian frames.

4.1 Preliminaries for finite frames

Let X = {xy,...,2x} be a frame for R? and let L, L*, S, and G be the Bessel
map, its adjoint, the frame operator, and the Grammian, repectively, see Section
1.3. Let & = {ey,...eq} be an orthonormal basis for R?, and D = {4;,...,dn5}
be the canonical basis of Dirac vectors, i.e., d,, has a one in the mth position and
zero elsewhere. We now derive the matrix representation of the maps L, L*, S,

and G with repect to the bases D and £. First, consider the Bessel map

L=1Lyx:R* > RY
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given by
L(y) = ({4, 1)y

The adjoint, L* : RV — R? of L is defined by (Ly,v) = (y, L*v) for y € R?
and v € RY. Since we can expand any v € R" in the canonical basis {5,1}7]:]:1 as

v=S""(v,8,)6,, we have, for any y € RY,

(y, L*v) = <Ly,2(v On) On >

N
y,l‘k 5k, (v, 0n) 5n>
=1

3

=1
N

3

Mz/\

yu Ik 5k7 6n>

T

1 n=1

[
WE

(Y, 2x) (v, 0k)

e
Il

1

N
y:z v, 5k >
k=1

Thus, L*v = S5, (v, 01) z,

Now, since

<l‘n, €j> €5,

M-

N
L6y = (60, 0) g = @ =
k=1

L* can be represented as a matrix whose columns are the coordinates of the frame

Jj=1

vectors with respect to the orthonormal basis £, i.e.,

(x1,e1) ... (xn,e1)

(x1,eq) ... (xN,eq)

a d X N matrix. Therefore, the matrix representation of the Bessel map L is just
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the adjoint of L*, i.e.,

(x1,e1) ... (xy,eq) (er,z1) ... (eq,x1)

(xn,e1) ... (zn,eq) (er,xn) ... (eq,xn)

an N x d matrix. The frame operator for the frame X is
S =Sy :RY— R?

given by
N

S(y) = Z (Y, Tr) T,

k=

—_

and it has the matrix representation S = L*L. We note that

and therefore S is symmetric.

As an aside, we mentioned in the introduction that one problem with frame

reconstruction is the computation of S~!. Now if S is a diagonal matrix, this

inversion is easily accomplished. We have the following fact.

Proposition 4.1. Any finite frame in R¢ can be orthogonally transformed into

a frame with a diagonal frame operator.

Proof. Let X = {z,:n=1,...,N} be a frame in R? with frame operator S

and Bessel map L. By the spectral theorem [Str88, Lay03, GVL83] there is an

orthogonal matrix P and a diagonal matrix D such that S = P*DP Thus we

have

D = PSP* = (PL*)(LP*) = (LP*)*(LP"),
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Figure 4.1: An example diagonalizing the frame operator. On the
left is a unit norm frame with five elements; the eigenvectors of S are
also plotted with o. On the right we apply the orthogonal matrix P to
the frame X to get Spy diagonal. Note the rotation/reflection of the

eigenvectors.

where the kth column of (LP*)* is Pxy. If we apply the orthogonal matrix P
to the frame X we get the frame PX = {Puzy,..., Pxy}, which has a frame

operator Spx = D which is diagonal, see Figure 4.1. |

The fact that Spx = diag(Ay, ..., Aq) means that Sy} = diag(A;',...,A\;"), and
hence the dual frame and the frame reconstruction formula can be computed
efficiently.

We now prove a fact that will be use implicitly in the remainder of the thesis.
Namely, any finite set of vectors forms a frame for its span with the frame bounds

being the largest and smallest eigenvalues of the frame operator.

Proposition 4.2. The following three statements are equivalent:
(a.) {z,}N_, is a frame for RY

(b.) 3A >0 such that Vy € RY, Allyl]> < SN | (y, 2) 2
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(c) spanfe,}Y, =RY.
Proof: (a = b). This is the first inequality in the definition of a frame.

Proof: (b= a). We use finiteness and the Cauchy-Schwarz inequality, |(y, z)| <
Iyl - [|2]l- So if we let B =3, [|z]|?, then

N N

2
Do)l <Y (Il llaxll”) = Byl
k=1 k=1

Proof: (b=>c). Suppose V := span{z,} | # R? Take y ¢ V, and let {¢; ?‘):1
be an orthonormal basis for V. Let projy (y) = 2;0:1 (y,e;) ej be the projection
of y onto V', and set § = y—proj,,. Then y # 0 otherwise y € V. By construction,
(g,xg) =0for k=1,...,N, so

N
vA>0, Al >0="|(y.xa) |

so by contraposition we have shown the forward direction of the second equiva-

lence.

Proof: (¢ = b). Consider the frame operator S : R? — R? given by S(y) =

21]::1 (y, $k> x1, and notice

N N
Syy :Z yka Ti,Y Z| yvxn
k=1 k=1

Since S = L*L, S is symmetric, and therefore has a full set of orthonormal eigen-
vectors say {vk}zzl. Given y, there are coefficients ¢ such that y = 22:1 CLUk,
thus
d
(Su.) =y Sy =3 e = (min A3 et = (min A Iyl

geeey =1,...

k=1 k=1
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So it is enough to show the eigenvalues of S are all positive. If S is positive
definite, i.e., (Sy,y) > 0, for y # 0, then letting y be a unit eigenvector, we see

that A\, = (Sy,y) > 0, so it is enough to show that S is positive definite, i.e.,

N
>y @) = (Sy,y) >0, fory #0.
k=1

This is a sum of positive numbers, so it is enough to show at least one term is

positive, i.e., show
Yy # 0, 3k such that |(y, z)|* > 0. (4.1)

Now, to show (¢ = b), we will show that if (4.1) is false we have a contradic-

tion. Assume that span {z;}"_, = R? and that
Yk =1,...,N, 3y # 0 such that |(y, z;)|> = 0.

Let {ek}zzl be an orthonormal basis for R?. Since the zys span, let e, =

S c,(j).:l:k. Then

- [ (k)

k=1

Vi,  |{y,e)| =0,

and so y = 0, a contradiction. |
The following alternate proof is from [Chr02].

Alternate Proof: (¢ = b). Consider the map
¢: RS R

N

2

gy [y )|
n=1
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It can be shown that ¢ is continuous. Then since the S? ! is compact in R?,

there is a z € S9! such that ¢(z) = inf {¢(y) : y € ST}, ie.,

N N
A= Z |<Z>$n>‘2 = inf {Z \(y,azn>|2 cy € Sd_l} )
n=1 n=1

Now A > 0 by (4.1). Thus for any y € R?

N N y 2 N
D=2 <mx> Il = " e e Pllyl? = Ally)
n=1 n=1 n=1

4.2 Geometrically uniform (GU) frames

Next we consider a class of finite frames similar to Gabor and wavelet frames in
that they are generated by a group acting on a vector. We shall see that these

frames have subtle symmetry properties. [Sle68, For91, EB03, VW]

Definition 4.3. A set X = {xy,..., 25} C R% is a geometrically uniform (GU)
set if there is group of orthogonal matrices G = {Uy,..., Uy} and a generating
vector x € R? such that z, = U,z for n = 1,...,N. In the case that G is

(non)abelian we call X a GU (non)abelian set.

As noted in the introduction, in the language of group actions, a GU set X is
simply the orbit of and element x € X by the group G, i.e., X = Orb(z). As we

shall see, a GU set is a special case of a Slepian-type group code, [Sle68, For91].

Definition 4.4. A set X = {x,,..., 2y} C R is a Slepian-type group code if
given any two vectors z;,z; € X C R? there is an isometry Z;; : R — R? such

that

ZZ](ZEZ) = Ty, and ZZ](X) = X.
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We have,
Proposition 4.5. If X is a GU set, then X is a Slepian-type group code.

Proof. Let x;,z; € X C R% By assumption, z; = Uz, and z; = U;z. Thus

consider the map

7 :R* - R?

v U;Ulv.

Then U = U,;U]" is orthogonal, hence ||Z(v)|| = ||Uv|| = ||v||, hence, Z is an
isometry. Also, Z(x;) = Ux; = U;Ul'x; = U;z = x;. Finally, since G is a group,
U € G and for any o, € X, Ulxy, = UTUpr and UTU,, € G, hence UTz, € X
and Z (UTxk) =UU Tz, = zp,.

First consider GU sets in R?. Now, any element of O, has the form

cosf) —sinf cosf sinf

€ SOy, or ¢ SO,. (4.2)
sinf cos® sinf —cosf

Furthermore, if G is a subgroup of Oy, then G is isomorphic to Z/nZ the cyclic
group of order n, or Dy, the dihedral group of order 2n which contains Z/nZ as

a subgroup of index 2, [GB85]. Therefore we can classify all the GU sets in R

Theorem 4.6 (2d GU sets). Let X be a GU set in R?, i.e., let X = Orbg(z),
where G is a subgroup of O(2,R), and x € R?\ {0}. Then X is either

(a.) the vertices of a reqular n-gon,

(b.) the union of the vertices of two regular n-gons, where the angle between

n-gons is twice the angle between x and the closest line of reflection.
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1 1 1

0.5 0.5 0.5

0 E— 0 p——F——¥ 0

-0.5 -0.5 -0.5

-1 -1 -1
-1 0 1 -1 0 1 -1

Figure 4.2: Four examples of GU frames Gx where, from left to right,
G isomorphic to the dihedral groups of order 2,4,6, and 8, and = = (1,0)7

is on a line of reflection of each of these groups.

