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Generalized Harmonic Analysis and Gabor and Wavelet
Systems

John J. Benedetto

ABSTRACT. Wiener's Generalized Harmonic Analysis (GHA) is outlined and
exposited. As a powerful technology in applicable mathematics, GHA and its
ramifications are presented in the context of the uncertainty principle, as well
as Gabor and wavelet decompositions.
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1. Introduction

Wiener’s Generalized Harmonic Analysis (GHA) extends the classical L!, L2,
and Fourier series theories of harmonic analysis to the harmonic analysis of func-
tions which are neither periodic nor integrable or square integrable on Euclidean
space. In the process, GHA provides a mathematical theory to deal with a host of
applications which can not be fathomed satisfactorily by those classical methods.
These applications include the harmonic analysis of white light and fluctuating
voltages, the modelling of noisy systems with the goal of maximizing signal to noise
ratios, and the definition of an effective measure of optical coherence, e.g., [Bas84],
[Lee60], [Lev66], [Mas66], [Ric54].
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Section 2 contains an outline of Wiener’s GHA along with some recent devel-
opments. There is an emphasis on Wiener’s rigorous formulation of the notion of
autocorrelation, as well as on the Wiener-Plancherel formula, including an expla-
nation of its importance and its relationship to the classical Parseval-Plancherel
formula. Finally, background is provided for Wiener’s use of the power spectrum
in spectral analysis.

Our goal, after Section 2, is to relate Wiener’s ideas and methods from GHA
with subsequent developments in harmonic analysis. From this point of view, it
is natural to focus on Gabor’s theory of signal reconstruction from 1946, and, in
particular, on what we shall call his local spectral analysis [Gab46].

Section 3 describes the intellectual interregnum between Wiener and Gabor,
and highlights an exciting interleaving and interplay of their ideas concerning sig-
nal reconstruction formulas, irregular sampling, communication theory, and the
uncertainty principle. Even the sidebars are titillating. For example, Gabor’s local
spectral analysis was created during the same period he conceived of holography for
which he received the Nobel Prize in 1971. It turns out that holography depends
on the notion of coherent radiation, which stems from Wiener’s GHA (and which
Gabor duly acknowledges). Further, nowadays, it is not only meaningful to use
the Heisenberg group as a mathematical and unifying backdrop for Gabor’s signal
analysis [Ben89), [HL95], but also in studying holography [Sche90).

The Classical Uncertainty Principle Inequality is proved in Section 4, along
with an explanation of its use in Gabor’s theory of signal reconstruction and local
spectral analysis. Section 5 is devoted to the theory of frames, and provides what
might be considered efficient signal reconstruction formulas consistent with Gabor’s
ideas about local spectral analysis. In particular, in the spirit of Wiener’s point of
view, we address the relationship between Gabor’s theory and stationarity, as well as
the roles of short time Fourier transforms (STFTs), power spectrum computations,
and the use of spectrograms. We also define and compare Gabor and wavelet
decompositions. The material from Sections 4 and 5 leads to the discussion in
Section 6 of the Balian-Low theorem, uncertainty principle inequalities associated
with Gabor and wavelet systems, and a statement of Bourgain’s orthonormal basis
theorem in the context of such systems.

In Section 7, Gabor’s signal analysis from Sections 4 - 6 is integrated with a
raison d’étre of GHA, viz., the issue of extricating intelligent messages embedded
in noisy environments. Theorem 7.2 is a Gabor signal reconstruction formula for
L! which requires Wiener’s notion from GHA of mean total power. Finally, in
Section 8 we make a spectrogram analysis, in the spirit of Gabor’s local spectral
analysis, of fairly sophisticated biomedical data. This data and its analysis is
associated with Wiener’s interest from the 1930s of extracting information from
electroencephalograms by means of autocorrelation methods.

Our notation is described in Section 9. To begin the paper, however, we do
point out that integration over Euclidean space R4 is designated by “[” instead of

“fga”» and that we shall usually deal with the case d = 1.

2. Wiener’s Generalized Harmonic Analysis (GHA)

In 1930, Norbert Wiener [30a, Volume II, pages 183-324] proved an analogue of
the Parseval-Plancherel formula, || f||L2&) = ||fllLa(g), for 2 large class of functions
which is not contained in L2(IR) and whose elements need not be periodic. We refer
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to his formula as the Wiener-Plancherel formula, see (2.4). It is a fundamental result
in GHA. Wiener chose to have the formula appear on the cover of his autobiography,
I Am a Mathematician [56g].

Two precursors of Wiener on the subject of GHA, whose work Wiener studied,
were Sir Arthur Schuster and Sir Geoffrey I. Taylor. Schuster pointed out analo-
gies between the harmonic analysis of light and the statistical analysis of hidden
periods associated with meteorological and astronomical data. Taylor conducted
experiments in fluid mechanics dealing with the onset to turbulence, and formulated
a special case of correlation. A third scientist, whose work (1914) vis a vis GHA was
not known to Wiener, was Albert Einstein. Einstein writes: “Suppose the quantity
y (for example, the number of sun spots) is determined empirically as a function
of time, for a very large interval, T. How can one represent the statistical behavior
of y?” In his heuristic answer to this question he came close to the notions of au-
tocorrelation and power spectrum [Ein14], cf., commentaries by Masani [Mas86]
and Yaglom [Yag85].

The Fourier analysis of L!(R) or L%(R) or the theory of Fourier series were
inadequate tools to analyze the issues confronting Schuster, Taylor, and Einstein.
On the other hand, GHA became a successful device to gain some insight into
their problems, as well as other problems where the data and/or noises can not be
modelled by the Fourier transform decay, finite energy, or periodicity inherent in
the above classical theories, e.g., [Ars66, Chapter II], [Bas84], [Ben75, Chapter
2], [Ber87], [Ric54], [Wie76, Volume II], [33i], [49g].

DEFINITION 2.1 (Bounded Quadratic Means). The space BQM (R) of func-
tions having bounded quadratic means is the set of all functions f € L2 _(R) for
which

2
su dt < oo.
750 2T / “l
The Wiener space W (RR) is the set of all functions f € L (R) for which

0]

S di < oo

Wiener noted the second inclusion of the following result [33i, Theorem 20],
and each of the inclusions is elementary to verify.

THEOREM 2.2 (Inclusions for GHA).
L®(R) C BQM(R) C W(R) C §'(R),
and the inclusions are proper.

Inspired by Schuster’s periodogram analysis, and with the goal of eliminating
some of its weaknesses [30a, page 131], Wiener introduced what we shall call the
Wiener transform in [30a], cf., [Bri81], [Pri81] for periodogram analysis.

DEFINITION 2.3 (The Wiener Transform).
a. The Wiener transform (integrated Fourier transform) of f € WR) is defined
as the sum Wf = s = s; + s; where

—2mt'y -1
_—dt
/ f®) T omit
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and
e—21rat'y

s2(v) = /| IO

b. Since f € L![—1,1], we see that s; is continuous on R and |s;(y)] <
29| || fllz1[-1,1)- Since f € W(R), Theorem 2.2 and the Parseval-Plancherel Theo-
rem allow us to conclude that sy € L%(R). In particular, s € L2 _(R) N &'(R).

c. There is a natural analogue of the Wiener transform on RY and in this case
it is also true that s is an element of LIOC(R"’) N 8'(R9), see [BBE89, Theorem
3.5]. We mention this since in higher dimensions there are technicalities in proof
which can be simplified by using Wiener-amalgam spaces and the Bochner-Fourier
transform on such spaces, e.g., [FS85], [Ohk79].

By definition, the Wiener-amalgam space WP4(RR) consists of measurable func-

tions f on R for which
1/q
( > 1 I"dtl"/”) <o,

n=-00

with the standard adjustment in case p or ¢q is co. Wiener introduced this concept
by dealing with the space Sw(R) of continuous elements of W>:!(R), see [32a],
[33i].

The original conception and proof of Theorem 2.4 is in [30a], with further
developments in [33i]. Our distributional formulation, which is elementary, was
first proved in [Ben75, pages 88-89)].

