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I. Overview

No Arbitrage assumption is equivalent to existence of a
Risk Neutral Measure Q

If Q is unique the market is complete

If Q is not unique, the market is incomplete: there
is a choice of an infinite number of such Q, and not all
contingent claims can be replicated.

People believe markets are incomplete; if they thought
they were complete and models were correct, using histor-
ical volatility would be equivalent to using implied volatil-
ities.
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A standard problem: how does one choose one such Q?

Four methods proposed to date; possibly more:

•Minimal martingale measures (Föllmer-Schweitzer)

•Minimal entropy measures

• Indifference pricing (involves personal choice of a util-
ity function)

• Arbitrarily choose one and stick with it, for no good
reason

We propose an alternative.
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The usual approach is as follows:

1. Begin with the risky asset price process and a (possibly
random) savings rate;

2. By a change of numéraire argument, assume interest
rates are zero;

3. Find and choose a risk neutral measure Q;

4. If g(XT ) is a financial (European style) derivative at
time T , the price process is declared to be EQ{g(Xt)|Ft}
for 0 ≤ t ≤ T .
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Our approach:

1. Begin with the risky asset price process and a (possibly
random) savings rate;

2. Next assume there are market given price processes for
a large number of (European style) derivatives of the
form g(XT ), where T varies;

3. Find the collection Q of risk neutral measures that
make both the price process and all of the derivative
price processes local martingales;

4. If there are enough derivative prices, the
cardinality of Q might be one;

5. Alternatively the cardinality of Q might be
zero or ∞ (compatibility issues are serious here).
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Other Approaches; Some key ones follow:

•H. Dengler and R. Jarrow (1997): A simple jump
model where the price process is pure jump, with two
distinct jump sizes; two call options are used to com-
plete the market.

• B. Dupire (1997): A simple stochastic volatility model,
where the stock price varies but the expiration time T
is fixed. A PDE is obtained, and when (and if) solved,
it gives a unique martingale measure;

• E. Derman and I. Kani (1997): the stochastic
volatility case, where the strike price K varies and T
is fixed. Smoothness in K is assumed, and by twice dif-
ferentiating obtain a density for the call option, lead-
ing to a PDE, which when (and if) solved leads to a
martingale measure choice.

•M. Schweizer and J. Wissel (2006), to appear
in Math Finance: improved on previous ideas by us-
ing different maturities, creating a term structure of
volatilities, within a Brownian based stochastic volatil-
ity framework. They find conditions for equivalent
martingale measures to exist, and also a condition for
it to be unique.
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The seminal papers of Eberlein, Jacod and Raible
inspired the paper on which this talk is based.

Indeed, the talk is only for the continuous case, but an
analogous (and more interesting) theory is developed in
our paper for the general case (with jumps) as well.
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I. For simplicity of presentation, we consider
here the continuous paths case.

(Ω,F , P,F), where F = (Ft)t≥0. Risky asset price:

Xt = X0 +

∫ t

0

asds +
∑

i∈I

∫ t

0

σi
sdW i

s,

with
∫ t

0 (|as| +
∑

i∈I |σi
s|2)ds < ∞ a.s., all t.

We want Xt > 0 so we assume a and σ factor: at = Xt−at

and σi
t = Xt−σi

t.

Next we add the financial derivatives (options), always
European style.
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Let g : (0,∞) → R+, be nonnegative and convex.

The price of the option g(XT ) at time t with
expiration time T is P (T )t.

We suppose there are options with different expiration
times, with the same g, and let T denote the set of
expiration times.

[0, T?] is your period of trading.

T is a finite set in practice and can be quite small. But
in the spirit of HJM models, we take T to be an interval
in R+, or a countable dense subset of an interval.
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We have two cases:

Full Models: T? = ∞ and T = (0,∞);

Partial Models: T? < ∞ and T = [T0,∞) with
T0 > T?.

. . .
0 T? T0 ∞

Let P (T )t = the price of an option g(XT ) at time t.

We must have P (T )T = g(XT ).

