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Topics

• Utility-based measurement of performance

• Utility volume – traditional (backward)

and alternative (forward) formulation

• Forward dynamic utilities and construction

of such a class

• Motivational examples

• Variational and stochastic components

of forward optimal utility volume

• Construction and analysis of variational utility component
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Utility-based measurement of performance

4



Deterministic environment

Utility traits

u(x, t) : x “wealth” and t “time”

• Monotonicity ux(x, t) > 0

• Risk aversion uxx(x, t) < 0

• Impatience ut(x, t) < 0

Fisher (1913, 1918), Koopmans (1951),

Koopmans-Diamond-Williamson (1964) ...
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Stochastic environment

Important ingredients

• Time evolution concurrent with the one of the investment universe

• Consistency with up to date information

• Incorporation of available opportunities and constraints

• Meaningful optimal utility volume
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Dynamic utility

U (x, t) is an Ft-adapted process

• As a function of x, U is increasing and concave

• For each self-financing strategy, represented by π, the associated

(discounted) wealth Xt satisfies

U (Xπ
s , s) ≥ EP(U (Xπ

t , t) | Fs) 0 ≤ s ≤ t

• There exists a self-financing strategy, represented by π∗, for which

the associated (discounted) wealth Xπ∗
t satisfies

U (Xπ∗
s , s) = EP(U (Xπ∗

t , t) | Fs) 0 ≤ s ≤ t
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Traditional framework

A deterministic utility datum uT (x) is assigned at the end of a

fixed investment horizon

U(x, T ) = uT (x)

Backwards in time generation of optimal utility volume

V (x, s) = sup
π

EP(uT (Xπ
T )|Fs; X

π
s = x)

V (x, s) = sup
π

EP(V (Xπ
t , t)|Fs; X

π
s = x) (DPP)

V (x, s) = EP(V (Xπ∗
t , t)|Fs; X

π∗
s = x)

⇓
U (x, t) ≡ V (x, t) 0 ≤ t < T

The dynamic utility coincides with the traditional value function
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Alternative framework

A deterministic utility datum u0(x) is assigned at the beginning of

the trading horizon, t = 0

U(x, 0) = u0(x)

Forward in time generation of optimal utility volume

U (Xπ∗
s , s) = EP(U (Xπ∗

t , t)|Fs) 0 ≤ s ≤ t

• Dynamic utility can be defined for all trading horizons

• Utility and allocations take a very intuitive form

• Difficulties due to the “inverse in time” nature of the problem
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Motivational examples
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An incomplete multiperiod binomial example

Exponential utility datum

• Traded security: St, t = 0, 1, ...

ξt+1 =
St+1

St
, ξt+1 = ξd

t+1, ξ
u
t+1 with 0 < ξd

t+1 < 1 < ξu
t+1

Second traded asset is riskless yielding zero interest rate

• Stochastic factor: Yt, t = 0, 1, ...

ηt+1 =
Yt+1

Yt
, ηt+1 = ηd

t+1, η
u
t+1 with ηd

t < ηu
t

• Probability space (Ω, (Ft) , P)

{St, Yt : t = 0, 1, ...} : a two-dimensional stochastic process
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• State wealth process: Xt, t = s + 1, s + 2, . . . , . . .

αi : the number of shares of the traded security held in this portfolio over

the time period [i − 1, i]

Xt = Xs +
t∑

i=s+1

αi � Si

• Forward dynamic exponential utility (0 ≤ s ≤ t)

⎧
⎪⎨

⎪⎩

U (Xα∗
s , s) = EP(U (Xα∗

t , t)|Fs)

U (x, 0) = u0(x) = −e−γx , γ > 0

12



• A forward dynamic utility

U (x, t) =

⎧
⎪⎨

⎪⎩

−e−γx if t = 0

−e−γx+
∑t

i=1 hi if t ≥ 1

• Auxiliary quantities : local entropies hi

hi = qi log
qi

P (Ai |Fi−1)
+ (1 − qi) log

1 − qi

1 − P (Ai |Fi−1)

with

Ai = {ξi = ξu
i } and qi = Q (Ai |Fi−1)

for i = 0, 1, .. and Q being the minimal relative entropy measure

13



Important insights

The forward utility process

U (x, t) = −e−γx+
∑t

i=1 hi

is of the form

U(x, t) = u(x, At)

where u(x, t) is the deterministic utility function

u(x, t) = −e−γx+1
2t

and At corresponds to a time change depending on the “market input”

At = 2
t∑

i=1

hi
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Important insights (continued)

• The variational utility input

u(x, t) = −e−γx+1
2t

solves the partial differential equation

⎧
⎪⎨

⎪⎩

ut uxx = 1
2u

2
x

u(x, 0) = −e−γx

• The stochastic market input

At = 2
t∑

i=1

hi

plays now the role of “time”. It depends exclusively on the market

parameters.
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A continuous-time example