THEOREM 2.4 (The Derivative of the Wiener transform). Let f € W(R). Then
f€S'(R) and
s=F,
where s € Lloc( )N S’I@) is the Wiener transform of f, and s’ is the (Schwartz)
distributional derivative of s.

DEFINITION 2.5 (Autocorrelation and Power Spectrum).
a. The autocorrelation R of a function f : R — C is formally defined as

70 = i g | Sows 0T

To fix ideas, suppose R exists for each t € R. It is easy to prove that R is positive
definite, and so by the Herglotz-Bochner 'I"\heorem R is the Fourier transform of
some bounded positive measure S € My (R), i.e., S = R. S is called the power
spectrum of f.

Notwithstanding its bearing on the notion of optical coherence mentioned in
Section 1, we shall not deal with the cross-correlation of functions f and g, but
refer to [K1a96] in this volume for a thorough treatment.

b. Since “power” equals “energy/time”, Wiener spoke of

1 (T )
R(0) = lim a7 | I (t)|"dt
as the mean total power of the signal f. Thls explains why S is called the power
spectrum of f, see [49g, pages 39-40 and 42].
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c. The usefulness of the autocorrelation R is that R(t) can be measured in
many cases where the underlying signal f is not given by a formula, but where the
graph of f is available as in financial or biomedical time series, cf., Remark 5.9 and
Section 8.

d. The discrete measure part of the power spectrum S characterizes periodici-
ties in f, e.g., [61c, Chapter X]. This fact is illustrated by taking

n
@) = Erke—%it}"‘, . €C, A\ € ]ﬁ
k=1

In this case the L2-autocorrelation [ f(u+t)f(u)du is not defined, but the autocor-

relation is easily computed to be 22=1 |7k |2e—2mit % Hence, the power spectrum
of fis

n
S = Z k|26, -
k=1

e. At the other end of the spectrum, so to speak, if f : R — C has the
property that | |lh=]i=] f(t) =0, then S = 0. It is elementary to construct examples
t|—=xoo
f for which S = 0 whereas limsup|f(t)| > 0, e.g., [33i, pages 151-154], [Bas84,
|

t|=+too

pages99-100], [Ben75, pages 84 and 87].

Given the definition of autocorrelation and power spectrum, it is natural to
ask if every S € M,y (R) is the power spectrum of some function f : R — C.
Wiener and Wintner [39c¢] gave the following positive response in 1939. There have
been subsequent significant contributions by Bass and Bertrandias, e.g., [Bas84],
[Ber87]. R. Kerby and I proved the d-dimensional version; one basic construction
is given in [Ben91a], and two others, which are quite ingenious, are contained in
[Ker90].

THEOREM 2.6 (Wiener-Wintner Theorem). Let S € My, (RY). There is a con-
structible function f € L (RY) such that

loc
1 _
R(t) = lim —— f(t+ u)f(u)du
O = 5% BN Sy T+
exists for all t € RY, and S = R, where B(T) = {t € R? : |t| < T}. Briefly, if
S € My, (R?), then there is a self-correlated f € L°.(R?) whose power spectrum is
S.

In order to prove the Wiener-Plancherel formula, Wiener required a Tauberian
theorem of the following type, see [30a, pages 141-152].

THEOREM 2.7 (Wiener Tauberian Theorem). Let g € L}(R) have a nonvan-
tshing Fourier transform and let ¢ € L™ (R). If

(2.1) lim g * o(t) = r/g(u) du,

t— 00

then

(2.2) Vf e L'(R), Jim £ ¥ o(t) = r/f(u) du.
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REMARK 2.8 (Wiener Tauberian Theorem).

a. Theorem 2.7 has the format of a classical Tauberian theorem, viz., a bound-
edness (or some other) condition and “summability” by a certain method yield
“summability” by other methods. In Theorem 2. 7, the boundedness or “Tauber-
ian” condition is the hypothesis that ¢ € L*°(R). The given summability is (2.1),
where g represents a so-called “summability method”. The conclusion (2.2) of
the theorem is summability for a whole class of summability methods, viz., for all
f € L'(R). A classical and masterful treatment of summability methods is due to
Hardy [Har49).

The particular functions used by Wiener to prove his Wiener Tauberian for-
mulas are found in [33i], [Ben75, pages 91-92).

b. Modern Tauberian theorems have a more algebraic and/or functional ana-
lytic flavor to them. For example, the Wiener Tauberian Theorem is a special case
of the fact that if g € A(R), T € A’(R), and TG = 0, then § = 0 on supp T'. In fact,
the generalizations of Theorem 2.7 are much more far reaching than this. [Ben75]
gives an extensive treatment of both classical and modern Tauberian theory, as well
as the history of the subject, and applications to spectral synthesis and analytic
number theory.

Signal f «— f=3s¢' s
Autocorrelation R=S +— S {%|Acs)?}
FIGURE 1

The Wiener-Plancherel formula is defined to be equation (2.4) of the following
result, cf., Figure 1 .

THEOREM 2.9 (Wiener-Plancherel Formula). Let f € BQM(R), and suppose
its autocorrelation R = S exists for each t € R.
a.
— 2 2 =2mity
(23 WeR, R =ligZ [|As()Pe
where Acs(y) = 3(s(v +€) — s(y — ¢€)).
b. In particular,

T

1 2y 2 ,
(2.4) Jim o [P d=tin2 [1asm) b

The original proof is in [30a] and more conveniently in [33i], cf, [Ben75].

EXAMPLE 2.10 (Related Formulas).

a. Because of (2.3) and assuming the setup of Theorem 2.9, the following
formulas are true under the proper hypotheses, e.g., [Ben75, page 90], [Ben91a,
page 847]:

(2.5) lim -2-|Aesl2 =S,
€—=0 €
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and
N 2 . 1 T 2
J e ase) = Jim o= [k o a
— 1 2 7 2
(2.6) =lim 2 [ KAl dv.

b. Formally, the second equality of (2.6) is (2.4) for the case k = 4. For
k € C.(R) the first equality of (2.6) is not difficult to prove, e.g., [Ben91a, pages
847-848).

REMARK 2.11 (Importance of the Wiener-Plancherel Formula). The Parseval-
Plancherel formula, || f|[z2(x) = Al La(R)> allows us to define the Fourier transform
of a square integrable function, e.g., [Ben96, Theorem 1.10.2]; and, at a certain
level of abstraction, this formula can be considered to characterize what is meant by
an harmonic analysis of f. On the other hand, for most applications in Euclidean
space, the Parseval-Plancherel formula assumes the workaday role of an effective
tool used to obtain quantitative results. It is this latter role that was envisaged for
the Wiener-Plancherel formula in dealing with functions not amenable to classical
harmonic analysis methods such as Fourier series or L! and L? Fourier transforms.

Schwartz’ theory of distributions gives the proper definition of the Fourier trans-
form of tempered distributions. Thus, since BQM(R) C S'(R) by Theorem 2.2,
the Wiener-Plancherel formula can only be viewed as a special case of Schwartz’
theory when it comes to generalizing the L' and L? definitions of the Fourier trans-
form. What we often need, however, are methods that are suitable for calculation in
cases where the Parseval-Plancherel formula does not apply. The Wiener-Plancherel
formula serves this purpose in a variety of applications. As examples of such appli-
cations, there is a host of problems which falls under the heading of an harmonic
(spectral) analysis of signals containing non-square-integrable noise and/or random
components, whether it be for speech recognition, image processing, geophysical
modeling, or turbulence in fluid mechanics. These problems can sometimes be at-
tached by Beurling’s profound theory of spectral synthesis [Beu89], [Ben75] or by
the extensive multifaceted theory of time series, e.g., [Pri81]. However, Beurling’s
spectral synthesis does not deal with energy and power considerations, i.e., qua-
dratic criteria, and time series relies on a stochastic point of view. On the other
hand, the Wiener-Plancherel formula Theorem 2.4 is intrinsically quadratic and
deals with such problems deterministically and quantitatively.

