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Lévy term structure models

The Lévy forward rate model (HIM type)
t

f(t,T):f(O,T)—|—/ta(s,T)ds—/ o(s,T)dLs
0 0

The Lévy forward process model

t *
F (t, TJ*7 T]tl) - F (07 Tj*7 Tjtl) eXp ( /0 )\(S, TJ*)dL:I_1>

The Lévy Libor or market model

t *
L(t, Tj*) = L(O, Tj*) exp (/ )\(S7 Tj*)dl_-srj71>
0

1+6L(t ) =F(t, T, T )



Extensions of the Lévy market
model

Multi-currency setting
(Eb—Koval (2006))

Credit risk model
(Eb—Kluge—Schonbucher (2006))

Lévy market model

Swap rate model
(Eb—Liinev (2006))

/TN

Duality principle
(Eb—Kluge—Papapantoleon (2006))
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Caplet market data
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Libor rates in a cross currency
setting

Discrete tenor structure To < T1 <+ < Tn < Tpp1 =T"
Accrual periods 0 =T — T,

T*

~N
~ —+

] ]
1 1
A T,

~ T

I
I
T,
(m-+1)markets i=0,...,m
0 = domestic market

Want to model the dynamics of the Libor rate L (t,Tj—1) which applies to
time period [T;_1,T;] in marketi (i =0,...,m)

We target at the form

. ) t i
L'(t,Ti—1) = L'(0,Tj_1) exp (/ /\'(s,T,-,l)dLS’TJ)
0



The driving process

LOT" = (L977,...,L9"") is a d-dimensional time-inhomogeneous Lévy
process. The law of L7 is given by

t
Efexp(iu "LYT")] = exp/ 627 (iu)ds  with
0
007 (z) =z B2 + Lmc +/ (eZTX —1- sz>/\2’T*(dx),
2 Rd

where bto’T* €RY, Csis a symmetric nonnegative-definite d x d-matrix
and X27 is a Lévy measure.

.
Integrability: / <\bg’T |+|\CS||+/
0

|x\2)\2’T*(dx)> ds < oo
{Ix|<1}

/ / exp(u’ x)A"T (dx)ds < oo (u € [-M, M]?)
o Jux>1



Description in terms of modern
stochastic analysis

LOT" = (L?’T ) is a special semimartingale with canonical representation

t t t
LoT :/ boT ds+/cdeS°’T +// X (1 — vor+)(ds, dx)
0 0 0o Jrd

(W2T") is a P°T -standard Brownian motion with values in R¢
C: is a measurable version of the square root of C;

u the random measure of jumps of (L")

Vor-(ds,dx) = AT (dx)ds is the P°T -compensator of 1

(L?’T*) is also called a process with independent increments and
absolutely continuous characteristics (PlIIAC).
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Simulation of a Lévy process
NIG(10,0,0.100,0) on [0,1]
NIG(10,0,0.025,0) on [1,3]
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The foreign forward exchange
rate for date T* (1)

Assumption

(FXR.1): For every marketi € {0,...,m} there are strictly decreasing
and strictly positive zero-coupon bond prices B'(0,T;)(j = 0,...,N + 1)
and for every foreign economy i € {1,..., m} there are spot exchange
rates X'(0) given.

Consequently the initial foreign forward exchange rate corresponding to
T*is ) )
B'(0,T*)X'(0)

Fxi(0,T") = BO(0,T*)



The foreign forward exchange
rate for date T* (2)

Assumption

(FXR.2): For every foreign marketi € {1,...,m} there is a continuous
deterministic function & (-,T*) : [0,T*] — RY.