Proof. 1t G = Z/nZ, then G is precisely the cyclic group generated by
2 2_Tr)
sin (7”) cos (7”)

and Orbg(x) is the set of vertices of a regular n-gon with one of the vertices being

N

Ccos ( ) —sin

R, =

N N

N

x.

If G = Ds,, then G = (R,,T), where there are orthogonal vectors 1, x5 such
that Try = z; and Txy = —x9, and where (R,,,T) is the group generated by the
matrices R, and T. Consider the set {TR" :m =0,1,...n—1} C G, which
has n elements with determinant —1 corresponding to n reflections across the
lines ARz for m = 0,1,...,n — 1. If = lies on a reflection line then Orbg(x)
is simply the vertices of a regular n-gon, see Figure 4.2. If x does not lie on a
reflection line, then Gz is the union of 2 regular n-gons where the angle between
the n-gons is twice the angle between x and the closest line of reflection, see

Figure 4.3. [

We note for future comparison with Grassmannian frames, the set of any two
vectors in R? of equal length is a GU set, since this set is the union of the vertices

of 2 regular 1-gons.
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Figure 4.3: Four GU frames using G with the same isomorphism classes
as in Figure 4.2 but with x = (1,0)” not on any line of reflection of any
of these groups. Notice there are twice as many elements in these frames

as in the corresponding frames in Figure 4.2.

The GU frames in R? are not as easy to classify. First, the finite subgroups

of SO3 are isomorphic to either Z/nZ, D,,, A4, Sy, As, where

Z/nZ = cyclic group of order n,

Dy,, = dihedral group of order 2n,

A4 = symmetry group of a tetrahedron; order 12,

S, = symmetry group of cube and octahedron; order 24,

As = symmetry group icosahedron and dodecahedron; order 60.

Furthermore, if two finite subgroups of SO3 are isomorphic, then they are conju-
gate, [Wol84|. Thus, to classify GU frames with G € SO3, we may use a standard
representation of G and conjugate by any matrix in SOs3.

The finite subgroups G of O3 can be built from these rotation groups. If G is
not equal to one of the above groups, then either G = H x (J) where H is one
of the above groups and J is reflection through the origin, i.e., J = —1I3, or G is

a mixed group [GB85, Wol84], i.e.,

G={AcO3:AcH or A=JT where T € K\ H},
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Figure 4.4: Four GU frames in R? using G with the same isomorphism

classes as in Figure 4.2 and with z = (1,0,0)7.

o
o
o

0 0 0
13 13 13

Figure 4.5: GU frames using the generating vector z = (0,0,1)7 and
the groups G isomorphic to the rotational symmetries of the icosahe-

dron/dodecahedron, cube/octahedron, and tetrahedron, respectively.

where both H and K are finite subgroups of SO; with H < K and with [K :
H] =2.

We conclude with some examples of GU frames where G is a finite subgroup
of SO3. If G is isomorphic to a dihedral group of order n = 2, 4, 6, and 8,
and x = (1,0,0)7, then the corresponding GU frames have symmetries related
to a regular n-gon, see Figure 4.4. Also G is isomorphic to A4, Sy4, and As, then
the corresponding GU frames have symmetries related to the platonic solids, see

Figure 4.5 and Figure 4.6.
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05 \ ( 05
¢ ¥ \ / 4 0
O\ P
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) \ .

-1 = -1

~05 A -0.5
0 -1 0 -
05 -05
0.5 0 0.5 0
05 05
1 11

1
05
0
-05

Figure 4.6: GU frames using the same isomorphism classes as in Figure
4.5 but conjugating G with the matrix (1 + ¢)I3, where I3 is the 3 by 3

identity matrix, and € = 0.1.
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Chapter 5

Grassmannian Frames

Given a finite frame for R? with N elements, we would like to measure the
correlation between frame elements, and in particular decide when the correlation

is small. We consider the following metric which is like an > norm [SHO03].

Definition 5.1. Let N,d € N with N > d. Let X = {x;}2_, be a subset of R?

with ||lzy|| = 1. The mazimum correlation of X}, Mo (X2'), is defined as
Ny _
Moo (X3') = max |{wx, 21)]

Notice that because we consider the absolute value of the inner product rather
than just the inner product, if the angle between a pair of vectors is closer to 90°,
then the pair is less correlated, while if the angle is closer to 0° or 180° then the
pair is more correlated. We could instead consider an ¢!/, or (P-type norm to

measure correlation i.e.,

1/p
M, (X3') = <Z|<$k,$l>|p) :

kil
We next fix d and N with N > d and we seek to find NV element unit norm frames,

XY, with smallest oo-correlation My, (XJ'), i.e., maximally spread apart. This
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relaxes condition (1.6) as discussed in Section 1.6. We make the following defini-

tion.

Definition 5.2. Let N > d. A sequence of unit norm vectors UY = {u;}i_, in

R? is called an (N, d)-Grassmannian frame if
Mo (U) = inf {M (X7} (5.1)
where the infimum is taken over all unit norm, N-element frames for R¢.

First, we define the function

fr88 x x84 0, 1]

-~

N times

flz1,...,xy) = Mo ({:L‘k},]le) .

Next we check that f is continuous on X := R% x ... x R? (N times). Consider

a norm on X given by

H{xk}]kvzl

N
= ol
k=1

let {z3},_, € X be fixed, set R — 1 = maxy, {||z)||za} an let € > 0 be given. So
R > 1. Now choose § such that 0 < § < Y=L i e R25%2 +2R§ < . Then

R
whenever {yk}fle — {xk}ff:l

< 0, we have that for every j € {1,..., N},
X

N
N N
Iy = 2jllge <O llye — 2rllge = H{yk}kzl —{@r b
k=1

L

and therefore for each j, there is and a; € R? with [|a;|| < & such that y; = x;+a;.
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So,

[y, yn) = flan, .z
= [ Mo (fwhis) = Mao ({hil)

e €+ e+ )1 e Q|

= e €m0+ s + w2l + e )l = e e,

IN

max { [, 2]+ llxl| foall + llew ] o + lowll oully — mas {[(zs, xz>!}'

< rg;;c{|<xk,xz>|}+2m+Ré?—rg;;{uxk,mu'

= 2R§ + R&® < .

Therefore f is continuous on the compact set S¢! x ... x S9! (N times), thus
f achieves its absolute maximum and absolute minimum on this set. Thus we
know that (N, d)-Grassmannian frames exist for any N > d.  Next we must
check that if UY solves (5.1), then U} is a unit norm frame for R% but this
a tautology since, by compactness, U is one of the frames over which we are

taking the infimum.

5.1 Two dimensional Grassmannian frames

We now classify all (N, 2)-Grassmannian frames for any N > 2.

Theorem 5.3 (2 dimensional Grassmanian). Let X = X3 = {z;}2_, be a

collection of N unit vectors in R%2. Then we have the lower bound

cos(m/N) < Mo (X3') .
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Furthermore, XY is an (N,2)-Grassmannian frame if and only if there is an

orthogonal matriz P, see (4.2), and a sequence {ex}n_, C {£1}" such that

cos(mk /N
PeX) = {P(exzy) 12 € X, } = (w /) k=1,...,N
sin(mk/N)
Proof. First, since |(z,y)| = |(z, —y)|, we note that changing the sign of any

x € X does not effect the value of M (X). So by changing the sign on z
when necessary, we may assume z € {v € S : (v,d9) > 0}. Also, since rotations
preserve inner products, applying a rotation to all the vectors in X does not

effect Mo (X). Thus rotating by —¢ where ¢ = ming—;__y cos™*((zx, 1)), and

.....

reordering if necessary, we may assume z; = 0; = (1,0)7, and

1 Z <$2,[L’1> Z <$3,I‘1> Z L2 <[L‘N,£L‘1> Z —1. (52)

For k =1,...,N — 1, let 65 be the angle between x; and xp,,, and let 8y be
the angle between zy and the negative z-axis, i.e., 0 = cos™! ({x}11,71)) and
On = cos™! ({(—6d1,xn)), see Figure 5.1 for an example when N = 6. Then because

of the above reordering, 6, > 0 for £k = 1,..., N, and Zszl 0, = m. Thus for

k-1
cos (Z 6j>
j=1

Furthermore, | cos(6)| has a maximum on [0, 7|, at § = 0, and € = 7, and |cos(6)]

1<l<k<N,

(xg, z1)| = ,  where lmu?v lek < 0, <m—0y.
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0.5

I I I I I
-15 -1 -0.5 0 0.5 1 15

Figure 5.1: An example of the reordering induced by the inequalities

on the inner products in (5.2). Note N = 6.

is monotone decreasing on [0, 7/2] and monotone increasing on [7/2,w|. Hence

Mo(X) = ngfmkam!

k—1
CoS (Z 6]-) ‘
j=l

= max{]cos (m—0n)|,

CoS min 0
k=1,...N—1
cos| min 6,
k=1,..,N

Thus, in order to minimize M (X) we must choose N positive numbers

= max
k£l

ay, ..., oy which sum to 7 and which minimize |cos(ming_; _n oy )|, hence, which

maximize the expression

min . (5.3)
k=1,..,N
Now we claim that if aq,...,ay maximize (5.3) then a; = ... = an. We

prove this impliction by contraposition, i.e., assume it is not the case that a; =
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... =ay. Then thereisanm € {1,2,..., N — 1} so that if we list 1 < ... < ay
by size, then only the first m are equal, and the (m + 1)st is strictly larger than

the mth, i.e.,
Ay = Oy = ... = O, < O,y S...SakN.