EXAMPLE 2.12 (Multidimensional Wiener-Plancherel Formulas).
a. The spherical Wiener Plancherel formula on RY is

. 1 2 . C(d, k)(27r)4k / 2
. m ——— = lim 22~ D d
(2 7) 7,11 |B(T)| E(T) lf(t)l dt )‘h (.Ud_l)\4k_d l A‘Sk(‘)’)l 7)

cf., [Ben91b] for a precise statement of hypotheses for the validity of (2.7). The
function s is the Wiener transform,

Ssz*Ekv

where AFEy = 8, wq_, is the surface area of the unit sphere 4_; in R, ¢(d, k)~ is
the L!-norm of a special function related to the Fourier transform of the restriction
of surface measure 41 to X4_1,

Dysp = s — Mysg,
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and M) is the spherical mean-value operator defined by
1
Mysi(v) = '-—/ sk(y + A0) dog—1(6).
Wd-1 Jx,_,

The integer k is related to the dimension d, and there must be control of the
quadratic means of f over spheres in order to verify (2.7).

b. In [BBE89], we proved a rectilinear version of (2.7), cf., [AKM80]. The
rectilinear result is easier to prove than the spherical one, although by no means
elementary. Also, in the case of “rectilinear geometry” the hyperbolic operator
010 .. .04 plays a major role, whereas the “spherical geometry” of (2.7) gives rise
to the elliptic operator A¥. This remark indicates there is a range of Wiener-
Plancherel formulas according to the number of degrees of freedom available in
various convergence criteria.

c. Asin the proof of the Wiener-Plancherel formula on R, Wiener’s Tauberian
Theorem is required to prove the rectilinear and spherical versions of the Wiener-
Plancherel formula on R% For example, in the rectilinear case [BBE89], we used
the dual of a Tauberian theorem associated with the space Sw (R?), which was
defined on R in Definition 2.8c. Sw(R?) is a particular Segal algebra, e.g., [Seg47];
and although Wiener provided the prototype Sw (R), it was Segal who noticed the
importance and generality of its underlying structure.

A Segal algebra S(R?) is a dense subalgebra of L!(R?) satisfying the following
conditions:

i. S(RY is a Banach algebra with norm ||---||s and the natural injection
S(RY C L}(RY) is continuous;
ii. S(RY is translation-invariant and there exist constants A, B > 0 such that

Vf € SRY) and Vt€RY A|lflls < lInflls < Bllflls;
iii. Vf € S(RY and Ve >0, 36 > 0 such that
vt € B(6), |Inf—flls <e

Segal algebras have bounded approximate identities, and every closed ideal
Is C S(RY) has the form 7N S(R%) where I is a unique closed ideal of L!(RY), e.g.,
[Rei68, Chapter 6.2].

ExAMPLE 2.13 (Topological Properties of the Wiener Transform). The space
BQM (R) is also called the Besicovitch space B3, (R). Further, in light of the
Wiener-Plancherel formula, it is natural to consider the space of functions g for
which

9 1/2
lgll = sup (— / |Aeg(7)|2dv) < oo
e>0 \ €

This space is the Besov space B2 (R). Chen and Lau [CL90] proved that the

2,00
Wiener transform is a topological isomorphism W : B oo(R) — B;(;(R), cf.,
[Hei96] for some extensions to other Besicovitch and Besov spaces.

3. In the aftermath of Wiener’s GHA

Our purpose in this section is to observe the emergence and interplay of ideas
from harmonic analysis in the spectral analyses of Wiener [30a] and Gabor [Gab46).
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Wiener’s GHA and, in particular, the Wiener-Plancherel formulas of Theo-
rem 2.9 and Ezample 2.10 provide a relationship between a function and its power
spectrum. Among its uses, GHA is a meaningful mathematical model for the spec-
tral analysis of signals f = s + n, where n € BQM (R) is some kind of noise and
where s is an “intelligent” periodic message.

In a communication system, the receiver records the data f(u); and a clas-
sical problem is to extricate s(u + t) from f(u), where n and sometimes s are
assumed to be stationary stochastic processes. If ¢ > 0, then the problem is a
particular prediction problem. Wiener solved the basic problem in 1942, and there
was an independent profound contribution by Kolmogorov [Kol41b], cf., [DM76].
Wiener’s solution [49g] involves optimal filtering in the context of minimizing qua-
dratic means of the type initiated in GHA [49g, pages 37-43], [49g, Appendix C by
N. Levinson]. Wiener proved that the minimization was equivalent to the solution
of a Wiener-Hopf integral equation of the first kind, which he then proceeded to
solve [49g, pages 60-64].

In his conception of a communication system, modeled after real problems with
which he was presented, Wiener began only with assumptions about prior informa-
tion that could be derived from measurements on the received signal f. Gabor has
given an incisive comparison of Wiener’s and Shannon’s approaches to the theory
of communication from the point of view of the optimal use of prior information
[Gab65), cf., [Ash65] for another comparison of Wiener’s and Shannon’s points of
view, as well as [Pro89] for an update on one aspect of the subject since the 1940s
to see how extensive its development has been.

Shannon’s own evaluation of Wiener’s contribution to communication theory
is encapsulated in the following [Sha49, pages 52-53]: “Communication theory is
heavily indebted to Wiener for much of its basic philosophy and theory. His classic
NDRC report [49g] contains the first clear-cut formulation of communication theory
as a statistical problem, the study of operations on time series. This work, although
chiefly concerned with the linear prediction and filtering problem, is an important
collateral reference in connection with the present paper”.

In a different stream of thought in this same area, Gabor introduced the notion
of a local spectral analysis in his fundamental paper, “Theory of communication”
[Gab46), cf., Remark 4.5 and Remark 5.9. His work was inspired by developments
in quantum mechanics as well as signal analysis, and it provides a phase-space
analysis of “information” and the transmission of information by, for example,
speech or television, cf., [Pie65, page 43] concerning Gabor’s omission of noise
analysis. Gabor’s key idea revolved around the Classical Uncertainty Principle
Inequality (Theorem 4.1) and a method of signal decomposition depending on this
inequality.

For now we want to emphasize the ideas from harmonic analysis in Wiener’s
and Gabor’s work, more than their contributions to any particular application such
as communication theory. For example, Gabor’s signal decomposition mentioned
above and formulated in (4.10) can be considered a special type of frame decom-
position; and the theory of frames is discussed in Section § from the point of view
of harmonic analysis.

It turns out that the Classical Sampling Theorem (Shannon Sampling Theorem
[Sha49, pages 50 and 53-54]) is a particular case of a wavelet (multiresolution)
decomposition [Dau92] as well as of a Gabor frame decomposition in the case of
regularly spaced sampling points [Ben92, Theorems 25 and 26, proved jointly with
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W. Heller], cf., the sampling formulas documented in [Boa54] and first formulated
in the 19th century.

In the case of irregularly spaced sampling points, the theory of frames is also
used to prove sampling theorems [Ben92, Section 8, containing results proved
jointly with W. Heller]. The mathematical background for these theorems origi-
nates from results of Wiener [27¢] and of Paley-Wiener [34d, Chapter VI] on the
completeness of exponential sequences {e2"*»7} in L2[—(Q, ©]. Their work was fol-
lowed by the penetrating analysis of Levinson [Lev40], and by the fundamental
paper of Duffin and Schaeffer [DS52], which we shall discuss in Section 5, cf., the
comparably important contributions by Landau [Lan67). A milestone on the com-
pleteness problem was attained in the profound theorems of Beurling and Malliavin
[BM62], [BM67].

Not only are the frame theoretic outgrowths of Gabor’s decompositions ulti-
mately related to some of Wiener’s ideas (about completeness) but, in implementing
the Classical Uncertainty Principle Inequality ( Theorem 4.1), Gabor broached on
another subject close to Wiener’s heart. In [56g, pages 105-107], Wiener discusses
his analysis from 1925 of the complicated interaction of time and frequency in music,
cf., related musical interpretations of the uncertainty principle in [Ben96, Remark
1.1.4] and [dBr67]. It was apparently during this period, at a lecture he gave in
Gottingen, that Wiener first presented Theorem 4.1 of the next section [Bar68,
page 168], [Bar70].

