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Introduction and preliminaries

For asset pricing three ingredients are required:

(A) Specification of cash-flows
(B) Investor preferences
(C) Flow of information available to market participants

Translated into the language of finance theory:

(A∗) Model cash-flows as random variables
(B∗) Pricing kernel: discounting, risk-neutral measure
(C∗) Market filtration

Asset pricing conventionally attaches more weight to (A) and (B) than to (C).

In this presentation, however, we emphasize the importance of (C).

University of Maryland L. P. Hughston, King’s College London



Information-Based Asset Pricing - 3 - September 2006

For simplicity we de-emphasize the role of investor preferences (B).

In particular in the first part of the talk, we assume that interest rates are
deterministic, and that the pricing measure Q (the risk-neutral measure) is
pre-specified.

Thus, we model the financial markets with the specification of a probability
space (Ω,F , Q) on which we are going to explicitly construct a filtration
{Ft}0≤t<∞ representing the flow of information available to market participants.

The markets we consider will, in general, be incomplete.

Absence of arbitrage implies that the deterministic default-free discount bond
system {PtT}0<t<T<∞ is given by

PtT =
P0T

P0t
, (1)

where {P0t}0<t<∞ is the initial term structure.
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Cash flows and market factors

We consider an asset defined by a set of random cash-flows {DTk
}k=1,...,n that

occur at the pre-specified dates {Tk}k=1,...,n.

The price of the asset that generates the cash flows {DTk
}k=1,...,n is given by the

standard risk-neutral valuation formula:

St =

n∑
k=1

1{t<Tk}PtTk
EQ [DTk

|Ft

]
. (2)

We introduce a set of independent random variables {Xα
Tk
}α=1,...,mk

k=1,...,n , which we
call market factors.

For each k the cash flow DTk
is assumed to depend on the independent market

factors Xα
T1

, Xα
T2

, . . . , Xα
Tk

.
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Cash flow structure

Thus for each date Tk we introduce a cash-flow function ∆Tk
such that

DTk
= ∆Tk

(Xα
T1

, Xα
T2

, . . . , Xα
Tk

). (3)

For any given asset, it is the job of the “financial analyst” to determine the
relevant X-factors, their a priori probabilities, and the form of the cash-flow
functions.
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Examples

I. Simple credit-risky coupon bond. (two coupons, no recovery on default).

DT1 = cXT1 (4)

DT2 = (c + n)XT1XT2. (5)

Here c, n denote the coupon and principal.

XT1, XT2 are independent binary random variables taking the values {0, 1} with
a priori probabilities p1 = Q[XT1 = 1] and p2 = Q[XT2 = 1].

II. Credit-risky coupon bond with recovery.

DT1 = cXT1 + R1(c + n)(1−XT1) (6)

DT2 = (c + n)XT1XT2 + R2(c + n)XT1(1−XT2). (7)

Here R1, R2 are recovery rates.
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Information processes

For t ≤ Tk, we assume that all information available to market participants
about Xα

Tk
is contained in the information process {ξα

tTk
}0≤t≤Tk

defined by

ξα
tTk

= σα
Tk

Xα
Tk

t + βα
tTk

. (8)

The process {βα
tTk
} is a standard Brownian bridge over [0, Tk] with mean zero

and variance t(Tk − t)/Tk.

The X-factors and the Brownian bridges are all independent.

The Brownian bridges represent “market noise” and only the terms σα
Tk

Xα
Tk

t
contain “true market information”.

The true value of Xα
Tk

is “revealed” at time Tk.

The parameter σα
Tk

can be interpreted as the “information flow rate” for the
factor Xα

Tk
.
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Modelling the market filtration

Now we are in a position to construct the market filtration.

We assume that {Ft} is generated by the collection of market information
processes {ξα

tTk
}. Thus:

Ft = σ
({

ξα
sTk

}α=1,..., mk

0≤s≤t, k=1,...,n

)
. (9)

The information process {ξα
tTk
} is {Ft}-adapted, but this is not the case for the

Brownian bridge {βtTk
}.