Let € = ag,,,, — ag, and for j =1,..., N, define the sequence 3y, as

m

.

ag, + 5 forj=1,...,m,
Br; = ag, —5 for j=m+1,
Qg forj=m+2,...,N,
\
Now the new set
Bir = Brs = -+ = Bron, < Bl < oo < By

has a strictly larger minimum angle than the original since for j =1,... N,

. €
min o = o, < o, + — Sﬁkl Sﬁj-
k=1,...,.N m

We see that the original as do not maximize (5.3). So by contraposition we
have that if as maximize (5.3), then they must all equal. Finally, if a is the
common value, then YV ), = Na = 7, and therefore o = 7/N. Thus 7/N >

ming—; _n 0k, so

cos(m/N) < cos (k_minN GK) = M (X37).

=1,...,

Next we prove the equivalent characterization of (IV, 2)-Grassmannian frames.
If X2 is an (N, 2)-Grassmannian frame, then using the above argument, we see

that we can choose {e;} C {£1}" and P € SO, so that the frame PeX} =
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{P(skxk) DTk € Xév} is in the closed upper halfplane with one of the vectors
being (1,0)%, and

Moo (Xév) = M (PsXéV) = Cos ( min 9k> }

k=1,...,N

where 6}, is the angle between the kth and (k + 1)st adjacent vectors in Pe X2
(reindexing may be necessary). Since an (N, 2)-Grassmannian frame minimizes
the oo-correlation M (Xév ), the above argument also shows that #; = ... =
On = 7/N. Therefore, the angle between adjacent vectors in PeX2 is w/N, and
we have shown the forward direction of the equivalence.

To show the reverse implication we note if

cos(mk /N
PeXl = (wk/N) ck=1,...,N
sin(mk/N)
then
Moo (X3') = Moo (PeX)) = cos (kr{unN Qk) = cos(m/N)
So X&' is (N, 2)-Grassmannian since it achieves the lower bound. OJ

Notice that for N odd, if we change the sign on the the Nth roots of unity
below the real axis, then we obtain the frame described in the above claim with
er = 1, i.e., with all vectors in the upper half plane, and a common angle of
7/N between adjacent vectors. Hence for N odd, the Nth roots of unity are
(N, 2)-Grassmannian. Furthermore, for N even, the Nth roots of unity do not
form an (NN, 2)-Grassmannian frame because ¢ and —( are both Nth roots. If we

identify ¢ and —( then we obtain an (N/2,2)-Grassmannian frame.
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5.2 A lower bound for M

It is much harder to construct a Grassmannian frame in R3 for N > 3. Thus we

first derive a lower bound for the maximum correlation between frame elements

of an N-element frame for R [SHO3, Ros97].

Theorem 5.4. Let N > d and let X} be an N-element subset S~', and let

do = dim (span (X2)). Then

Mo (X3) 2\ 5=y (5.4)
where equality holds in (5.4) if and only if
1.) XY is equiangular, and
2.) XY is a tight frame for its span with frame bounds A = B = %.
Furthermore, if N > @, then X is not equiangular, hence equality cannot

hold in (5.4).

Proof. First we show the inequality (5.4). Since the N x N Grammian matrix
G is hermitian, the spectral theorem applies, so G has N eigenvalues counted
with multiplicity and ordered by size, A\ > Ay > ... > Ay. Furthermore, since
rank(G) = dy, only the first dy of these eigenvalues are nonzero. So

do N N

Z)\k = Trace G = Z (zy, k)| = Zl =N

k=1 k=1 k=1

Now set e, = A\, — %, then
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SO

k=1 k=1
do 2 dO dO
B 2N )
= ? + — (% + €L
k=1 0 0 k=1 k=1
d
2 0
N R,
d C
0 k=1
N2
Z 5
do

with equality if and only if e, =0 for £ =1,...dy, i.e., \p = % for k=1,...dp.
Now the eigenvalues of G2 are \? > \2 > ... > A2, so if g is the kth column of

G, then by matrix multiplication we have

N2 o N N N
LD SIS 9) DI )
k=1 k=1 k=1 =1
And since G is hermitian, |(zy,z;)| = |[(z;, x)|, so using the previous inequality
we derive
N2 NN
o S22 Mawa)
0 k=1 =1
= (ks 1) |2+Z|i€k,$l\ +Z|1‘k,i€l
k=l k<l k>l (5.6)
=N+ 22 |<[L‘k,l‘l>|2
k<l
N(N -1
<N XD

2
5 mawe{ (o 1))

therefore, solving for the max in the above inequality, we have
N — d() N 2

— < M (X : 5.7

do( N — 1) — M ( d ) ( )

d<Nd0

AN-1) S G(v-1) hence we have

For future reference we note that d > d, implies

(5.4) with the dos replaces with ds.
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Next we show that equality holds in (5.4) if and only if, X} is equiangular

and a tight frame for its span.

Proof =>. Say M(XY) = dé\([];do . The (5.6) becomes

-1

N N2
DO Naw ) = .

k=1 I=1

¥

which implies that (5.5) becomes

d
Sou=
k dO ’
k=1
and as we saw above, equality in this sum implies that A\, = % for k=1,...,d,.

But the frame bounds for XV are the largest and smallest nonzero eigenvalues
hence A = N/dy = B and X} is a tight frame for its span.
To see that X2 is also equiangular, we notice that (5.6) also implies that
N2
N =2 =
> Naw, ) .

k<l

hence,

> oot = S0 58)
k<l

Now maxy |(zr, 2,)|° = % implies that for any k # [,

(z x>|2 _ M _c
ks Ul _do(N—l) k‘,l)

where e;; > 0. Thus (5.8) implies

N(N — dy) N — d,
2y 2 (dO(N 1y 5’”)

k<l

() ) 2
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hence Z,Kl ey = 0, and since €y are positive, 5; = 0 for k < [. Also since G

is symmetric, e5; = 0 for all k # [, hence X} is equiangular with \(xk,a:l)|2 =

N—dg
Bo(N-T"

Proof <=. Now assume X} is equiangular and tight with A = B = %. Then

there is an a € [0,1], such that |(zy,z;)|> = a for k # I. Now since X is tight,

g = ]\g for k =1,...,dp, and zero otherwise. Hence (5.5) and (5.6) imply

do
N do N
N S = ekl = N+ NN~ 1,
k=1 k=1 [=1

hence, solving for a we see that equality holds in (5.4).

d(d+1)
2

Finally to prove N > implies X} is not equiangular, we need the

following lemma

Lemma 5.5. Let H, be the n x n matrix with 1 on the main diagonal and (3

elsewhere, and let C,, be the n x n matriz defined by

g, if (i,5) = (1,1)

[Crliy =
[Hy)i;, otherwise.
Then
det(H,) = (1+ (n—1)B)(1 - 3)"* (5.9)
det(C,) = B(1 — p)" . (5.10)

Proof of Lemma 5.5. We proceed by induction. Let P(n) be the statement
det(H,) = (1+ (n = 1)8)(1 — /)"~ and det(C,) = B(1 - 8)"~".
Now for n = 1, Hy = 1 and C; = (3, so det(H;) = 1 and det(C;) = (3, hence

P(1).
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Next assume P(n). Now using the cofactor expansion of the determinant, we
first note that the (1, 1)-cofactor of H,; and C,; is det(H,). Also note that

for j =2,...,n+1, the (1, j)-cofactor of both H, 1 and C, is
(1)1 det (BY))
where BY can be defined recursively as

BY =,

n

BY) = BU-1) forj=2,....,n+ 1.

n n

where BY ™" is BY™" with the jth and (7 — 1)st rows interchanged. Now since

det is multilinear, interchanging a row changes the sign of the determinant, hence
(—1)t+ det(BﬁLj)) = —det(C,) forj=2,...n+1.