4. The classical uncertainty principle and Gabor’s idea

An uncertainty principle in harmonic analysis has come to mean a formula, or
inequality, or quantitative expression relating the behavior of a function, such as
decay or support, with that of its Fourier transform [Ben90], [BF94, Chapter 7.6],
[HJ94], [Pric85, pages 25-44 and 149-170).

For example, if f € L2(R)\{0}, then f and f cannot both have compact sup-
port. The proof of this assertion is elementary. In fact, if f has compact support
then f(z) = [ f(t)e~?™*2dt, » € C, is an entire function; and so if f(v) is zero on
a subinterval of R then f is identically zero. Slepian [Sle76] has written a cele-
brated paper starting with this particular uncertainty principle, and addressed the
question of whether or not real signals are really bandlimited. In related earlier
work, Landau, Pollak, and Slepian of Bell Laboratories [PS61], [LP61], [LP62],
[Pric85, pages 201-220] dealt with the problem of quantifying how close both a
function f and its Fourier transform f can be to having compact supports. For
fixed T, > 0, they defined

_ U i@pagi o (T
[/ 2Y ! Iz e)

Clearly, (ay, ;) € [0,1] x [0,1], and we just proved that there is no f € L2(R)\{0}
for which (ay, Bs) = (1,1). One of the “Bell Labs Theorems” characterizes a region
R C [0,1] x [0, 1] with the property that if (o, ) € R then there is f € L2(R) for
which (Cl!, ﬂf) = (a) B).

The following result is the harmonic analysis uncertainty principle mentioned
at the end of Section 8in conjunction with Wiener’s interests and Gabor’s “Theory
of communication”. It asserts that a function and its Fourier transform cannot
both be “concentrated” at any given pair of points to € R and v5 € R. We refer to

Vf e LR), o
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Theorem 4.1 as the Classical Uncertainty Principle Inequality, and, in the context
of quantum mechanics, it is also called the Heisenberg uncertainty principle, e.g.,
[Wey50, page 77].

THEOREM 4.1 (The Classical Uncertainty Principle Inequality). Let (to,70) €
R x R. Then
@1)  VFeI2®), Ifam < 47llt — )@ leo@ll(y = ) T2,
and there is equality in (4.1) if and only if f is of the form
(4.2) go(t) — Ceznit'yoe-—s(t—to)z,
for any C € C and s > 0.

PROOF. i. The mapping f(t) — f(t + to)e~2" shows that it is sufficient
to verify (4.1) and (4.2) for (to,70) = (0,0).
ii. Let f € S(R). For each t € R we have

(4.3) (IF @) < 20£@) f @)1
The desired inequality (4.1) for (t0,70) = (0, 0) is a consequence of the following
calculation:
2
W) = </t (@)’ dt)
. 2
<4([1r@r i)
(4.4)

<4 [uspa [ 1roFa

= 1627 [ fer(o) e [ wiepa.

The first equality of (4.4) follows from the integration by parts formula, the first
inequality results from (4.3), the second inequality is Hélder’s Inequality, and the
second equality of (4.4) is a consequence of the Parseval-Plancherel Theorem and
the fact that (f/)(y) = 2miyf (7).

iii. Clearly, the inequality (4.1), for the case (to,v0) = (0,0), is valid for all

f € L*(R) for which V; = max(|[tf(t)||L2(r), H'Yf("/)“u(n’i)) = o0o. If V; < oo, then
it is possible to choose a sequence {fn : n = 1,---} C S(R) such that

(4.5)
lim max (|If = falla@), 1K(0) = fa@)lzam), () - iy =0,

e.g., [Ben90, Appendix A}, thereby attaining (4.1) from parts 1 and 1.
iv. Let o(t) = Ce=*t", s> 0. It is elementary to compute

: 1/2
N LARS _ m\M2 1
lpllZam = 1CF (52) *» lte@llzem) = IC] [(5;) R

1/2
- 25\ /% 1
18z = IC] [(;) g;r-] ,

and
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e.g., [Ben96, Chapter 1]; and thus equality is obtained in (4.1) by Gaussians of the
form in (4.2).

In order to prove that Gaussians are the only equalizers of (4.1) in the set
{f € LY(R) : V; < oo}, we first note that there are differentiability properties of f
inherent in the condition V; < oo, e.g., Remark 4.2a. These properties allow us to
modify the proof of (4.4) to deal with the general case in which V; < oo, cf., the
approach in part .

Taking f for which V; < oo, and assuming equality in (4.1), we can then use
the criterion for equality in Holder’s Inequality as applied to the modified version of
(4.4). This criterion yields an elementary differential equation whose only solutions
are of the form (4.2). O

REMARK 4.2.

a. In outlining the proof that Gaussians are the only equalizers of (4.1), we
alluded to differentiability properties of f € L?(R) in the case V; < oco. What
we mean is the following fact [BHW95, Theorem 5.2]: if f € L%(R) then its
distributional derivative f is an element of L2(R) if and only if vf(7) € L2(R); in
this case, f is locally absolutely continuous, the ordinary pointwise a.e. derivative
equals df a.e., and

05(t) = (2mirf()" ().
This elementary result is also used in our analysis with Heil and Walnut of the
Balian-Low Theorem [BHW95, Sections 5 and 6], cf., Section 6.

b. The ingredients of (4.4) are integration by parts, Holder’s Inequality, and
the Parseval-Plancherel Theorem. Integration by parts can be generalized to var-
ious Hardy inequalities, and the Parseval-Plancherel Theorem can be generalized
to various weighted Fourier transform norm inequalities. The results of these gen-
eralizations are weighted extensions of (4.1), and they are due to Heinig and the
author, e.g., [Ben90], [BF94, Chapter 7.8]. Related weighted uncertainty principle
inequalities, as well as local uncertainty principle inequalities, are due to Cowling,
Faris, and J. F. Price, e.g., [Pric85, pages 31-33].

In light of the relevance of Theorem 4.1 in quantum mechanics, as well as the
operator theoretic formulation of many ideas from quantum mechanics [VIN55], we
state the following version of (4.1).

THEOREM 4.3 (Operator Theoretic Uncertainty Principle Inequality). Let A, B
be self-adjoint operators on a complex Hilbert space H, where A and B need not
be continuous. Denote the domain of A by D(A), and define the commutator
[A, B] = AB — BA as well as the quantities

Yz € D(A), E:(A)= (Az,z)
and
Vo € D(A?), 02(4) = Ba(A?) — {Ea(4)}2.
If z € D(A?) N D(B?) N D(i[A, B]) and ||z|| < 1, then
(4.6) {Ex(i[A, B])}® < 402(A)0Z(B).

See [BF94, Theorem 7.32] for a proof and [VN55, pages 230-247] for von Neu-
mann’s original presentation.
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Inequality (4.1) is a corollary of Theorem 4.8 for the case H = L?(RR), where

the operators A and B are defined as
AU = - )F ()
and
B(f)(t) = i(2mi(y = v0) f(7)" (1)-

DEFINITION 4.4 (Variance and the Uncertainty Principle).

a. If f € L*(R) and ||f||z2(x) = 1, then the ezpected values associated with |f]?
and |f|? are

= [dsPat and 5= [1FwPay,

respectively; and the variances associated with |f|? and |]f‘\|2 are

stt= [ 0lOPa sd oty = [(r- 971 )Fan

respectively.

If |f|? is the probability density function of a random variable X, then
o2t is precisely the usual probabilistic notion of the variance 6% of X. It is in
this context that the quantities E;(A) and ¢2(A) of Theorem 4.9 are defined, see
[BF94, Example 7.33], [Ben96, Section 2.8].

c. For a given s > 0, choose any C € C for which |C|? = (2s/7)!/2. Then, for

any (to,v0) € R x R, ¢ defined in (4.2) has the properties that llellaw) =1,
ar|(t — to)e(t)l|Z2(m) = 7/ and 4n|(y = %) BN 72 g5) = 5/7-

In light of part a, we introduce the notation

(4.7) oty = 4x||(t — to)p(®)||72 w)
and
(4.8) o’y = 4m||(y — 70) &( )”L2(IK)’

so that o%t, and o2, are independent of ¢ and <o, and, in fact,
T

0%ty = — and o%y, = i

s

Hence, the case of equality in Theorem 4.1 can be written as
(4.9 1 =o%,0%,,

independent of the pair (to,v0) € R x R chosen in the definition of ¢. It should
also be pointed out that the numbers to and 7o are not necessarily expected values
in the definitions of o2t, and o2%,.