Clearly, the market factor Xα
Tk

is FTk
-measurable.

A calculation shows that the information processes {ξα
tTk
} satisfy the Markov

property.
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Example

III. Single-dividend paying asset, with a single market factor.

Let the cash-flow function of a single-dividend paying asset be given by
DT = ∆T (XT ).

Here the market factor XT is a continuous non-negative random variable with a
priori probability density p(x).

The price process of the single-dividend paying asset is therefore

St = 1{t<T}PtTEQ [∆T |ξt] (10)

= 1{t<T}PtT

∫ ∞

0

∆T (x) πt(x) dx. (11)

Making use of the Bayes formula we can show that the conditional probability
density πt(x) appearing here is given by

πt(x) =
p(x) exp

[
T

T−t(σxξt − 1
2σ

2x2t)
]∫∞

0 p(x) exp
[

T
T−t(σxξt − 1

2σ
2x2t)

]
dx

. (12)
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Example

IV. Single-dividend paying asset, with multiple market factors.

Let DT = ∆T

(
X1

T , X2
T , . . . , Xm

T

)
.

Write pα(x) for the a priori probability density of the market factor Xα
T .

Then owing to the independence of the information processes ξα
tT associated

with the market factors Xα
T (α = 1, . . . ,m) we find that:

St = 1{t<T}PtT

∫ ∞

0

· · ·
∫ ∞

0

∆T (x1, x2, . . . , xm)

× π1
t (x1)π

2
t (x2) · · ·πm

t (xm)dx1dx2 . . . dxm. (13)
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Example

V. Single-dividend paying asset: stochastic volatility

We obtain the dynamics of the asset price by applying Ito’s lemma to the
risk-neutral valuation formula. The result is:

dSt = rt St dt +

m∑
α=1

1{t<T}
σαT

T − t
PtT Cov [∆T , Xα

T | Ft] dW α
t

+∆Td1{t<T}. (14)

Here the {Ft}-adapted Brownian motions {W α
t }α=1,...,m driving the asset price

are defined by

W α
t = ξα

t −
∫ t

0

1

T − s
(σα T Es [DT ]− ξα

s )ds. (15)

The volatility of the price process depends on more than one Brownian motion.

As a consequence, the model gives rise in a natural way to “unhedgeable”
stochastic volatility.
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Example

VI. Defaultable discount bond, with recovery.

Let HT denote the terminal value of a defaultable discount bond that can take
the values HT = hi (i = 0, 1, . . . , n) at maturity.

We assume that h0 > h1 > · · · > hn, and write pi for Q(HT = hi).

In this example we assume that the information process takes the following form:

ξt = σHT t + βtT . (16)

In other words, HT itself is taken to be the only market factor.

The price process {BtT}0≤t≤T of the credit-risky discount bond is thus given by

BtT = PtTEQ [HT |Ft] , (17)

where Ft is generated by {ξt}0≤s≤t.

The conditioning with respect to Ft can therefore be replaced by conditioning
with respect to ξt:

BtT = PtTEQ [HT |ξt] . (18)
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The bond price can then be expressed in the form

BtT = PtT

∑
i

hiπit, (19)

where πit = EQ[1{HT=hi}|ξt].