Therefore we compute using the induction hypothesis and the cofactor expansion,

n+1
det(H,41) = 1-det(H,) + > _ (8- (—1)"" det(BY)))

= det(H,,) — nBdet(C),)
= (L (= B - B (1 - B
= (1+nB)(1-p)(1-p8)""

and,
det(Cpy) = Bdet(H,) — nBdet(C,)
=B+ (n =11 -/ —np*(1-p)""
= (B -1 -p)",
hence by induction, P(n) for all n € N. 0
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Thus to prove N > (d+1)

implies X is not equiangular, we prove the contra-
positive using the above lemma and the following argument, [LS73]. Assume X
is equiangular. Let P, : R? — R? be the projection of z onto the line spanned by
Ty 1.e., Prr = (xp, x) r. Let V be the vector space of symmetric linear mappings
from R? — R?. Then dim(V) = d(d+1 , and the map (-,-) : V x V — R given by
(A, B) = Trace(AB) is an inner product on V. Now, since X} is equiangular,
there is an « € [0, 1] such that (zy,z;) = £« for k # [. Furthermore, o = 1
implies N = 2, since the elements of X are assumed to be distinct and of unit
norm. Thus, ford >2, N =2 <3 < dH). So we may assume « € [0,1). Now,

1 k=1
<Pk7pl> - <xkaxl>2 -

o, ifk#L

so the Grammian of the set {Py,... Py} C V is

1, ifk=1
(Glra = [(Pr, Pi)]yy =
02, itk £l

Thus Lemma 5.5 applies with G = Hy and 3 = o2, thus, if a € [0, 1), then
detG = (1+ (N —1)a?) (1 —a®)N"' £0.

Hence G is invertible and therfore has full rank. Finally, since rank(G) =

rank(S) = N, so,

d(d+1)

N =rank(G) = dim (span{ Py, ..., Py}) < dim(V) = 5

So, X} equiangular implies N < d(d + 1)/2, hence by contraposition we have

proven the result. O
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Remark Theorem 5.3 shows that M., (X2') = cos (7/N), while Theorem 5.4

shows M, (Xév ) > 2(%—__21) Using standard calculus techinques, we can show

that the bound in Theorem 5.3 is an improvement over the bound in Theorem

5.4 for all N > 3. Let

) = cos(m/x) = 57—
then
, T . 27 1
Jlw) = Zgsin (?) T 20— 1)
and

o 2o (2) () -
(

L)z, But for = € [3,6],

z—1

so f(z) is increasing for x € [3,6], and since f(3) = 0, we have that f(z) > 0

for x € [3,6]. Furthermore, for = € [6, ), 530_6; > % (ﬁ)Q, and sin (27”) > %—i if

and only if

< 2
T Gn T (X

~ 27.1719.

So f(x) is increasing for x € [3,27], hence greater that zero on that same interval

We also note that

in (2m2) > — < o (" :
S JR— —_
m 7Tx_27r 2r \x —1

and sin (27z) > 5= when

e 2T 303105
sin~* (i) D '

Hence f is decreasing on the interval [40,00), and since lim, .o f(z) = 3, we

have that f(z) > 1 for z € [40,00). Finally, we check that f” < 0 on the interval
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N Optimal bound Bound from Theorem 5.3

=2y cos(r/N)
3 0.5000 0.5000
4 0.5774 0.7071
) 0.6124 0.8090
6 0.6325 0.8660
7 0.6455 0.9010
8 0.6547 0.9239
9 0.6614 0.9397
10 0.6667 0.9511

Table 5.1: Improvment of the optimal bound derived in Theorem 5.4

for the case of (IV,2)-Grassmannian frames.

[27,40] and f(27), f(40) > 3, so f(x) > 5 on [27,40]. In summary we have shown

that f(z) > 0 on (3,00) and that f(z) > 3 on [27,00). Therefore

U N -2
— ——— for N .
COS(N) > 3N = 1) or N >3

In light of Theorem 5.4, we make the following definition,

Definition 5.6. Let N,d € N with d < N < 220 Tet XV = {2}, be a
frame for R? with ||z;]| = 1. We call XY an optimal Grassmannian frame if X3

satisfies (5.4) with equality, i.e
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N Optimal bound Grassmannian bound

:1/% = min M, (X5)

3 0 0
4 0.3333 0.3333
3 0.4082 0.4472
6 0.4472 0.4472

Table 5.2: Bounds for N-element frames in R? with potential of being

optimal Grassmannian.

In R?, since d = 2 and @ = 3, only frames with N = 2 and N = 3 ele-

ments can be optimal Grassmannian. Since cos(m/2) = 0= /(2 —2)/(2(2 — 1),

and cos(m/3) = 1/2 = /(3 —2)/(2(3 — 1), both (2,2)- and (3, 2)-Grassmannian
frames are optimal. The same phenomenon does not happen in three dimen-
sions. Table 5.2 lists the Grassmannian bound which will be proven below and
the optimal bound for N = 3,4,5,6, (the only Ns with the possibility of being
optimal). By inspecting Table 5.2, we notice that (5,3)-Grassmannian frames

are not optimal, while (3, 3), (4,3) and (6, 3)-Grassmanians are optimal.

5.3 (4,3)-Grassmannian frames

In this section and the next we will derive the bounds for three dimensional
Grassmannian frames with N = 3,4,5 and 6. First note that if N = 3, and if X
is any orthonormal basis for R?, then 0 < M (X) = 0. Hence any orthonormal
basis is Grassmannian, in fact, X is trivially optimal Grassmannian.

Next consider N = 4. We need the following lemma,
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Lemma 5.7. Let a € RY, and let {vy,vq,...,v4} C R, Set
d
Q= {CH—ZSjUj 185 € [0,1]}
=1
d
C= {CL‘FZ&TJ"U]' 1 &5 S {0,1}},
=1

and choose ¢ € C such that ||c| = max {||c]| : ¢ € C} where l = 1,...,2¢. Then

for any v € Q\ C, o] < ic]].

Proof. Let v e Q\ C,s0ov=a-+ Z;l:l s;v;. Since v ¢ C, there is an m > 1,
such that s;,,...,s;,, € (0,1) and s;,.,,,...,s;, € {0,1}. For i < m set t; = s;,,
and for i > m set g; = s;,, so t; € (0,1) and ¢; € {0,1}. Now, let wy = v, and for
each i =1,...,m, recursively let w; = w;_; + (§; — t;)v;,, where

1, if (sz.,wi_1> >0
& =

0, if <vji,wi_1> < 0.

By inducting on i, we show that |[v]| = ||wo|| < |Jw1]] < ... < ||wn]||. Note that
by construction of &;, we have that w,, € C hence ||w,]| < ||¢|. Also note for

1=1,...,m,
2 2 ~ ~ 2 2
lwil|” = [Jwi1]|” +2 (& — i) (wi1,v5,) + (& — )" vy, || (5.11)

We begin the induction with the base case i = 1. Inspecting (5.11) with ¢ = 1,

we have 3 cases:

Case 1. (wp,v;,) > 0.
Then &, = 1,50 &4 — ¢ > 1 —t; > 0, and 2(&; — t1) (wo,vj,) > 0. Hence by

(5.11), fln|* > [Jwol
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Case 2. (wg,v;,) < 0.
Then £, =0, so &, —t; < —t; < 0, and therfore 2 (£, — t1) (wp, v;,) > 0. Hence

by (5.11), [wi[* > flewol|*.

Case 3. (wp,v;,) = 0.
Then &; = 0, and wg + (—t1v;,) = Yo, where for k =2,...m,

d

=t s

i=k

So by the Pythagorean theorem, |Jwol|® + || —t1v;, || = |ly2]|°, hence
2 2 2
lwol|™ = lly2ll™ = ta flog, I (5.12)
So, & = 0 and —¢7 < 0 imply —t7 |Jv;,|| < —&¢ ||vj, || and by equation (5.12),

2 2 ~ 2 2
lwoll™ < g2l + 0 = flwo + (&1 = tr)uj |I” = [Jewn ]

So in every case, ||wol| < [Jw:]|-

Now for the induction step, if 1 < ¢ < m, and if we have that
Jwoll < flwrll < ... < lJwill,

then repeating the above with wy, w1, yo replaced with w;_1, w;, y;11 respectively,
we have that ||w;_|| < |Jw;||. Finally, since w,, € C, we have ||v]| < ||wn]| <

le]]- O
With this lemma we can prove the following.

Theorem 5.8 ((4,3)-Grassmanian). Let U = {uy,us,u3,us} C S* C R3. If

U is (4,3)-Grassmanian, then U is equiangular, i.e., [(ug, w)| = ¢ for k # L.
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Proof. We show the contrapositive of the above implication. Namely, if U is not

equiangular, then there is a 4 element set X C S? such that
Mo (X) < M (U),

hence U does not have minimal oco-correlation and is therefore not

(4, 3)-Grassmannian. We need the following lemma

Lemma 5.9. Let {b,y1,y2,y3} C S% If |{b,y1)|, [{b,y2)], and |(b,y3)| are not all

equal, then there is a constructible ¢ € R® such that

maX{|<b7yk>| : ]{j: 17273} > maX{’<ﬁ7yk>‘ . k: 17273} .
C

Ao, | (g1 - )| = )]

Proof of Lemma 5.9: Case 1. yi1,y2,y3 C S? are linearly dependent.