• Investment opportunities

Riskless bond : r = 0

Risky security : dSt = σtSt(λtdt + dWt)

• Utility datum at t = 0 : u0(x)

• Wealth process

⎧
⎪⎨

⎪⎩

dXt = σtπt(λtdt + dWt)

X0 = x

• Market input : λt, At

⎧
⎪⎨

⎪⎩

dAt = λ2
tdt

A0 = 0
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• Building the martingale U (Xπ∗
t , t)

Assume that we can construct U (x, t) via

⎧
⎪⎨

⎪⎩

U (Xπ∗
t , t) = u(Xπ∗

t , At)

U (x, 0) = u(x, 0) = u0(x)

where u(x, t) is the variational utility input and At the stochastic market input

dU (Xπ
t , t) = ux(Xt, At)σtπt dWt

+(ut(X
π
t , At)λ

2
t + ux(Xπ

t , At)σtπtλt + 1
2uxx(Xπ

t ,At)σ
2
t π

2
t )dt

︸ ︷︷ ︸

≤ 0
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• Variational utility input condition

⎧
⎪⎨

⎪⎩

ut uxx = 1
2u

2
x

u(x, 0) = u0(x)

• The optimal allocations in stock, π∗t , and in bond, π
0,∗
t ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π∗t = −σ−1
t λt

ux(Xπ∗
t , At)

uxx(Xπ∗
t , At)

= σ−1
t λtRt

π
0,∗
t = Xπ∗

t − σ−1
t λtRt

Rt = r(Xπ∗
t , At) ; r(x, t) = − ux(x, t)

uxx(x, t)

The local risk tolerance r(x, t) and the subordinated

risk tolerance process Rt emerge as important quantities
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Dynamic utility measurement

time t1, information Ft1

asset returns

constraints

market view
away from equilibrium

benchmark numeraire

calendar time subordination
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Dynamic utility measurement

time t2, information Ft2

asset returns

constraints

market view
away from equilibrium

benchmark numeraire

calendar time subordination
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Dynamic utility measurement

time t3, information Ft3

asset returns

constraints

market view
away from equilibrium

benchmark numeraire
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Dynamic utility measurement

time t, information Ft

asset returns

additional

market input

Wealth

Time

u(x,t)

MI(t) + u(x, t)��� ���
⇓

U (X∗
t , t) ∈ Ft π∗(X∗

t , t) ∈ Ft 22



Dynamic utility measurement

time t1, information Ft1

asset returns

additional

market input
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Dynamic utility measurement

time t2, information Ft2

asset returns

additional

market input
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Dynamic utility measurement

time t3, information Ft3

asset returns

additional

market input

Wealth

Time
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⇓
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Construction of a class of forward dynamic utilities
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Creating the martingale that yields the optimal utility volume

Minimal model assumptions

Stochastic optimization problem “inverse” in time

Key idea

Stochastic input Variational input

Market Individual
�
�
�

�
�
���

�
�

�
�

�
��

Maximal utility — Optimal allocation
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Variational input – utility surfaces
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Utility surface

A model independent variational constraint on

impatience, risk aversion and monotonicity

• Initial utility datum

u0(x) = u(x, 0)

• Fully non-linear pde
⎧
⎪⎪⎨

⎪⎪⎩

ut uxx =
1

2
u2

x

u(x, 0) = u0(x)
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Utility transport equation

The utility equation can be alternatively viewed as a transport equation with

slope of its characteristics equal to (half of) the risk tolerance

r(x, t) = − ux(x, t)

uxx(x, t)

⎧
⎪⎪⎨

⎪⎪⎩

ut +
1

2
r(x, t)ux = 0

u(x, 0) = u0(x)

Characteristic curves:
dx(t)

dt
=

1

2
r(x(t), t)
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Construction of utility surface u(x, t) using characteristics

dx(t)

dt
=

1

2
r(x(t), t)

Utility datum u0(x)
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Construction of characteristics

dx(t)

dt
=

1

2
r(x(t), t)

Utility datum u(x, 0)
Characteristic curves
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Propagation of utility datum along characteristics
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Propagation of utility datum along characteristics
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Utility surface u(x, t)
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The risk tolerance pde

• Recall the utility equation

⎧
⎪⎨

⎪⎩

ut uxx = 1
2u

2
x

u(x, t) = u0(x)

• The local risk tolerance r(x, t) = −ux(x, t)/uxx(x, t)

solves the autonomous equation of “fast diffusion type”

⎧
⎨

⎩
rt + 1

2r2rxx = 0

r(x, 0) = r0(x)
(FDE)

36



The risk aversion pde

γ(x, t) =
1

r(x, t)

Porous medium equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γt =

(
1

γ

)

xx

γ(x, 0) =
1

r0(x)

(PME)
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Fast diffusion/Porous medium pde

vt = ∇ · (v−n∇v)

• n = 0 : heat conduction equation (infinite propagation speed)