REMARK 4.5 (Gabor’s Idea).

a. Using Theorem 4.1 and the terminology of Definition 4.4, we shall expand
on our remarks from Section 8 on Gabor’s paper [Gab46] in which he formulated
a fundamental method for obtaining signal decomposition in terms of “elementary
signals”. For reasons related to the Classical Uncertainty Principle Inequality (4.1),
e.g., part ¢, Gabor chose as his sequence of elementary signals the Gaussians ¢ of
(4.2) for a prescribed sequence of time-frequency parameters (to,v0) € R x R. His
basic idea is encapsulated in his statement that
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“The elementary signals. . .assure the best utilization of the infor-
mation area in the sense that they possess the smallest product of
effective duration by effective frequency width”[Gab46, page 437].

b. Gabor’s approach required a tiling of the time-frequency plane R X R by
half—open rectangles Runn centered at (no’t,,mo?y,) € R x R, where o%¢, and
02, are defined in (4. 7) and (4.8), and where n,m € Z. In order that the tiling
consist of non—overlappmg rectangles, the length of each R, , is 0%t, and its width
(height) is o2,

For each rectangle R, n, Gabor associated the Gaussian

(4.10) gmn(t) = 2mitmo®ye g=s(t-no?t.)’

which is the function ¢ of (4.2) for the pair (%o, 70) (na ts, mo2+,). By computing
gm n, we see that each g, n is “concentrated” in Ry, 5 in the sense that gm n, resp.,
Jm,n, is small outSIde of an mterval centered at n02t and of length a’zt,, resp.,
centered at mo2y, and of length o2+,. The extent of concentration in the time or
frequency direction depends on the value of s > 0.

He then derived signal decompositions of the form

(4.11) =Y cmagmn,

from which he could conclude that each coefficient ¢, , contains the amount of
“information” in f determined by the subset Ry, n of the time-frequency plane, cf.,
von Neumann’s decompositions in [vVIN55, pages 405-407).

c. The reason Gabor chose {gm n}, and hence the tiling { Ry n}, was because of
Theorem 4.1 and equation (4.9). From his point of view, the product of temporal
and frequency variances was a natural notion of “information area (his term from
the quotation in part a) with which to construct a tiling of R x R. Further, because

o2t,02, is the smallest such area, he chose {gmnn} as the sequence of “harmonics”
n (4.11). In fact, each tile Ry pn of the time-frequency plane should be sufficiently
localized in time and frequency so that smaller subtiles are not required in order to
glean any more variance information from f than is available from the coefficient
Cm,n-

d. Gabor’s idea has been the inspiration for a plethora of time-frequency analy-
sis studies. His use of the Gaussian in signal decomposition has been the wellspring
for many ideas, some of which argue convincingly against its effectiveness, see Sec-
tion 6.

5. Gabor and wavelet frames

Let H be a separable complex Hilbert space with inner product (z,y) and norm
llz| = (=, 2)!/2.

DEFINITION 5.1 (Bases).
a. A sequence {z, : n € Z%} C H is a Schauder basis or basis for H if each
y € H has a unique decomposition y = Y ¢a(y)zn in H, where {cn(y)} C C.
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b. A basis {z,} for H is an unconditional basis for H if

3C > 0 such that VF C Z4, finite, and V{bj,c; : j € F} C C,
where [b;j| < |c;| for each j € F, we have

| Cner bnznll < Cll Ener cnenll-
An unconditional basis {z,} C H is bounded if

JA,B >0 such that Vn € Z% A <||z.|| < B.

c. It is well known that separable Hilbert spaces have orthonormal bases
(ONBs) [GG81]; and it is elementary to see that ONBs are bounded uncondi-
tional bases.

DEFINITION 5.2 (Frames).
a. A sequence {z, : n € Z% C H is a frame for H if there exist A,B >0 such
that

(5.1) vy e H, Allyll® <> Iy,za)* < Bllwll*.

A and B are the frame bounds, and a frame is tight if A = B. A frame is exact if
it is no longer a frame whenever any one of its elements is removed.

b. The frame operator of the frame {z,} is the function S : H — H defined as
Sy =3 (y,zn)zs forally € H.

c. The theory of frames is due to Duffin and Schaeffer [DS52], cf., [You80],
[DGMS86], [Dau92], [BF94, Chapter 3]. An exact frame is a bounded uncondi-
tional basis and vice-versa, e.g., [You80].

THEOREM 5.3 (Frame Decomposition Theorem). Let {z : n € Z% C H bea
frame for H with frame bounds A and B.

a. The frame operator S is a topological isomorphism with inverse S1:H->
H. {S~'z,} is a frame with frame bounds B-1 and A~!, and

(5.2) VyeH, y=3 (4,5 2a)tn =Y (¥,20)S 'an in H.

b. If {zn} is a tight frame for H, if ||zn]| = 1 for alln, and if A= B = 1, then
{zn} is an orthonormal basis for H.
c. If {z,} is an ezact frame for H, then {z,} and {S~'z,} are biorthonormal,
i.e.,
Vm,n, (m, S 'zn)=4d(m,n),

and {S~'z,} is the unique sequence in H which is biorthonormal to {zn}.

d. If {z,} is an ezact frame for H, then the sequence resulting from the removal
of any one element is not complete in H, i.e., the linear span of the resulting
sequence is not dense in H.

REMARK 5.4 (Frames and Coherent Light: an Analogy).
a. If {¢, : n € Z%} is a frame for H with frame bounds A and B and frame
operator S, then it is easy to see that

2 B-A

—A+BSIIS <1
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where I : H — H is the identity operator. The inequality (5.3) allows us to prove
that

2 & 2
-1 _ _“ e k
§ 'A+BkE=O(I A+BS)’

which, in turn, can be used to prove part a of Theorem 5.38.
We also mention (5.3) because of the notion of visibility V, which is defined as

Imax — Inin
v Inax + Inin ’
where Imax and Ipin are maximum and minimum light intensities, e.g., [K1a96].
In the case of full interference of light waves (for the classical two-slit experiment),
one has Iin = 0; and, hence, the visibility is 1, a value associated with coherent
light. In the context of frames, the analogy is that A = 0, so that a frame is not
obtained.
b. The proof of Theorem 5.3 can be found in [BF94, Chapter 3]. A strong
form of Theorem 5.8b was originally proved by Vitali (1921), see [Ben92, pages
455-456] for details.

THEOREM 5.5 (Characterization of Frames).
a. A sequence {z, :n € Z% in H is a frame for H with frame bounds A and
B if and only if the mapping

L:H — £(zZ9
y — {(v,2a)}
is a topological isomorphism of H onto a closed subspace of £2(Z9). In this case,
ILIl < BY? and ||L71|| < ATV2,

where L~! is defined on the range L(H).
b. A sequence {z, : n € Z% in H is a frame for H if and only if thereisC >0
such that forally e H

El(y, mn>l2 < 00,

e, = cp € £2(Z%), such that y = Tenzy in H,
and
lleyllezqzay < Cllyll-

Part a of Theorem 5.5 is proved in [BF94, Theorem 7.15]; and part b, which
we observed with David Walnut, is proved in [BF94, Remark 3.9].

DEFINITION 5.6 (Gabor and Wavelet Systems).
a. Let g € L(R) and let a,b > 0. The Gabor system for g and (a,b) is the
sequence {@mn : (m,n) € Z x Z}, where
Pm.n(t) = €278 g(t — na) = emb(t)Tnag(t),

and where e, (t) = 2™ and Tg(t) = g(t — 2).
b. Let 3 € L*(R). The affine system or wavelet system for 1 is the sequence
{¥mn : (m,n) € Z x L}, where

"/)m,n(t) = 2m/2 ,‘/)(th - n).