We also take P (T )t = g(XT ) = P (T )T for t ≥ T .
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The Standard Approach:

Choose Q equivalent to P such that the price process
X is a Q martingale (or a Q local martingale), with
EQ(g(XT )) < ∞ and

P (T )t = EQ(g(XT )|Ft) for t ≤ T.

(P (T ))t≥0 is then a Q martingale on [0, T ].

Change from the standard approach:

Now fix t and consider T → P (T )t, on the interval [t,∞).
Since X is continuous, and g is convex (and hence con-
tinuous),

T → g(XT ) is continuous.

Since X is a Q martingale and g is convex, T → g(XT )
is a continuous Q submartingale. Hence

T → P (T )t is non decreasing and

continuous for T ≥ t, Q a.s.

and hence also P a.s.
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So if P (T )t are option prices, T → P (T )t is a.s. contin-
uous and nondecreasing.

Assume T → P (T )t is absolutely continuous on
(0,∞). Thus:

P (T )t = g(Xt) +

∫ T

t

f (t, s)ds

for t ≤ T , where f (t, s) ∈ Ft, with f ≥ 0.

What do the processes f (t, s) look like?

For t < u assume f can be expressed with a decomposi-
tion of the form:

f (t, u) = f (0, u) +

∫ t

0

α(r, u)dr +
∑

i∈I

∫ t

0

γi(r, u)dW i
r .
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For the Black-Merton-Scholes model, let

C(x, t) = E{g(xeσU
√

t−σ2t
2 )} where U is N(0, 1).

One has C ′
t(x, 0) = σ2

2 x2g′′(x) when g is C2;

When g is convex but not C2, then

C(x, t)− g(x) = O(
√

t) as t → 0.

More generally, C ′
t(x, 0) exists if g is C2 at x, and does

not exist if g is not.

And if g(x) = (x−K)+, then
√

tC ′
t(x, t) → σ

2
√

2π
1{x=K}x as t ↓ 0.

One has:

f (t, T ) = C ′
t(Xt, T − t)

f (0, T ) = C ′
t(X0, T )

α(r, T ) = −C ′′
tt(Xr, T − r) +

1

2
C ′′′

txx(Xr, T − r)σ2X2
r

γ(r, T ) = C ′′
tx(Xr, T − r)σXr
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Definition 1. A full option model for (X, g) is a
family of processes P (T ), T > 0, given by P (T )t =

g(Xt) +
∫ T

t f (t, s)ds, where, for t < s,

f (t, s) = f (0, s) +

∫ t

0

α(u, s)du +
∑∫ t

0

γi(u, s)dWu,

and

1. f (0, s) ≥ 0, non-random, locally integrable in s

2. appropriate measurability of α and γi

3. α and γi are such that the integrals make sense

4. f (t, s) ≥ 0 for all t < s

5.
∫ T

t f (t, s)ds < ∞ a.s. for all t ≤ T .

Also, we want to define

χ(s)t =

∫ t

0

(|α(u, s)| +
∑

i∈I

|γi(u, s)|2)du.

Note that (3) above is equivalent to χ(s)t < ∞ a.s. for
all t < s.
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χ(s)t =

∫ t

0

(|α(u, s)| +
∑

i∈I

|γi(u, s)|2)du.

Also note that t → χ(s)t is increasing, but s → χ(s)t is
not increasing in general.

Definition 2. A full option model for (X, g) is

1. regular if χ(s)s < ∞ a.s., for almost all s. (This
implies f (s, s) is well defined.)

2. fair if for all T ,
∫ T

t χ(s)tds < ∞ a.s.

3. strongly regular if for all T ,
∫ T

t χ(s)sds < ∞
a.s.

Strongly Regular ⇒
{

Fair
Regular

Relation to Black-Scholes

• P (T ) is a full option model, which is always fair

• If g ∈ C2, it is strongly regular

• If g 6∈ C2, then it is not even regular
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Easier situation: Partial Models

Trading takes place up to time T?

Expiration dates all have T ≥ T0, with T0 > T?.