Then there is ay, as, a3 € R with at least one (actually two) aj # 0 such that
a1yi + azy2 + azys = 0.

So dim (kerY') > 1, where Y is a 3 x 3 matrix with columns y;. Hence,

dim (spanY) = rank Y < 2. So take ¢ € (spany)™, then

b0} > 0 = '<”—”y>

since by assumption we know that |(b, yx)| cannot all be equal, hence cannot all

, VE,

equal zero.

Proof of Lemma 5.9: Case 2. y1,y2,y3 C S? are linearly independent.

Let Y be the 3 x 3 matrix whose columns are y;. Then Y7 is invertible. Let
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Figure 5.2: An example showing the points +cg, kK = 1,...,4, and
their relationship to the vectors y1, y2, y3. Note, yo lies on the plane with

vertices {c1, ¢, —c3, 4}

C1,...,c4 be the columns of the following matrix product
1 -1 1 1
I I B -
{Cﬁ C|2 C|3 C|4} = (Y") o -1 1, (5.13)
1 1 1 -1

see Figure 5.2. Notice that

| 1 | 1
a=0") "l =) | 1+ =+ 1
| 1 1 |-t

=cCtc3tcy
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Let ¢ € {c1,...,cq} such that ||c|| = max {||c1|[,- .., |lcal|}, and for j = 1,2,3, let

v; = ¢j41 — c1. Now set

3 3
Q:{cl—i—Zsjvj:sje[O,l]}, and O:{Cl+Z€jUj:6jE{O,1}}
=1 =1

Next, identify a point in C' with a vector (1, 9,£3). So, for example if
(e1,€2,e3) = (1,0,1), then v = ¢; + v; + v3. Then, observe that since ¢; =

¢a + ¢3 + ¢4, we have the following bijection between C' and {4c;, +co, +c3, +¢4 },

(0,0,0) «—
(1,0,0) «— ¢
(0,1,0) «— ¢
(0,0,1) «— ¢4
(1,1,0) «— —c4
(1,0,1) «— —cs
(0,1,1) «— —co
(1,1,1) «— —c

So ||c|]| = max {||¢]| : ¢ € C}.
Now, if
H={velR: |[(v,y)] <1fork=1,23}

then @@ = H. To see this, check both containments. First we note that (5.13)

with j = 2 implies

-1 e -1
YTy = 1| = |yley| = 1),
1 Ya e 1

ie., (y1,c2) = —1, (y2,c2) = 1, and (y3, c2) = 1. And similarly for the other c;.
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@ C H. Let v € @, then

3
|<U’yk’>|_ C1, Yk +ZSJ Ujayk

j=1 j=1
but
1-1, ifk=jy,
<Uj7yk> = <Cj+1 - Clyyk> =
—1-1, ifk#7y,

so [(vj, yk)| = |1 — 25|, and s, € [0, 1] implies 1 —2s;, € [—1,0], so |(v;, yx)| < 1

H C Q. Or equivalently, we show Q¢ C H®. Let v ¢ Q. Now vy, vy, v3 are the
image of (—2,0,0)7,(0,—2,0)T, (0,0, —2)T respectively under the transformation
(YT)fl, so {v1,v9,v3} is a basis for R3. Thus, there are unique s, s9, 53 € R3
such that

U — €] = S$1V1 1 SoU2 + S3V3.

So v = ¢1 + S101 + Sav2 + s3vs. Now because of the uniqueness of s;s, v ¢ @

implies there is a jo € {1,2,3} such that s;, ¢ [0,1]. Now |(v,y;,)| = |1 — 25|,

and
sjo ¢ [0,1] = sj, € (—00,0) U (1,00)
= —2s,, € (—00,—2) U (0, 00)
= 1—2sj, € (—o0,—1) U (1,00),
so |(vj,)] > 1, so v ¢ H, and we have shown both containments. O

Now to finish the proof of Lemma 5.9, let

‘<b7 ykb>| = maX{|<ba y1>’ ) |<b7 y2>| ) |<b7y3>|}7
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and set Ay, = (b, yx,). Then for any k = 1,2, 3,

(o)l = o < e =

SO /\% € Q. Now v € C implies {|(v, yx)| : kK = 1,2, 3} are all equal, so by the con-
trapositive of this implication, we see that the assumption, {[(b,yx)| : k£ = 1,2, 3}

are not all equal, implies /\% ¢ C. Thus we have shown )\% € Q\C. So by Lemma

5.7, ’ || < llell, hence b € S* implies
1 1 b
= o = = < e
& T 1 HAb e
and therefore
1 c
max {|(b,yx)| : k=1,2,3} = |\ > W = max{‘<w,yk>‘ k= 1,2,3}
c c

Thus we have proven Lemma 5.9

Thus to complete that proof of Theorem 5.8, we suppose U = {uy, ug, ug, ug}
is not equiangular. Because U is not equiangular, there is an m; € {1,2,3,4}

such that if kq, ko, k3 are the remaining indicies, then

1') max{‘<um17uk1>| ) |<um17uk‘2>| ) |<um17uk3>|} = MOO(U)

2.) [y k)| s | {Umy, gy )| 5 [ty , ks )| are not all equal.

Then applying Lemma 5.9 with b = w,,,, and {y1,y2, Y3} = {u,, Uy, uk, }, there

:i:1,2,3,}>max{‘<ﬁ,uki>‘ :2':1,2,3,}.
c

Let z,,,, = Te» See step 2 in Figure 5.3. Now since we have only moved the point

is a ¢ € R3 such that

max { ’ <um1 ) ukz)

U, tO Z,,,, the remaining correlations are uneffected since they do not involve
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0.5

0.5F

Figure 5.3: An example of the four steps in proving Theorem 5.8. A
number next to an edge represents the inner product of the two boundary

points of the edge.
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U, , thus
Moo (U) = max {|{(tm,, ug,)| i =1,2,3,}
> max {|(zpm,, uk,)| 11=1,2,3,} (5.14)
=«
Now either Mo, ({Zm,, Uy, Uy, Uks }) = @, Or there is an mo € {1,2,3,4} \ {m;}
such that if mq, j1, jo are the remaining indicies, then

L) Moo(U) = max {[(umy, wjp) | [ (s, o) [}

2.)  (Wmy, Ty )| 5 [ (Wmy, Wiy )| [(Umsy, uj,)| are not all equal, (5.15)
where (5.15) follows from (5.14). In this case we apply Lemma 5.9 to b = uy,,
and {y1,y2,ys} = {uj,, Ujp, Tm, }. So there is a ¢ € R? such that

maX {| (Unmy s T )| [ (U s w50) |5 [{ms w5) [ }
= max {|(tmy, w5, s [ (s w55) [}

c c
> _ _ .
ma"{‘<||cf|r’xml> <||cf||’““>
C/

Let z,, = , see step 3 in Figure 5.3. Thus

CI
Ngere )l
T

Moo (U) = max{|(umy, wj,)] s [{thms )|}

Y

> max {|(Tmy s T )| [(@mas w5 (T ) [} (5.16)

= o

Therefore (5.14) and (5.16) imply
Mo (U)

Ty Uji )] Ty Ujs )|
] el o) -

|<Im2’xm1>| ) |<1‘m2,Uj1>’, |<xm27uj2>|

= max{a,a'},
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because ji, jo € {k1, ko, k3}.

So either Mo, ({Zm,, Ty, Uy, uj, }) = max {a, o'} or else
Mg (U) = [tz 5]

In the latter case, (5.16) implies that |[(u;,, uj)|, (W), Tmi )| s [{Wj,, Tm,)| are
not all equal, so we apply Lemma 5.9 to b = u;,, and {y1, y2, Y3} = {Ujp, Ty s Ty, -

Thus there is a ¢’ € R3 such that

max{|<uj1,a:m1)| ) |<uj1amm2>| ) |<uj1’uj2>|}
- |<uj2’uj1>|

C// C// C//
>m“{wa%§Mwa“»wawaH‘ (5.18)

Let 2, = Hg—xll and let X = ., Tpny, Ting, Ujp,. Then (5.17) and (5.18) imply

Lm 7xm1 ’ Tm ’xm2 ) Tm 7U'2 )
Mo(U) > max 3 [mwEm)ls Kemes Zma)l s [m )|
|<xm27xm1>|7 |<xm27Uj2>|, |<xm17uj2>|

= Moo (X)

O]

Next we show that if a 4 element set is equiangular then the vectors are

parallel to the diagonals of a cube or 4 of the diagonals of an icosahedron.