GHA AND GABOR AND WAVELET SYSTEMS 17

c. The Fourier transforms of ¢ n and ¥m , are easily computed to be

2minamb —2minay
e g

Pma(y) =e v = mb) = Ty (€-nad)(7)

and
Bmn(7) = 27126720012 g (3 /2m) = 272 (e ) (v/27).
d. Let H = L*(R), g € L%(R), and a,b > 0. If the Gabor system {¢m } for g
and (a,b) is a frame, then it is a Gabor frame.
Let H = L%(R) and ¢ € L?(R). If the wavelet system {1, »} for 9 is a frame,
then it is a wavelet frame.

EXAMPLE 5.7 (Decompositions from Various Fields).

a. In [Gab46], Gabor used the Gabor system {pmn}, where g € L?(R) is
the Gaussian g(t) = e=**", s > 0, and where (a,b) = (¢%t,,027,). The variances
o2t, and o024, were defined in Definition 4.4, and Gabor’s functions ¢, were
the functions g, n of (4.10). He then developed decompositions (4.11) which have
inspired the theory of Gabor frames, e.g., [Dau92], [BF94, Chapter 3], [HW89].

b. A wavelet is a function ¥ € L?(R) for which the wavelet system {¥m n} is
an ONB for L2(R). The first wavelet ONB for L#(R) is due to Haar (1910), who
made the construction for L2[0, 1], cf., [Dau92] for L?(R). The Haar wavelet is

1, if 0<t<1/2
Yp(t)=¢ -1, if 1/2<t<1
0, otherwise.

There were related functions introduced by Rademacher, Walsh, and Franklin
through the 1920s, e.g., [Hig77]. (Philip Franklin was Wiener’s brother-in-law.)
Stromberg [Str83] constructed a modified Franklin system and other spline sys-
tems used as unconditional bases for HP-spaces. The work of Ciesielski, Carleson,
and Maurey on H! immediately precedes Stromberg’s.

Compactly supported n-times continuously differentiable wavelets were con-
structed by Daubechies in 1987, see [Dau92]. During the same period Mallat
and Meyer introduced the concept of multiresolution analysis (MRA) which is fun-
damental for wavelet decompositions [Mal89], [Mey90]. MRAs had important
theoretical and practical precedents in the fields of speech and image processing,
which use notions such as quadrature mirror filters and Laplace pyramidal schemes,
e.g., [VK95].

The Walsh functions (1923) mentioned above give rise to so-called wavelet
packet decompositions, which were introduced by Coifman, Meyer, and Wicker-
hauser, e.g., [CMW92].

c. Calderén’s formula (1964)

(54) s = [ ([otu-vvr s0a)
where 1, (u) = (1/5)¥(u/s), is a continuous wavelet transform of f € L?(R), where
¥ € S(R) is real and even, is supported by [—1, 1], and satisfies I b(y)2dy/y =1,
e.g., [FIW91]. The function f is represented by the double integral on the right
side of (5.4) instead of the double sum of part b. The ONB {ty, »} of dilates and
translates of part b is replaced by the “redundant” system {¢,(-—t) : s > 0, t € R}
of dilates and translates.

d. Let H = L?[-Q,Q] and let {t,} C R be a sequence of distinct points.
The sequence {27} C L?[—Q, )] is a Fourier system, and results of Duffin and
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Schaeffer, H. Landau, and S. Jaffard allow a characterization of Fourier frames in
terms of a density condition, e.g., [BF94, Theorem 7.44]. Fourier frames are useful
in the design of auditory models for the purpose of speech compression [BT93],
and in irregular sampling theory, e.g., [BF94, Section 7.7] which includes results
we proved with William Heller.

DEFINITION 5.8 (Short Time Fourier Transform (STFT)). Let g € L*(R) and
define

Vf € L2(R) and V(t,7) € Rx R, Sy(£,1)(7) = /f(U)E(?_——t)e‘z"‘“Vdu.

If g is concentrated at the origin in some well-defined way, e.g., if g = 1[—1,1], then
Sy(f,t) is the short time Fourier transform (STFT) of f at t € R depending on g.

REMARK 5.9 (Gabor Systems and Spectrograms).

a. Suppose g € L2(R) is the Gaussian and {pm,n} is a Gabor frame for g and
(a,b). Then the coefficients of {¢mn} in the definition of the frame operator S
operating on f € L?(R) are precisely the values S,(f, na)(mb) of the STFT.

b. If g € L%(R) and the Gabor system {¢m,n} for g and (a,d) is an ONB, then
for each f € L%(R),

f=3 S4(f,na)(mb)pmn-

c. Even though a Gabor system {¢m n} for a given g € L?*(R) and (a, b) is not
necessarily an ONB, parts a and b show that the sequence

{1Sg(f, na)(mb)| : (m,n) € Z x Z}

of amplitude data provides important information in characterizing signals f €
L3(R). This data can be represented by gray-scale values for each point (na, mb)
of the time-frequency plane. This representation is a spectrogram, e.g., Figure 8 of
Section 8.

d. Historically, a rationale for spectrograms comes from the periodogram anal-
ysis mentioned in Section 2 as well as from the idea behind Michaelson’s interfer-
ometer, e.g., [Ben96, Sections 2.8.6-2.8.10].

We now define the notion of a stationary sequence in order to make a distinction
in Ezample 5.12 between Gabor and wavelet systems.

DEFINITION 5.10 (Stationary Sequences). A sequence {z, : n € Z%} C H is
stationary if for each n € Z¢ the inner products

R, = (xn+k7 zk)
are independent of k € Z¢. In this case, R = {R,} is the discrete stochastic
autocorrelation of {z,}, cf., [Kol41a]. The Fourier series S, defined by S R,e?miny

and denoted by RV = S, is the power spectrum of {z,}, see [Ben96, Chapter 3]
for Fourier series. In this case, we also write S = R.

The following result is a fundamental property of stationary sequences. Part
b can be viewed as a stochastic version of the Wiener-Wintner Theorem (Theorem
2.6).

THEOREM 5.11 (Khinchin-Kolmogorov Theorem).
a. Let {x, : n € Z%} be a stationary sequence having discrete stochastic auto-
correlation R. Then RY = S is a positive measure on T%, i.e., S € M (T9).
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b. Let S € My (T¢). Thereisa stationary sequence {Tn : 1 € 7%} with discrete
stochastic autocorrelation R for which S = R.

Part a of Theorem 5.11 is a consequence of Herglotz’ Theorem, e.g., [Ben96,
Chapter 2). Part b was proved by Khinchin (1934) on R, by Wold (1938) on Z,
and by Kolmogorov in terms of stationary sequences [Kol41a], cf., [Pri81, pages
921-222]. Theorem 5.11 is sometimes called the Wiener-Khinchin Theorem, but
this is a misnomer. In fact, Wiener began using Theorem 5.11 as such only after
1950.

EXAMPLE 5.12 (Stationarity and Gabor Systems).

a. Let g € L*(R) and let a,b >0, and consider the Gabor system {emn}- If
ab = 1, then the sequence T : 7. x 7, = H = L*(R), defined by Tmn = Pmyn, 15 @
stationary sequence. In the case of frames, note that {pm,n} is exact for the case
ab=1.

b. If ¥ € L%(R), the wavelet system {¥mn} is not stationary.

6. The classical uncertainty principle for Gabor and wavelet frames
Let us begin this section by stating the Balian-Low Theorem.

THEOREM 6.1 (Balian-Low Theorem). Let {¢mn} be the Gabor system forg €
L%(R) and (a,b), and assume {@mn} is an ezact frame for L*(R). Then ab =1
and

ltg@ll2@)IFF M L2 @) = +o°
See [BHW95)] for proofs, history, and relevance of the result.

Using the terminology from Definition 4.4, we have the following consequence
of Theorem 6.1.