The conditional probability πit is given by:

πit =
pi exp

[
T

T−t

(
σhiξt − 1

2σ
2h2

i t
)]∑n

i=0 pi exp
[

T
T−t

(
σhiξt − 1

2σ
2h2

i t
)]. (20)

For the credit-risky bond price we thus obtain:

BtT = PtT

∑n
i=0 hipi exp

[
T

T−t

(
σhiξt − 1

2σ
2h2

i t
)]∑n

i=0 pi exp
[

T
T−t

(
σhiξt − 1

2σ
2h2

i t
)] . (21)

One of the attractive features of this formula is that since BtT is expressed
explicitly as a function of the information process, simulation of the dynamics of
the bond price process can be carried out in an efficient manner.
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Simulated bond price process for various information flow rates
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Figure 1: Bond price processes for various information-release rates. The parameter σ governs the rate at which information is released to market participants
concerning the payout of a defaultable discount bond. Four values of σ are illustrated, given by .04, .2, 1, and 5. The bond has a maturity of five years, and the
default-free interest-rate system has a constant short rate given by r = 5%. The a priori probability of default is taken to be 20%. For low values of σ, collapse of
the bond price occurs only ‘at the last minute’.
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Example

VII. Options on defaultable bonds.

The value of the information flow rate parameter σ can be inferred from option
price data.

The value at time 0 of an option exercisable at time t > 0 on a defaultable bond
maturing at time T > t is

C0 = P0tEQ [(BtT −K)+
]
. (22)

Inserting the price BtT for the defaultable bond in (22) we obtain

C0 = P0t EQ

( n∑
i=0

PtThiπit −K

)+


= P0t EQ

(PtT

∑
i hipi exp

[
T

T−t

(
σhiξt − 1

2σ
2h2

i t
)]∑

i pi exp
[

T
T−t

(
σhiξt − 1

2σ
2h2

i t
)] −K

)+
 . (23)
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The call option price can thus be viewed as an “exotic derivative” with payoff
f (ξt) at maturity t.

The price of such an information derivative is given by

V0 = P0tEQ [f (ξt)] . (24)

We first look at an abstract security expiring at time t with the payoff

f (ξt) = δ(ξt − x). (25)

To work out the price in this case we use the “Fourier representation”

δ(ξt − x) =
1

2π

∫ ∞

−∞
ei(ξt−x)κ dκ. (26)

The value of a general information derivative can then be expressed as a
weighted integral of elementary information securities:

V0 = P0tEQ [f (ξt)] = P0tEQ
[∫ ∞

−∞
δ(ξt − x)f (x)dx

]
= P0t

∫ ∞

−∞
A0t(x)f (x)dx.

(27)
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A calculation shows that the value of the “elementary information security” is

A0t(x) = P0t

n∑
j=0

pj

√
T

2πt(T − t)
exp

[
−1

2

(σhjt− x)2T

t(T − t)

]
. (28)

We now calculate the value C0 of the call option by rewriting (23) in terms of
A0t(x), that is:

C0 = P0t EQ

(PtT

∑
i pihi exp

[
T

T−t

(
σhiξt − 1

2σ
2h2

i t
)]∑

i pi exp
[

T
T−t

(
σhiξt − 1

2σ
2h2

i t
)] −K

)+
 (29)

=

∫ ∞

−∞
A0t(x)

(
PtT

∑
i pihi exp

[
T

T−t

(
σhix− 1

2σ
2h2

i t
)]∑

i pi exp
[

T
T−t

(
σhix− 1

2σ
2h2

i t
)] −K

)+

dx.

(30)

In the case of a binary defaultable bond paying either h0 or h1 at maturity we
obtain a closed-form expression for the price of the call option.
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The result for the option price is very similar in form to the Black-Scholes
formula:

C0 = P0t

[
p1(PtTh1 −K)N(d+)− p0(K − PtTh0)N(d−)

]
. (31)

The argument of the normal distribution function here is defined by

d± =
ln
[

p1(PtTh1−K)
p0(K−PtTh0)

]
± 1

2σ
2τ (h1 − h0)

2

σ
√

τ (h1 − h0)
, (32)

where τ = tT/(T − t).

The information flow rate σ thus plays a role very similar to that of the volatility
parameter in the Black-Scholes formula.

Monotonicity of option price with respect to σ.

How does the value of the a call option change when we change the value of the
information flow rate σ?