We only need to model P (T ) for T ≥ T0, with

P (T )t = P (T0)t +

∫ T

T0

f (t, s)ds.

So if we know the dynamics of P (T0), the model will be
specified by the dynamics of t → f (t, s) for s > T0.

Definition 3. A (T?, T0) partial option model as-
sociated with (X, g) is a family of processes (P (T ) :
T ≥ T0), where f is as in our definition of full option
models, and for t ≤ T?:

P (T )t = P (T0)t +

∫ t

0

αsds +
∑

i∈I

∫ t

0

γi
sdW i

s,

with the integrability condition:
∫ T?

0

(|αt| +
∑

i∈I

|γt
i|2)dt < ∞,

and finally

t ∈ [0, T?] ⇒ P (T0)t ≥ g(Xt).
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The model is fair if we have
∫ T

0 χ(s)T?ds < ∞ a.s. for
all T > T0.

The notions of regular or strongly regular do not apply.

II. Equivalent Local Martingale Measures

The Delbaen-Schachermayer theory says that no arbi-
trage is equivalent to the existence of at least one measure
Q, equivalent to P , making the price process a local mar-
tingale.

We diverge a bit: Q is locally equivalent to P if Q
and P are equivalent on each Ft, t < ∞.

Example: W and Z, where Zt = Wt + λt on [0,∞).

Mloc is the set of all probability measures Q locally equiv-
alent to P , under which X and P (T ) for all T ∈ T are
Q local martingales.

Mloc(T?, T0) is the set of all Q on (Ω,FT?) equivalent to P
onFT? and under which X and P (T ), for all T ≥ T?, are
Q local martingales on the time interval [0, T?].

17



We can characterize the local martingale measures simply,
as follows:

Definition 4. Let (bi
s)i∈I be predictable processes with∑

i∈I

∫ t

0 (bi
s)

2ds < ∞. Two families B and B′ of such
processes are equivalent if

i ∈ I ⇒ bi = bi′

The set of equivalent classes of these families of pro-
cesses is Υ.

Theorem 5. There is a one-to-one correspondence
between Υ and the Q which are locally equivalent to
P .

Moreover if B = (bi
s)i∈I is in Υ then under Q, the pro-

cesses W i′
t = W i

t −
∫ t

0 bi
sds are independent Brownian

motions.

Υloc is the set of all B ∈ Υ which correspond to a prob-
ability measure in Mloc. Analogously Υ′

loc(T?, T0) is the
set of all B′ ∈ Υ′(T?) which correspond to a probability
measure in Mloc(T?, T0).

18



Theorem 6. For a strongly regular model and if g is
C2, the set Υloc is the set of all (bi) ∈ Υ which satisfy

as +
∑

i∈I

σi
sb

i
s = 0 (1)

f (s, s) =
1

2
g′′(Xs)

∑

i∈I

(σi
s)

2 (2)

and for all T ≥ s:

α(s, T ) +
∑

i∈I

γi(s, T )bi
s = 0. (3)

Theorem 7. For a (T?, T0) partial fair model, the set
Υ′

loc(T , T?) is the set of all (bi) ∈ Υ′ which satisfy (1)
above for s ≤ T?, (3) for s ≤ T? and T ≥ T0, and
finally, for s ≤ T?:

αs +
∑

i∈I

γi
sb

i
s = 0
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III. Completeness for (T?, T0) partial models.

Theorem 8. Let us be given a (T?, T0) partial fair
model such that the set Mloc(T?, T0) 6= ∅. Then there
are two alternatives:

(a) Either for all s ≤ T? and ω the closed linear sub-
space of L(I) spanned by the vectors (σi(ω)s)i∈I, γ

i(ω)s)i∈I

and (γi(ω, s, T )i∈I for T ≥ T0, is equal to L(I) itself;
in this case Mloc(T?, T0) is a singleton;

(b) Or, this property fails, and the set Mloc(T?, T0) is
infinite.

If, for example, the coefficients σi
s and γi

s and γi(s, T ) are
taken continuous in s and T , then there is a nice version
of everything and condition (a) can be checked.