• n < 0 : gas propagation equation in a porous medium

(finite propagation speed)

• n > 0 : fast diffusion

Cases 0 < n ≤ 1 widely studied

(thermalised electron cloud, gas kinetics, limit

of Carleman’s model of the Boltzman eqn)
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Risk tolerance/risk aversion pdes

n = 2

γt + ∇(γ−2∇γ) = 0
�� r = γ−1

rt +
1

2
r2rxx = 0

Difficulties

• Very limited results for n > 1

• Solutions blow up in finite time

• Inverse in time problem
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Solutions to the risk tolerance equation
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Classes of solutions

• “Additively” separable

(special cases: log, power and exponential)

• Multiplicatively separable

(special cases: log, power and exponential)

• Travelling waves

• Self-similar
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“Additively separable” risk tolerance

r2(x, t; α, β) = m(x; α, β) + n(t; α, β)

m(x; α, β) = αx2 n(x; α, β) = βe−αt

r(x, t; α, β) =
√

αx2 + βe−αt α, β > 0

Utility surface

− ux(x, t)

uxx(x, t)
=
√

αx2 + βe−αt

⇓

u(x, t) =
∫ x

(
√

α z +
√

αz2 + βe−αt )−1/
√

α + K1(t) dz + K2(t)

Need to analyze limiting cases for (α, β)
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Risk tolerance r(x, t) =
√

0.05x2 + 15.5e−0.05t
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Utility surface u(x, t) generated by

risk tolerance r(x, t) =
√

0.05x2 + 15.5e−0.05t
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Risk tolerance r(x, t) =
√

10x2 + e−10t
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Utility surface u(x, t) generated by

risk tolerance r(x, t) =
√

10x2 + e−10t
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Risk tolerance r(x, t; 0, 1) =
√

0x2 + 1 = 1
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Utility surface u(x, t) = −e−x+ t
2 generated by

risk tolerance r(x, t) = 1
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Risk tolerance r(x, t; 1, 0) =
√

x2 + 0e−t = |x|
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Utility surface u(x, t) = log x − t
2, x > 0 generated by

risk tolerance r(x) = x
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Risk tolerance r(x, t; 4, 0) =
√

4x2 + 0e−4t = 2|x|

−10
−5

0
5

10

0
0.2

0.4
0.6

0.8
1
0

1

2

3

4

5

6

WealthTime

51



Utility surface u(x, t) = 2
√

x e−
t
2, x > 0 generated by

risk tolerance r(x, t) = 2x
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Multiplicatively separable risk tolerance

r(x, t; α, β) = m(x; α)n(t; β)

m(x; α) = ϕ(Φ−1(x; α)) n(t; β) =
1√

t + β
, β > 0

Φ(x; α) =
∫ x

α
ez2/2 dz ϕ = Φ′

r(x, t; α, β) =
ϕ(Φ−1(x; α))√

t + β

Utility surface

u(x, t) = Φ(Φ−1(x; α) −
√

t + β)

General classes by incorporating t-dependent
integration constants
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Risk tolerance r(x, t) =
ϕ(Φ−1(x; 0.5)√

t + 5
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Utility surface u(x, t) = Φ(Φ−1(x; 0.5) −√
t + 5)

generated by risk tolerance r(x, t) =
ϕ(Φ−1(x; 0.5))√
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Utility function u(x, t0)
(fixed time)
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Utility function u(x0, t)

(fixed wealth level)
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• Travelling wave solutions

r(x, t) =
√

α|x| + βt + c

c > 0, β = α2

4 , α > 0

• Self-similar solutions

r(x, t) = (t − c)αF (
|x|

(t − c)β
)

2β = 2α + 1

F solves the second order ODE ; z = |x|(t − c)−β

αF (z) = βzF ′(z) +
1

2
zF 2(z)F ′′(z)
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Summary on variational utility input

• Key state variables: wealth and risk tolerance

• Risk tolerance solves a fast diffusion equation posed inversely in time

⎧
⎪⎪⎨

⎪⎪⎩

rt + 1
2r

2rxx = 0

r(x, 0) = −u′0(x)

u′′0(x)

• Utility surface generated by a transport equation

⎧
⎪⎨

⎪⎩

ut + 1
2r(x, t)ux = 0

u(x, 0) = u0(x)

• Forward dynamic utility process constructed by compiling variational

utility input and stochastic market input 59



Summary on optimal allocations

• Optimal portfolio (π∗t , π
0,∗
t ) is directly computed and represented as

a linear combination of the optimal wealth, Xπ∗
t , and the subordinated

risk tolerance process, Rt = r(Xπ∗
t , At)

π∗t = K1
t X

π∗
t + K2

t Rt

At,K
i
t : processes depending exclusively on market input

• Need to study the stochastic evolution of the solutions of the system

(Xπ∗
t , Rt)

• An efficient frontier emerges.
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