Theorem 5.10. If uy, us, uz, ug € S* and [{(ug, w)| = a for k,1 € {1,...,4} with
k # 1, then

1 1
a=- or —
3

V5
Proof. Since sign changes and rotations do not effect inner products, let P be an

element of SO3 which rotates u; to d3, for k =1,2,3,4 let

e = sign (Pxy, d3),
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(wa, w3) (w2, ws)  (ws, wa)
case 1 Q@ « Q@ impossible
case 2 —a o a a=1/y5
case 3 —a —o o o= 1/\/5
case 4 - - - a=1/3

Table 5.3: Four main cases in the proof of Theorem 5.10.
and let @) € SO3 so that () fixes d3 and () rotates £, Pz to the positive xz-plane,
i.e (QepPxo,d1) > 0 and (QerPxg,d2) = 0. Then for k # 1
a = [{ug, w)| = [(exQPuy, ©1QPup)| = [(w, wy)]
where wy, = €,Q) Puy. Now by the choice of g, for k = 2, 3,4,
o = |<w17wk>‘ = <537wk‘> )
so the third component of wy, is . Also 0 = (J, ws), and wy € S?, so the first
component of wy is v/ 1 — a?. Therefore, we have
w; = (0,0,1)7
Wo = (V 1 _a2707a>T
w3 = (133’ Ys, a)T
wy = (24, ys,a)". (5.19)

Now we have four cases, see Table 5.3, where both case 2 and 3 have three

subcases which by relabeling can be reduced to the considered case.

Case 1. For k = 3,4, (wy, wg) = a implies

a—a?

11—«
€T, — ————— — (¥ .
g V1 —a? V1+a
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Then (5.20) and |Jwg|* = 1 implies

14+ a—2a?
Ye = 4/ 1o (5.21)

In addition (5.20) and (w3, ws) = « implies

«

N 5.22
Yz - Ya 1+ a ( )
Now combining (5.21) and (5.22), we have
1 — 202
AFeTE Y 90 2a-1=0 — a€eC,
I+« 1+a
hence case 1 is impossible.
Case 2. Now (ws, w3) = « implies
2
a—a
gy = - 5.23
S e 523
and (w9, w,) = —a implies
2
—a—«
gg= 2% 5.24
SV 524
and (5.23), and (5.24) imply
Y3 - ys = Q. (5.25)
Then (5.23) and ||ws||> = 1 implies
20 —a — 1 20+ 1)(a —1
Y5 = — _ o= 1), (5.26)
a+1 a+1
and (5.24) and ||wy]|* = 1 implies
20/ -1 20 — 1 1
2 = o’ +a  (2a—-1)(a+ ) (5.27)

a—1 N a—1
Finally, (5.25), (5.26), and (5.27) imply
1
—a?=Q2a+1)2a-1) = a=+—.
(2a+1)(2a-1) v

Since « is assumed to be positive, we have proven case 2.
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Case 3. For k = 3,4, (wy, wy) = —a implies

—a — a? 1+«
- = _— _ . 5.28
U= N1 a (5.28)

Then (5.28) and |Jw||* = 1 imply

20 +a—1_ (2a—1)(a+1)

2
= 5.29
Y a—1 a—1 ( )
So (5.28) and (w3, wy) = a imply
a — 3a?
Sy = 5.30
Y3 - Ya 1—a ( )
Now combining (5.29) and (5.30), we have
(2a — 1) (a+1) ) a — 3a?
a—1 Yy, Yz - Ya 1—a «@ \/57
and since « is positive, we have shown case 3.
Case 4. This is the same as case 3 except (w3, w,s) = a and (5.28) imply
ala+1)
Yy = —" 5.31
Y3 - Ya o —1 ( )
Now combining (5.29) and (5.31), we have
(2a—1)(a+1) 5 ala+1) 1
o Vi =YY= — a= g,
and we have proven case 4.
Hence we have proven the theorem. |

1

. 1
Now by Theorem 5.10, since = >

3 we see that the (4,3)-Grassmannian

bound is % which is also seen to be optimal by inspection.
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5.4 (5,3)-Grassmannian frames

We first introduce some ideas from convex analysis, [Pan93, Lay82, Web94].

Definition 5.11. A set A C R" is convex if for any x1,z, € A, and for any
A€ [0,1],

/\Il + (1 — /\)IQ c A.
A point x € A is an extreme point of A if whenever x = A\xy + (1 — \)xy, where

0< A< 1andx,z9 € A, then x = 21 = 5. Given a set A C R", the convex

hull of A is

m

Hull(A) = {Zijj D> N =LA >02,€ Ame N} .
j=1 j=1

There is the following relationship between extreme points, convex hulls and

convex sets, [KM40)].

Theorem 5.12. A nonempty bounded convex set in R? is the convex hull of its

set of extreme points.
We need the following 2 Propositions.

Proposition 5.13. Let N > d, let Y = {y;,...,yn} C STt C R%, and assume

span(Y) = R?. Let
Q= {v eRY: (v, )| <1, for k= 1,...,N}

and let C' be the set of extreme points of ). Then
1.) Q is a bounded conver set,

2.) If vy € C then there are at least d distinct ki, ..., kg € {1,...,N} such

that |{vo, yr, )

3.)1C| < (§)2? < .

=1fori=1,...,d,
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Proof of 1. First, to show @ is convex, let x1,z5 € ). Then for any A € [0, 1],

and for any k € {1,..., N},

[(Az1 + (1= ANz, yi)| < Az, ye)| + (1= A) (22, 90|
<A+ (1—\)

=1.

Next, we show @ is bounded. Now since span(Y) = R? Proposition 4.2
implies Y is a frame for R%. Let S be the associated frame operator, and A and
B be the lower and upper frame bounds respectively. Now S is invertible, so we

can set v; = S~1y; for j =1,... N. Then we have

1
loall = 15~ wsll < 157" hosll =

Now, for any z € R,

N N

=519z = Z (T, y;) Sfl(yj) = Z (2, ;) v;

j=1 j=1
Thus, given = € Q,

N

Z 2, 95| o]l = ZHUJI

b>-|2

]l =

N
2 (o),

O

Proof of 2. We prove the contrapositive. Assume |(vg,yx)| = 1 for less than d

vectors in Y, i.e, by relabeling, assume there is an m > 0 such that

[(vo,yk)| =1, for k € N with k <m,

(vo,yp)| <1, fork=m-+1,...,N.
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We now show that vy is not an extreme point by constructing z{,x, € ) with

x1 # x5 such that there is a A € (0, 1) for which
v = Az1 + (1 = A)ws.

Let Y = span {Y1,- -+, Ym}, where Y is empty if m = 0. Since by assumption

m < d, we have dim(Y) < d. Hence let z € Y- N S%1. Set
ﬁ:maX{K,UOuyk)’ : k:m+177N}
Then by the choice of m, we have 3 < 1. Now set

1-0 1-0
z, and a9 =1wvy—
2 2

Ty = Vg + Z.

Notice f < 1 implies |1 — 5] = (1 — B)||z]| = 1 — F > 0, hence z; # xs.

Furthermore if A\ = %, then

1 1— 1 11—
)\$1+(1—)\)$2:iﬂo—FTﬁz—i‘iUo—TﬁZ:’Uo.

Finally, we check that z; and x5 are in Q. For k =1,...,m,and [ = 1, 2,

1-0
[, 9| = [ (vo, i) £ —5— (=, 9x) | = [(vo, ye)| = 1
and for k=m+1,...,N,and [ = 1,2,
1—p
(21, yi)| = |{vo, yx) & — (2, yr)

< Ifwo, yidl + 52 e i)

1-p
<o+ 5 el
1
:Lﬁ 1.
2
Hence, vy € Q \ C. O
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Proof of 3. If vy is an extreme point then vy must satisfy at least d of the N
equations which define ). Therefore we count the number of ways we can pick
d distinct elements, yg, from Y to satisfy the d equations |(vg,yx)| = 1. There
are (]C\l[ ) d-element subsets of {1,..., N}, and because of the absolute value there
are two choices for the equation each vy can satsify, namely (vo,yx) = 1 or
(vo, yx) = —1. Note, if any one of the remaining N — d inequalities is not satisfied
by vg, then vy is not an extreme point. Which shows we can have less than (Z) 24

extreme points for a given arrangement of y;s. ]
Under the same hypotheses of Proposition 5.13 we have

Proposition 5.14. Let N, d,Y,Q, and C be as in Proposition 5.13, and let ¢ € C

such that ||c|| = max {||¢]| : ¢ € C}. Then for anyv € Q\ C,
[l < el

Proof. Let v € @\ C. Then there is a A € (0,1), and there are z1, 22 € @) with

x1 # x5 such that v = Azy + (1 — X\)zy. Consider the function f: R — R by
fOA) = Az 4+ (1 = A)zo|-

Now we check that f is continuous on R. Let Ay € R, let ¢ > 0 be given, and

choose § < = Then whenever IA — Xo| < 9, we have

2|
|F(A) = fQo)l = | [[Az1 + (1 = Az = [[Aoz1 + (1 — Aoz
< Az + (1 = N)xg — Nozp — (1 — N)oxa|
= [[(A = Ao)(z1 — 22)]
= A = Qo |21 — 22

<O |xy — x| < e.