THEOREM 6.2 (Products of Variances for Gabor Frames). Let {¢mn} be the
Gabor system for g € L*(R) and (a,b), and assume lgllzs) = 1 and ab = 1.
If {pmpn} 15 @ Gabor frame, then

Vm,n € Z, 1t - tm,n)‘)"m,n(t)“L’(R)“('Y - 'Ym,n)am,n(')’)"u(ﬁ) = 00,

where tmn and Ymn are the expected values

tmn = /”‘Pm,n(t)lzdt and Ymn = /7|¢m,n(7)‘2d7-

In light of Gabor’s use of the Gaussian described in Remark 4.5 and the fact that
Fourier transforms of Gaussians are Gaussians, the Balian-Low Theorem asserts
that Gabor systems for the Gaussian do not give rise to frame decompositions in
the case ab = 1.

The following result summarizes the completeness and decomposition proper-
ties of Gabor systems of Gaussians.

THEOREM 6.3 (Gabor Systems of Gaussians). Let g(t) = (2s/7r)1/4e"‘2, for
some s > 0, and let a,b > 0. Consider the Gabor system {pmn} for g and (a,b).

a. The linear span of {¢mn} is dense in L2(R) if and only if ab < 1.

b. The Gabor system {¢mn} is a frame for L*(R) if and only if ab < 1.
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As indicated in Remark 4.5b this type of result for the Gaussian was initiated by
von Neumann [vIN55, pages 405-407] in the 1930s. The proof of Theorem 6.3a can
be found in [BBGKT71], [Per71]. The proof in part b that if ab < 1 then {pmn}
is a frame is due to [SWa90], cf., [DGM86], [Dau90]. The material in [SWa90]
and the related work in [Sei92] deals with the notion of Beurling density, which
itself was formulated to deal with the completeness problems dealt with by Paley
and Wiener and referenced in Section 3. The proof that {¢m »} is not a frame when
ab = 1 follows from a direct calculation in [BF94, page 257}, or a slightly more
complicated calculation using Jacobi theta functions [DGMS86, pages 1274-1275].
This direction of Theorem 6.3b is also an immediate consequence of Theorem 6.1.

In contrast to Theorem 6.2 we have the following fact, noted by Meyer in his
Seminaire Bourbaki, 1985-1986, number 622, e.g., [Mey90].

THEOREM 6.4 (Products of Variances for Wavelet Systems). Let {t)m n} be the
wavelet system for ¥ € L2(R), and assume ||$||Law) = 1. If ty(t) € L*(R) and

1$(7) € L*(R), then
Vn e Z, SuP“(t - tm,n)"/)m,n(t)”Lz(R) =00,

Vn € Z, sup||('y - 7m,n)$m,n(7)||L2(ﬁ) = 09,
m
and
sup 4| (t = tmn ) ¥m,n (OllL2@II0Y = Ym0 ) (1)l 2 @) < 00

where tym n and Ym n are the ezpected values

tmn = /tlwm,n(t)lzdt and Ymn = /7|$m,n(7)|2d7'

In light of Theorem 6.2 and Theorem 6.4, it natural to ask if there are frames
{6,} for L?(R), with each ||6,]|z2(x) = 1 and expected values

= / 16 ()2t and ya = / 718 (9) P,
such that
sup (¢ = ta)0n (Bll2m) < 00 and sup (7 = 10)8n (Mllzaga) < oo-

Bourgain has answered this question, which is essentially due to Balian [Bal81], in
the following way [Bou88].

THEOREM 6.5 (Bourgain Theorem). For every € > 0 there is an orthonormal
basis {Om n} for L2(R) having ezpected values (tm n,Ym,n) € R X R and satisfying
the inequalities

1
sup ||(t = tm,n)0mn ()| L2(®) < —271_; +€

m,n

and

~ 1
su - n)l = < —= €.
m’g”(’Y Ym,n) m,n(‘)’)”u(m) 2\/,;"’
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Consequently (by Theorem 4.1),
Vm, n € Z, 1 = llam’nnig(m)

~

< 4r||(t = tmn)0m,n (OllL2@)ll (Y = 7m,n)0m,n(7)||m(1§)

1 2
<4m| —=+¢€] .
”(2\/§+>

7. Gabor decomposition of L!

The Gabor and wavelet frame decompositions of Section 5 are in the setting
of the Hilbert space L2(R). On the other hand, as mentioned in Remark 2.11,
a major problem in signal processing and other scientific areas is to provide an
effective analysis of noisy signals. In particular, as mentioned at the beginning
of Section 3, we would like to extricate intelligent messages embedded in noisy
environments. L2(R) is generally not an adequate setting in which to model a
variety of noises.

In this section we shall give a Gabor decomposition for the L' — L™ duality
since it is not unreasonable to model some noises in L. We shall state a Ga-
bor decomposition on R for continuous Gabor systems (Definition 7.1). We can
prove discretizations of this decompositions as well as multidimensional generaliza-
tions. The autocorrelation defined in Definition 2.5 plays a role in the main result
(Theorem 7.2). We have chosen continuous Gabor systems in order to show that
Theorem 7.2 is a generalization of the Fourier inversion formula (Remark 7.9).

DEFINITION 7.1 (Continuous Gabor Systems).
a. Let g € LL _(R). The continuous Gabor system for g is the family of functions

(71) {‘Pg('21,7,0)3(1’,7)ERX@,C€RL
where
(7.2) g(t; 2,7, ¢) = €737 (eyTog) (1) = €TV P Ty (t — z)

is a function of ¢ on R for any fixed (z,7) € R x R and ¢ € R. The modulation and
translation functions e, and 7, are defined in Definition 5.6a to denote the right
side of (7.2).

A continuous Gabor system is also referred to as a Gabor system of coherent
states.

b. Let g € L} .(R) and consider the continuous Gabor system {pg( - ;,7,¢)}
for the case ¢ = 0. The continuous Gabor transform of any f € Lj,.(R) is then
formally defined on R x R as

(7.3) Gy(f)(,7) = / F(t)pq(t: 2, 7)dt,

where @4 (t; z,7) denotes pg4(t;¢,7,0). The role of this formal inner product in (7.3)
becomes apparent in the statement of Theorem 7.2.

c. The Heisenberg group of 3 x 3 matrices arises in defining unitary operators
by means of (7.1), and in particular when c ranges over R, e.g., [Ben89).
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We shall now give an integral representation of L!(R) in terms of the continu-
ous Gabor transform. To this end, we shall deal with functions g € L*(R) and se-
quences {k,} C L!(R) with the property that {k,} C L!(R) is an L!-approximate
identity. Recall that a sequence {k,} C L(R) is an L'-approzimate identity if
[ ka(t)dt = 1 for all n, sup, ||ka||L1 (&) < o0, and

Vr >0, lim |kn(t)|dt = 0.
n—00 |t|2r
THEOREM 7.2 (Gabor Representation for L!(R)). Let ¢ € L*(R)\{0}, and
consider the corresponding Gabor system {p4( - ; ,7)} and continuous Gabor trans-
form (of Definition 7.1b). Assume that
1 (T —
ViER, Ry(t) = lim — _Tg(t + u)g(u)du

exists. Then, for each f € L'(R),
Jim ||f = fallzr®) =0,
where

1

T ~
520 = gy fim g7 [ [ Gal e Matts 2 k) dzay

and where {k,) C L'(R) has the property that {k,} is an L'-approzimate identity.
For the proof, see [Ben89].

REMARK 7.3 (Generalization of the Fourier transform).
a. fg=1onR, f € LY(R x R), and ¢ = 0 in the definition of ¢4, then

G1(f)(z,v) = F(v) for (z,7) € R x R. In this case, the assertion of Theorem 7.2 is
a Fourier inversion formula.
b. Ry(0) in Theorem 7.2 is the mean total power of g, e.g., Definition 2.5b.

8. An interpretation of spectral bioelectric data

The most common signals derived from brain potentials are electroencephalo-
grams (EEGs). Theoretically, EEG time series should provide quantitative data to
fathom and describe normal brain rhythms, as well as aberrations such as epilep-
tic seizures. Norbert Wiener’s interest in brain rhythms goes back to the 1930s,
e.g., [Mas90, pages 233-238]; and he was directly involved in obtaining the power
spectra of brain waves from autocorrelations [56€][61c, Chapter X].