The hard part will be checking that the set Mloc is not
empty! When all the coefficients can be taken to be con-
tinuous in s and T , and if there is a countable dense sub-
set D(s, ω) of (T0,∞) such that the vectors σs(ω), γs(ω),
and γ(ω, s, T ) for T ∈ D(ω, s) are linearly independent,
then Mloc is not empty.
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IV. Full Regular Models

A full model describes what happens when time increases
and reaches the expiration times T ∈ T , and thus some
compatibility between the stock price and the
option model is required, in addition to P (T )t ≥
g(Xt). This restricts the possible option models associ-
ated with (X, g) if we want them to be free of arbitrage.
We know from the Black-Merton-Scholes example that
there are some models, but existence in general is deli-
cate.

Recall the Meyer-Tanaka formula:

g(Xt) = g(X0) +

∫ t

0

αsds + Mt + Lt,

where M is a local martingale, α is of course integrable,
and L is an adapted, increasing, singular process (eg, a
local time). If g is C2 then L = 0, but otherwise L does
not vanish.

21



Theorem 9. a) If the process L does not vanish a.s.
for any full strongly regular option model associated
with (X, g), then the set Mloc is empty;

b) If g is C2 and there exists at least one locally equiv-
alent probability such that the price process X is a
local martingale, then there is a sequence of stop-
ping times (Sn)n≥1 ↗ ∞ a.s. and for each n a full
regular option model associated with (XSn, g)
such that Mloc is not empty;

c) If g is C2 with at most linear growth and there exists
at least one locally equivalent probability such that X
is a martingale, then there exists a full regular op-
tion model associated with (X, g) such that Mloc

is not empty.

Theorem 10. Assume that g is of class C2. A lo-
cally equivalent probability Q cannot be in Mloc for
two different full strongly regular models associated
with (X, g).
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Caution: Theorem 10 does not mean that there is a
single arbitrage free strongly regular option model associ-
ated with (X, g). There could be several, even infinitely
many, with each one corresponding to a different equiva-
lent local martingale measure.

Example: Markov type stochastic volatility
models

The price process is

Xt = X0 +

∫ t

0

a(Xs, Ys)ds +

∫ t

0

σ(Xs, Ys)dW 1
s (4)

Y can be multidimensional.

Yt = Y0 +

∫ t

0

h(Xs, Ys)ds +
∑

i∈I

∫ t

0

ki(Xs, Ys)dW i
s

+

∫ t

0

∫

R
H(Xs, Ys−, x)(µ− ν)(ds, dx)

with the coefficients nice enough for unique strong solu-
tions of both equations, and also that Y is strong Markov.
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In the classic paradigm, choose locally equivalent Q
with X a local martingale, and we are not concerned
with whether or not Y is a local martingale
under Q. Then evaluate the prices P (T )t of options
under Q. These prices may be discontinuous.

Among the many such Q, there are some that preserve
the Markov property, namely the “extremal” ones in the
convex set of all locally equivalent probability measures.
Let (L,DL) be the infinitesimal generator of (X,Y ) un-
der Q. Assume too that DL ⊃ C2.

Then the price P (T )t takes the form (under Q):

P (T )t = E{g(XT )|Ft} = QT−tG(Xt, Yt),

where G(x, y) = g(x). If g ∈ C2, hence G as well, then
G ∈ DL, and therefore:

P (T )t = g(Xt) +

∫ T

t

Qs−tLG(Xt, Yt)ds.

So in this case, f (t, s) = Qs−tLG(Xt, Yt).

(f (t, s) :≤ t ≤ s) is a Q martingale which is discontinu-
ous as soon as Y is.
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We conclude, after some work and using results from the
discontinuous case, that we have as many full regular op-
tion models associated with (X, g) with no arbitrage as
there are locally equivalent probabilities for which (X,Y )
is a Markov process and X is a local martingale.

When g is convex but not C2, then in general G 6∈ DL.
But under some ellipticity, QεG is in it for all ε > 0. We
can get a full option model, but it will not be regular.
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