103



Now set g(A) = f(X)% Then g()) is also continuous on R and

g(A) = Ay + (1= Nz

= N |21 [I” + 200 = N) (w1, 22) = 2(1 = A) [lan|”,
SO

9N =2\ 21" + (2 = 4) (w1, 25) — 2(1 = A) [la2®
= 2X (|11 + 2 (w1, w2 [|2al|*) + 2 (w1, w2) — 2 |o|”
= 2/\ ||l’1 — ZL‘2||2 + 2 <[E1 — X9, ZL‘2> s

and ¢'(A) =0 at

<$1 - 5U2,!L"2>

|21 — 172||2 '

x =

Furthermore, for all A € R
g"(\) = 2|z — 29]* > 0, (5.32)

so ¢ attains a minimum at A,, and for all A # A,, we have g(\) > g(\.). Now if
we restrict g to [0, 1], then g achieves its maximum and minimum on [0, 1]. Thus

if A\, € [0, 1], then by(5.32),

min g(A\) = g(A.) and max g(\) = max{g(0),g(1)}.

A€[0,1] A€(0,1]

If A\ ¢ [0, 1], then

Arél[(iﬂ]g(k):min{g(()),g(l)} and gﬁﬁ]g(k)zmw{g@),g(l)}-

In either case the maximum of g occurs at the at one of the end points. Further-
more at interior points, ¢ is strictly less that the maximum value.

Now since [|v]|* = g (\o) for some A € (0, 1), (5.32) implies

o] = g (M) < max g(A) = max {g(0), g(1)} = max {||z1]|*, [|z2]*} .
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Thus, we have shown that

v € Q\C = thereis an x € @ such that ||v|| < [|z| (5.33)
= ||v]| < max{||z|| : z € Q}. (5.34)
Now @ is a bounded closed set so by continuity of ||-||, the maximum norm is

achieved on @, but (5.34) shows that this maximum norm is not achieved on

@\ C. Thus
max {||z]| : * € Q} = max{||z||: x € C} = ||| .
so for any v € Q \ C we have, [|v|| < max{||z||:z € Q} = ||| O

Using these Propositions we can compute the (5,3)-Grassmannian bound.
Again we follow the basic geometric idea in [Tot65], but we use the propositions
above, which can be implemented as explicit algorithms, to reduce the correlation

of a given frame. To compute the (5, 3) case, we need the following two lemmas,

Lemma 5.15. Let U = {b,y1,v,93,94} C S? C R3, and let a = M (U).

Assume |(b,y1)| < a and |(b,y2)| < a. Then there exists a ¢ € R® such that

‘<”—CH,yk>‘ <a fork=1,234.
c

Proof. If both |(b,y3)| < a and |(b, y4)| < «, then take ¢ = b. Otherwise, without

loss of generality, assume |(b, y3)| = a. We have 2 cases:

Case 1. dim (span{y1,...,ys}) < 3.
Then similar to Lemma 5.9, choose ¢ € (span{yi, ... ,y4})L. Then by Theo-

rem 5.4

< ¢ > 0< 1 <
N0l g
el % NG
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Case 2. span{yy,...ys} = R3.
Let

Q={veR: |yl <Lk=1,...,4}

and let C' be the set of extreme points of ). Then by Proposition 5.13, @) is
bounded and convex and C' is finite. Let ¢ be a point in C' of maximum norm.

Then by assumption

b b b b
— U1 <17 — Y2 < ]-7 — Y3 :17 — Y4
(0% (6% (6% (8%

which shows that g can satisfy with equality at most two of the four equations

<1

which define (). Then by Proposition 5.13, g is not an extreme point of (). Hence
by Proposition 5.14,
1
o

«

< lel

Therefore, since ¢ € C' C @, we have |(c,yx)| < 1 and

c < 1 -
— — <
el /1 = Tell

for k =1,2,3, 4.
0

Lemma 5.16. Let U = {uy,...,us} be a (5,3)-Grassmannian frame, and let
a = My (U). Then for any j, there are distinct j1,j2,j3 € {1,...,5} \ {j} such
that

(uj, u; )| = fork=1,23.

Proof. We prove the contrapositive. By relabeling if necessary, without loss of
generality, assume [(uj,us)| < a and |(u1,us)| < a. We use Lemma 5.15 to
construct a new set W for which M (W) < «. This shows U is not (5,3)-

Grassmannian.
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First let b = u; and {y1,...,y4} = {uo,...,us} and apply Lemma 5.15. Then

there is a ¢; € R? such that

()

Second consider the set U := {uy,...,us}. We have two cases,

<a fork=2345.

Case 1. There exist jo, ko € {2,3,4,5} with jo # ko, for which [(u;,, ug,)| < c.
For ease in notation, by relabeling if necessary, we assume jo = 2 and ky =
3. In this case, we can apply Lemma 5.15 with b = wuy and {y1,...,m} =

{ﬁa Uusz, Uy, u5}, and construct ¢y € R3 such that

el [lea|]
Co
max{'<—,uk>‘ :k:3,4,5} <«
[lea]]

Now we can apply Lemma 5.15 to the remaining points and produce a frame with

and

strictly smaller co-correlation. Namely, since ‘<”§—”, U3>‘ < afori=1,2, we let

b=wuzand {yi,...,ys} = { R u4,u5}. Then, by Lemma 5.15, there is a

lleall” flezl”

’<& i>‘<o¢ fori = 1,2,
leall ™ [leill

max{'<i,uk>’ k= 4,5} < Q.
lles|

Finally, apply Lemma 5.15 one last time to b = u4 and

{ } { C1 Co C3 }
v leall” Tleall” llesll” ™ S 7

and obtain ¢4 € R for which

'<C—4, G >’<a fori=1,2,3,
[[eall” [les]]

c3 € R? such that

o

and
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and

()
-, U
leall’ ™

Thus, if we let W = { TR T ,u5}, then by construction, for any
lleall” Te2ll? Tesll? lleall

T

i,7 € {1,...,4}, if i # j, then we have <HZH’ ”%H>’ < « and <m,u5> < Q.
Hence,

Moo (W) < o= M (U),
so U is not (5, 3)-Grassmannian. This finishes case 1. O

Case 2. U is equiangular.

Since U has four elements, Theorem 5.10 implies o = 1/3 or a = 1/+/5. If

5:max{‘<||2—i”,uk>‘ : k:2,3,4,5}.

Thus by construction of ¢;, we have 3 < % and

4 L) cmax L gl = ]
s (e 20) =5 ) =5

but Theorem 5.4 with N =5 and d = 3 implies

IR

which is a contradiction.

a = 1/3, then set

Thus, a = %, and [(ur,u)| < «, for k = 2,3,4,5 and |(ug,u;)| = «, for
k#jand k,j e {2,3,4,5}.
We seek to find a contradiction. We can reduce to the following general

position by using rotations and sign changes as in Theorem 5.10. Thus, without
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loss of generality

where
and
D2
and
p3 =
and
b4 =

Therefore, if

uy = (0,0,1)"
us = (V1 —a2,0,a)"

Uy, Us S {p17p27p37p4} )

T
-« \/(1+2a)(1—a)
«
1+a’ 1+« ’

2 2 g
V1 —a?cos (%) ,V1—a?sin (g) ,a)

M=)
4

A:

cos(2w/5) —sin(27/5) 0
sin(27/5)  cos(2m/5) 0
0 0 1
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and pg = ug, then

AF (Do, D1, P2y D3, P1) = (Po(0)s Po(1)s Po(2)s Po(3)s Po(4))

where o(n) =n +k mod 5.
Now if we set 3 = |[(u,u2)| < «, then by changing the sign of u; if necessary

and since ||ui|| = 1, we may assume

U, = <\/1 — B2 costy,\/1 — ﬁQSint0,5>T,

for some fixed ¢y € [—m, 7). Hence |(u,us)| < a

— ‘\/1—042\/1—62008150—1-046‘ <«

— 1+75 < costy < ——m 175
COS
Vi—a?\/1- 3 ’ V1i—a?/1-
(1 1-p B 1 /140
1 1
— —[—L= | <t] < — —= . 5.35
cos (2 1+ﬁ) |to| < cos (2 1—5) (5.35)
vr(rﬁ) 7;(%)

We notice that

b1 — 2t if B = q,

15 5
1(B) =
?_751—:%7 lfﬁzoa
and
Lr _ir jff=a
15 53 )
72(@ =

te g0
and that % (72 —m) (6) > 0 for 8 € (0,), see Figure 5.4. Thus 3T < ~,(f) —
Vl(ﬁ) < ?_g? when ﬁ S [070-/)‘