University of Maryland L. P. Hughston, King’s College London
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Let us define the option vega in this model by:

V =
∂C0

∂σ
. (33)

For the vega we then obtain a positive expression:

V =
1√
2π

e−rt−1
2A(h1 − h0)

√
τp0p1(PtTh1 −K)(K − PtTh0), (34)

where

A =
1

σ2τ (h1 − h0)2
ln2

[
p1(PtTh1 −K)

p0(K − PtTh0)

]
+

1

4
σ2τ (h1 − h0)

2. (35)

Thus C0 is an increasing function of the information flow rate σ.

In other words, the more rapidly information regarding the ‘true’ value of the
bond payoff is released, the higher the premium of the call option.

Another conclusion is that bond option prices can be used to recover an implied
value for the information flow rate σ, and hence to calibrate the model.
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Correlation in a multiname structure

Correlation results if assets share one or more X-factors in common.

Consider two credit-risky zero-coupon bonds.

The first ZCB is defined by the cash flow DT1 at T1, and the second ZCB is
defined by the cash flow DT2 at time T2, where T2 > T1.

The cash flow structure is given by:

DT1 = n1XT1 + R1n1(1−XT1) (36)

DT2 = n2XT1XT2 + Ra
2n2(1−XT1)XT2

+ Rb
2n2XT1(1−XT2) + Rc

2n2(1−XT1)(1−XT2). (37)

Here, n1 and n2 denote the bond principals.

XT1 and XT2 are independent binary random variables taking the values {0, 1}.

R1, Ra
2, Rb

2, and Rc
2 denote possible recovery rates in the case of default.

University of Maryland L. P. Hughston, King’s College London
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Interest rates and information

To model interest rates in an information-based framework we work in a
discrete-time setting.

For the time-line we write {ti}i=0,1,2,....

Associated with each date ti we have a set of X-factors,
denoted Xα

i (α = 1, . . . ,mi).

Let us then write Yi for the collection

Yi = {Xα
1 , Xα

2 , . . . , Xα
i }. (38)

We assume the existence of a pricing kernel process {πi}i≥0, where

πi = K(Yi). (39)

Thus πi depends on all of the X-factors revealed up to time i.

We assume that {πi} is a positive supermartingale, and that limi→∞E[πi] = 0.

University of Maryland L. P. Hughston, King’s College London
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The associated discount-bond system {Pij}i<j is given by

Pij =
Ei[πj]

πi
. (40)

For the money market account we have

Bi = (1 + r1)(1 + r2) · · · (1 + ri) (41)

where
1 + rn =

πn−1

En−1[πn]
. (42)

The filtration is generated by the information processes associated with the
given system of X-factors.

To model inflation we need appropriate expressions for the real pricing kernel
{πR

i }, and the consumer price index {Ci}.

We take a dynamic macroeconomic approach to inflation modelling, introducing
processes for aggregate consumption {ki} and the money supply {Mi}.
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We also introduce a liquidity benefit process {λi}, with the property that λiMi

represents the nominal benefit conveyed by the money supply at time ti.

The corresponding real liquidity benefit is given by

li =
λiMi

Ci
. (43)

We introduce a bivariate utility U(x, y) and assume that agents optimise the
value of

E

[
N∑

n=0

e−γtnU(kn, ln)

]
(44)

subject to the budget constraint

w = E

[
N∑

n=0

πn(Cnkn + λnMn)

]
. (45)

Here w is the total wealth available for consumption over the relevant period.

University of Maryland L. P. Hughston, King’s College London
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The first-order conditions are:

Ux(kn, ln) = µ e−γtnπnCn (46)

Uy(kn, ln) = µ e−γtnπnCn. (47)

As a consequence we obtain the fundamental relation

Ux (kn, λnMn/Cn) = Uy(kn, λnMn/Cn). (48)

This relation allows us to express Cn in terms of kn and λnMn.

We also therefore obtain expressions for πn and πR
n in terms of kn and λnMn.