In this section, we shall address a problem in epilepsy using harmonic analysis
techniques. These techniques are in the spirit of Wiener’s approach, but are both
less sophisticated mathematically and more effective for dealing with single time
series because of our use of STFTs and spectrograms, e.g., Definition 5.8 and
Remark 5.9 on Gabor systems and spectrograms. Wiener’s original approach was
based on GHA (Section 2) as well as a longstanding point of view from optics
using Michelson’s interferometer (Remark 5.9). Naturally, we shall use the discrete
Fourier transform (DFT) and associated fast Fourier transform (FFT) algorithm in
our computation of spectrograms, see [Ben96, Sections 3.8 and 3.9] for the theory
underlying these methods as well as references for their implementation.

Since EEG signals are measured on the scalp and potentials are on the order
of microvolts, electroencephalograms are subject to many complicated influences
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such as head geometry, propagation of brain waves through the skull, and muscle
movement. These effects are often regarded as “noise”, and, consequently, the
signal-to-noise ratio of EEG time series can be quite low. Time series which have a
much higher signal-to-noise ratio are obtained by measuring potentials directly on
the surface of the brain. These are called electrocorticograms (ECoGs), and can
only be obtained by invasive procedures. Because of the serious problems inherent
in such procedures, it should be pointed out that Wiener proposed to use GHA in a
fundamental way by dealing with EEG data in terms of averaged crosscorrelations
of stimulus and response. This is the direction that was pursued by Rosenblith of
MIT.

The bioelectric trace f at the top of Figure 2 is electrocorticogram (ECoG)
data. The analysis of this data was made at The MITRE Corporation, e.g., [BC95],
[B-KCJ94].

100
Time (Seconds)
NONSEIZURE SEIZURE
2500
mWﬁﬂ/\Mf
1500
25 26 27 28 29 175 176 177 178 179
Time (Seconds) Time (Seconds)
x10'  Magnitude FFT x10'  Magnitude FFT
10 10,
8 8
6 6
4 4
2 2
% 50 100 % 50 100
Frequency (Hz) Frequency (Hz)

FIGURE 2. Top: Time series trace of electrocorticogram data.
Middle: Time series for nonseizure epoch (left) and seizure epoch
(right). Bottom: Magnitude FFT for the time series shown in the
middle.

The length of the trace is 240 seconds, and it includes (epileptic) seizure activity
as well as significant nonseizure activity. Typical of the latter type is activity fy,
in the time interval from 25 to 30 seconds, extracted from the original trace f;
“ns” designates “nonseizure”. f,, is reproduced in the left graph on the second
line of Figure 2. The ordinate is a microvolt measurement of the potential of the
electric field at the surface of the brain relative to a referential electrode. The right
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graph on the second line of Figure 2 is activity f, extracted from seizure data in
the original trace f; “s” designates “seizure”. (We admit to begging the question
of what precisely is seizure data.) The third line of Figure 2 contains absolute
values of the fast Fourier transforms (FFTs) of fn, and f;, respectively. The dc
components “[ f,,(t)dt” and “[ f,(t)dt” have been removed from the FFTs since,
as can be seen from line 2 of Figure 2, these values are so large as to affect the
readability of nonzero-frequency information. The left graph on the third line of
Figure 2 is indicative of 1/f noise, whereas the right graph exhibits some periodic
behavior. We shall now look at this latter issue a little more closely.

The right graph on the second line of Figure 2 exhibits a high frequency almost
periodic signal f “riding-on” a low frequency wave. This latter wave is usually in
the -band (4—8Hz) or the a-band (8 — 13Hz) of brain activity. The 6-band is the
spectral range of drowsiness or light sleep, and the a—band is the spectral range of
rhythmic activity in an awake person. The amplitude of the bioelectric trace for
the a-band is typically between 5 and 100 microvolts, e.g., [Nun81].

A close look at f justifies our labeling of f as an almost periodic signal. To see
this, first let fy, resp., fa, be the restriction of f to a time interval at the beginning,
resp., the end, of the seizure. Then, by counting peaks of the trace over the duration
of the seizure activity, we find that the period p; of f; is less than the period ps of
fa.

Assuming each f;,j = 1,2, is periodic on R, even though it is only periodic on
a portion of the seizure interval, we have the Fourier series representation,

(8.1) Sfi(t) = ajne?mint/pi;

and we further assume that f; = Sf;. Because of (8.1), the Fourier transform of
each f;, as a distribution on R, is

(8.2) 5= Za,-,na,, /p;-

As such, if we consider the (t,7)-phase plane as the domain of the spectrogram,
and if we take a value t; near the beginning of the seizure, then because of (8.2)
we expect nontrivial spectrogram amplitudes at the points {(t1,n/p;) : n € Z}. A
similar remark holds for other parts of the seizure. In particular, if 5 is a time
value at the end of the seizure, we expect nontrivial spectrogram amplitudes at the
points {tz,n/ps : n € Z}.

Finally, for a fixed n > 0, we expect the graph of this spectral data in the
seizure interval to be a decreasing function of t since 1/p; > 1/pa, cf., (8.2). This
time varying spectral activity can be described in terms of elementary chirps, e.g.,
[Ben96, Section 2.10].

If the previous discussion is too discursive, then experimental data reflected by
Figure 3 tell the same story pictorially. In fact, the region of the (t,v)-phase plane
determined by the seizure time interval [170,180] bears out the previous analysis
(and handwaving).

The prediction problem is an important aspect of ECoG data analysis. This
problem is to predict the onset of seizure sufficiently far in advance in order to take
remedial action. Such action can only be effective if there is also a solution to the
localization problem. The localization problem is to find the region of the brain
responsible for the onset of seizure activity. In principle, solutions to the prediction
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FIGURE 3. Spectrogram for the ECoG time series shown in Figure 1.

and localization problems would allow chemical response to specific local parts of
the brain in time to temper seizure intensity.

The spectrogram in Figure 3 provides information about the prediction prob-
lem. For example, the definitive chirps in the seizure time interval [170,180] of
Figure 3 have as precursors the periodic chirp-like activity in the time interval
[155,162). One can even detect some such activity in the time interval [150,155]. A
close look at the trace on the top line of Figure 2 shows that these precursors are
embedded in low amplitude data.

9. Notation

Besides the standard notation found in the books by Hormander [H6r83],
Schwartz [Sch66], and Stein and Weiss [SW71], we shall also use the following
notation and conventions. R

The Fourier transform f of f € L*(RY) is defined by f(v) = [ f(t)e~2"*dt,
where R is the real line, R¢ is d-dimensional Euclidean space, “ J” designates in-

tegration over R¢, and v € lﬁd(z R9). Similarly, “3~” designates summation over
74, where Z is the ring of integers. F'V designates the inverse Fourier transform of

F. Formally, if f: F, then
(9.1) f)=F' 0 = [ F@emra,

where integration is over R¢, see [Ben96, Chapter 1], [SW71] for criteria for the
validity of (9.1). A(RY) is the space of absolutely convergent Fourier transforms.
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The dual space of A(RY), taken with the induced topology from L!(RY), is the
space A'(R% of pseudo-measures.

M (X) is the space of Radon measures on a locally compact space X. My (X),
resp., My(X), designates the positive, resp., the bounded, elements of M(X).
My (X) is the space of bounded, positive elements of M(X). If X = R9, then
My(R% C A'(RY). Also, A'(RY) = L= (R C S'(R?), where S'(RY is the space
of tempered distributions.

Finally, we use the following notation:

(= £)(t) = £(t — =);

ey(t) = €2

[ i tex
1"(”‘{0, it t¢ X;

1, if m=n

6(m, n) :{ 0, it m#n

T4 =RY/Z4

B(T)={teR*: [t| <T}, |t|= (t2 + - +12)1/%
supp f is the support of f;

| X| is the Lebesgue measure of X C R¢.
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