Now fix a € [0, @), then,

o

Y2(8) <m(B) + R
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92-g1

13

12r

11

I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

dg2-dgl
14 T T

121

1
0.8r-
0.6
04r

0.2r-

0 I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 5.4: Top figure is the function v5 — 7;, bottom figure is the

d

%(72 — 71). We can see that the original function is strictly

function

increasing.

and for kK = 1,2, 3,4, we have
a > [(ur,pr)| = ‘<A_kU1,A_kpk>| = |<A_kul,po>‘ = |<A_kU1,U3>‘ ;
where
,k 27k _ ok g
A uy = | /1 — (B2 cos tO_T ,v/1— [32sin tO—T B

Therefore by (5.35),

27k

o5~

a> [(ui,pr)| <= n(B) < < 7(8), (5.36)

for k =0,1,2,3,4. These inequalities define ten intervals on the torus Ts,. If we
plot these ten intervals on Ts,, we see that no set of three of them overlap, see

Figure 5.5.
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0.4

0.2

_0.8 -

-1 -0.5
Figure 5.5: Ten intervals on T,

and py1,...,ps.

coreesponding to the points pg = usg,
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This can also be seen since

2k
o=~

2k 2w
to — T‘ <m(B)+ —

1(B) < 5

<7(B) = ()<

= to€ [y+eky+elk+1)U[—v+elk—1),—y+ck)

. J/ J/

P, Nk
where v = 71(0), € = %’r and k = 0,1,2,3,4. So Uj_,P; is a disjoint cover of

Tor \ [y — €,7), and Uj_,Niis a disjoint cover of Ty, \ [y + &, —7), so to can be
in at most two of the ten sets Py, Nj.

Now by assumption, |[(uy,us)| = |[(u1,po)] < . Also |{(u1,us)| < a and
|{(u1,us)| < a where uy, us € {p1,pa2, p3,p4}. Thus (5.36) implies ¢, lies in three
of the ten intervals represented in Figure 5.5. A contradiction. Thus U cannot

be equiangular.

O
Finally, using Lemma 5.16 we have,
Theorem 5.17. If U C S? C R? is (5, 3)-Grassmannian, then M, (U) = %
Proof. Let a = My (U), and consider the graph whose vertices are ug, ..., us,

and whose edges are defined as follows: for any pair of points uy,u; € U with
k # j, an edge connects u; and wu; if and only if |(uy,u;)| = a. We call the
number of edges emanating from a vertex wuy, the degree of uy, denoted deg (uy).
Then Lemma 5.16 implies that

5 5
Zdeg(uk) > 23 =15
k=1

k=1

but since each edge connects two vertices, the sum of the degrees must be an

even number. Thus at least one vertex u; must have degree 4, i.e., there is a
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Jj € {1,...,5}, such that [(uj,u;,)| = a for i = 1,...,4, where {ji, ja, j3,Ja} =

{1,2,3,4,5} \ {j}. By relabeling if necessary we may assume

|{(u1, ug)| = a for k = 2,3,4,5,

|{(ug, ug)| = a for k = 3, 4.

Furthermore, we can reduce to the general position used in Theorem 5.10, i.e.,

assume

u; = (0,0,1)
uy = (V1 —a2,0,a)"

U3z = (.’173, Y3, a)T

Ug = (.1'4, Ya, a)T

Us = (555,95,04)T-

Now we have 2 cases:

Case 1. |(us,uq)| = a.

Then the subset U = {uy, us, us, us} is equiangular, hence Theorem 5.10 im-

plies @ = % or % But just as in Lemma 5.16, a = % implies that
1 1
—=MyU) < —.
3 ) V6
1
SO o = ﬁ

Case 2. |(us, us)| < a. Then since each vertex must be of degree 3, we have that
|(ug, us)| and |(uy, us)| equal cv. Thus if we remove the absolute values, we have

the following four equations

(ug,uz) = +a, (ug,uq) = *a, (uz,us) = fa, (ug,us) = +a.
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This gives 2* = 16 possible cases. Of these 16 cases, 7 lead to contradictions and

the remaining 9 fall into 5 types but each implies that us, u4, us are three of the

(o /)
(o TR T2’

which are the positive endpoints on the remaining 4 diagonals of an icosahedron.

four points

Hence in each case, o = 1/\/5
O

The (5, 3)-Grassmannian frame is the first example of a non-optimal Grasm-

mannian frame since % > %. Hence, by Theorem 5.4, the (5, 3)-Grassmannian

frame is the first three dimensional example of a Grasmannian frame which is

not tight.

5.5 (6,3)-Grassmannian frames

The (6, 3)-Grassmannian bound can be calculated as a consequence of Theorem

0.4.

Corollary 5.18. If U = {uy,...,ug} C S? is (6,3)-Grassmannian, then

Mo (U) = 1/V/5.
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Proof. Set a = %, and consider the set W with vertices

oo L)
\/ (1+2a)(1—0¢)7a>T’

1+«

=
LIR
- =

l—«

%:(WZ,_W-?_x;way

Note that £W are the twelve verticies of an icosahedron. Now for k # [, we

T
1-20)(1+a) )
?a )

compute that |[(wy,w;)| = % Furthermore, by Theorem 5.4, if U is a 6 element

subset of S?, then

6—3 1
Moo (U) 2 (| 7 = —= = Moo (W
Thus W is a (6, 3)-Grassmannian frame. O

Notice the (6,3) Grassmanian arrangement is so good that when you remove
a vector from it, it remains Grassmanian, and when we remove two vectors from
it, it is still a local minimum of M. Conway has found that there are other
instances of this in higher dimensions, particularly when the symmetry group of

the frame has a large number of elements.
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5.6 Applications of Grassmanian frames to
communication theory

Frames have found many applications in communication theory because of the
natural redudancy and numerical stability of the frame reconstruction algorithm,
[SHO3, GKKO01, CK03]. Grassmannian frames have the potential of reducing the
losses associated with packet-based communication systems such as the internet.
By packet-based, we mean a communication system which transmits packets of
information of a certain length with the following error controling mechanism:
if the packet contains errors, then it is not delivered, i.e., the packet is erased.
This type of communication channel is called an erasure channel. For example,
if y € R? represents the information to be transmitted, and if X = {xk}ff:l is a
frame for R?. Then we send the coefficents {(y, z4)}r_, over the erasure channel.
The erasures can then be modeled as erased frame coefficients, or erased frame
elements. Thus we desire a frame with the property that if m elements are
deleted, the remaining elements still form a frame for R

Using our classification of (N, 2)-Grassmannian frames, we now give a brief
example to motivate why Grassmannian frames are amenable to erasure channel
applications.

Consider the following two frames for R2,
X = {(£1,0), (0, £1)}

and

Y = {(cos(wk/N),sin(rk/N)) : k =0,1,2,3}

see Figure 5.6. If exactly one of the elements of either X or Y is removed at

random, then both X and Y remain a frame for R?, in this case we say that both
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1 1
05 05
0 0
-05 -05
1 -1
185 1 05 o0 o5 1 15 185 1 05 o0 o5 1 15

Figure 5.6: The frames X (left), and Y (right). To model an erasure
channel remove two elements at random from X and Y. With X, the
remaining elements may not span R?, but with Y, the remaining elements

will still span R2.

X and Y are robust to 1 erasure. Now if 2 elements are erased from Y, then we
see that Y still remains a frames for R? since the remaining vectors are not scalar
multiples of each other. On the other hand, if both (41,0) is erased form X,
then the remaining vectors only span the y-axis. Hence Y is robust to 2 erasures,

whereas X is not.

5.7 Future research
Letd>2, N>d+1,and X = {z1,..., 2y} CS¥ L Fork=1,...,N, set
Qr={veR’: [(vy)| <1, forle{l,...,N}\{k}}

and let C) be the set of extreme points. Also, let ¢, be an element of C} of
maximal norm. Now, we consider the following replacement algorithm to reduce
the oo-correlation: as k cyclically ranges through the numbers 1,..., N, compute

the new Qg, Cg, and ¢, and set yp = ci. Hence after many interations of
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this replacement algorithm, since we are reducing the correlation at each step,
we expect our algorithm to converge to a local minimum of the function M.
Determining the speed of convergence and the value of M, on the limit set is a

topic for future research. See Figure 5.7 for an example of this algorithm when

N =4and d = 2.
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Step 1: Move 1, Use 2,3 Step 2: Move 2, Use 3,4 Step 3: Move 3, Use 4,1

2 2
0 0
-2 -2 -2
-2 0 2 -2 0 2 -2 0 2
Step 4: Move 4, Use 1,2 Step 5: Move 1, Use 2,3 Step 6: Move 2, Use 3,4
2 2
0 0
-2 -2 -2
-2 0 2 -2 0 2 -2 0 2
Step 7: Move 3, Use 4,1 Step 8: Move 4, Use 1,2 Step 9: Move 1, Use 2,3
2 2 2
0 0
-2 -2
-2 0 2 -2 0 2 -2 0 2

Figure 5.7: Applying the replacement algorithm cyclically to more than
3 points on S'. The empty circle is the point to which we are moving

the circled star.
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