For example in the case of log-utility we have

U(x, y) = A ln(x) + B ln(y). (49)

The fundamental relation becomes:

knCn =
A

B
λnMn, (50)

which shows the relation between the price level and the money supply in this
model.
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In the log-utility case we then have

πn =
Be−γtn

µλnMn
. (51)

Hence in the log-utility theory we obtain a relation between the nominal money
supply and the term structure of interest rates.

Consider now any contingent claim with random nominal payoff Hj at time tj.

The value of the claim at time t0 in the log-utility model is given by

H0 = λ0 M0 e−γtj E
[

Hj

λjMj

]
. (52)

The model is completed with the specification of {ki} and {λnMn} as functions
of the X-factors.

Thus we obtain a framework for interest rates and inflation within the
information-based approach.
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Conclusions

We present a new information-based framework for asset pricing.

In this approach the market filtration is modelled explicitly.

We have shown how closed-form solutions for the price processes of assets can
be obtained in a number of different examples, and that complex cash-flow
structures can be modelled efficiently with a good deal of flexibility.

The new framework offers a natural explanation for the origin of stochastic
volatility, and leads to a specific model for stochastic volatility.

The price process of a defaultable zero-coupon bond is given by a closed-form
expression that leads to an efficient simulation methodology.

In the case where a binary defaultable bond is the underlying, the price of a call
option can be exactly computed, and turns out to be of the Black-Scholes form.
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The option price has a positive vega and thus is an increasing function of the
information flow rate σ.

Option positions can be hedged with credit-risky bonds.

The information-based model for binary defaultable bonds can be calibrated by
use of bond options.

Correlation structures can be incorporated in a natural way

A natural extension of the framework to the macroeconomic domain leads to
new models for interest rates and inflation.

A variety of specific applications are envisaged for equity, credit, interest rates,
inflation and insurance.
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Credit default swaps

We consider a CDS written on a credit-risky coupon bond.

The seller of protection receives a series of premium payments, each of the
amount g, at some pre-designated dates.

The payments continue until a credit event occurs, which here we model as the
failure of a coupon payment in the reference bond.

In the event of a default a lump sum is paid to the buyer of protection at the
default time equal to the principal minus the effective recovery value of the
reference bond at that time.

As an illustration we consider the case when the reference bond has two
outstanding coupon payments due, at the times T1 and T2.
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The cash-flow structure of the coupon bond is given by

HT1 = cXT1 + R1(c + n)(1−XT1) (53)

HT2 = (c + n)XT1XT2 + R2(c + n)XT1(1−XT2). (54)

Here n is the principal of the reference bond, c is the coupon, and R1, R2 are
the effective recovery rates.

XT1, XT2 are independent binary random variables taking the values {0, 1} with
a priori probabilities p1 = Q[XT1 = 1] and p2 = Q[XT2 = 1].

For simplicity we assume that the default-swap premium payments are made
immediately after the bond coupon dates.

University of Maryland L. P. Hughston, King’s College London
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From the perspective of the seller of protection, the value of the CDS is given by:

Vt = gPtT1E
[
XT1|ξ

(1)
t

]
− (n−R1(c + n))PtT1

(
1− E

[
XT1|ξ

(1)
t

])
+ gPtT2E

[
XT1|ξ

(1)
t

]
E
[
XT2|ξ

(2)
t

]
− (n−R2(c + n))PtT2E

[
XT1|ξ

(1)
t

] (
1− E

[
XT2|ξ

(2)
t

])
. (55)

We note that the expectations in the above equation are given by

E
[
XTi

∣∣ξ(i)
t

]
=

p
(i)
1 exp

[
Ti

Ti−t

(
σiξ

(i)
t − 1

2σ
2
i t
)]

p
(i)
0 + p

(i)
1 exp

[
Ti

Ti−t

(
σiξ

(i)
t − 1

2σ
2
i t
)] (i = 1, 2). (56)
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