For every coordinate 1 < k < d we assume

(T EM (se[oT7], 1<i<m)

— M
where M < N2



The foreign forward exchange
rate for date T* (3)
Assumption

(FXR.3): Foreveryi € {1,...,m} the foreign forward exchange rate for
date T* is given by

in(t,T*):in(o,T*)exp(/v(sT ds+/§ (sT7) ")
where 1
’YI(S7T*) _ _gl(s,T*)Tbg,T* . §|£|(S,T*)TCS|2

= / (eﬁi(s”*)TX —1- gi(s7T*)Tx>)\2‘T*(dx)
Rd

Equivalently
F(tT*) = in(O,T*)&(/ £(s,T") TcsdW 2T
0

+ /0 /Rd (exp (€(s,T)Tx) — 1) (n— uo,T*)(ds,dx))



The foreign forward exchange
rate for date T* (4)

Consequences: Fo (-, T*) isa P -martingale
Fyi (1,T7)
Eoors | X202 7| —
ot {in(o,T*)} !
Define .
ap'r _ Fa(tTY)
dpoT* . Fyi (0,T)

By Girsanov's theorem we get a P'""-standard Brownian motion

R . t .
w, T = w1 —/csg'(s,T*)ds
o]
and a P'™"-compensator

vir-(dt,dx) = exp(&' (t,T*) "x)ror-(dt, dx)



The Lévy Libor model

Eberlein-Ozkan (2005)
Tenorstructure To< Ty < <Tyn < Tng1=T*
with Tj,1 — Ty =4,set T =T"—jé forj=1,...,N

1y 1 L~ 1"
| | | | | | |
I T T T T T 1
1, T L L L., T T*

Assumptions

(CLM.1): For every market i and every maturity T; there is a bounded
deterministic function A'(-,Tj), which represents the volatility
of the forward Libor rate process L'(-,T;) in market i.

(CLM.2): The initial term structure of forward Libor rates in market i
is given by

i _ 1 Bi(O,T‘)
SREH G



Backward Induction (1)

Given a stochastic basis (Q, Fr-,P*7 ", (F)o<t<1+)

A

1y 5 L~ 1"

1
I ] ] ] ]
I T T T T T
T, T L I Iv., N
We postulate that under P'T”

. . t . R,
L'(t,Ty) = L'(0,T;) exp </ N (s, T7)dLy" )
0

where

L /b'T ds+/ CsdWIT 4 // 1 — vir+)(ds, dx)
Rd

with W™ and v;1- as given before.



Backward Induction (2)

In order to make L' (t,T;') a P'" " -martingale, choose the drift
characteristic (by" ") s.t.

t . t
/ N(s,T7)bY" ds :—}/ [N (s,T1)cs|2ds
0 2 0
t i * B
f// (eA (T flfA'(s,Tl*)x) vir-(ds, dx)
0 JRrd

Transform L'(t,T;) in a stochastic exponential
L'(tT7) = L'(O.TH&EMH(TT))

where

: t f— t (T *
H'(t,Tf):/ N(s,T1)es dW.T +// (& — 1) (n-wiz-)(ds, dx)
0 0 JRd



Backward Induction (3)

Equivalently
dL'(t,T7) = Li(t—,Tf)()\i (T dw, T

+/ (e)\i(t;rl*)x _ 1) (M _ Vi,'l'*)(dtfdx)>
Rd

with initial condition

i« 1 (BY(0,T])
L'(0,T) = 5 (Bi(O,Tl*) - 1)



Backward Induction (4)

Recall Fg(t,T;,T*)=1+06L'(t,T;), therefore,
dFgi (6T T*) = §dL'(t,Ty)

e L (t=T7) i s -
= Fa T g YT o

=al(tT,T)

SL(t—,T7) AT .
*/Rd 1+6L(t—T;) (e 1) (1~ mr+)(dt, )

=B (txT5T*)-1
Define the forward martingale measures associated with T;
dp't
dpir”

. t R t .
Mt = /a'(s,Tf,T*)cS dw." +/ / (6'(S,X,Tf,T*) - 1) (u—vi7+)(ds, dx)
0 0 JRd

=&rx(M")  where



Backward Induction (5)
Pk —, t
Then W™ =w, " f/ o' (s,T,T*)cs ds
0
is the forward Brownian motion for date T;" and

vz (dt, dx) = 8'(t,x,T5,T ")uz«(dt, dx) is the P''T -compensator for .

Second step

L 1~
I 1 1 [— ]
f 1 1 1 1 1
1, T L L., T T*

We postulate that under P''+

L'(t,TF) = L'(0,T5 ) exp ( / X(s,Tz*)dL's‘Tl) where
0

. t t R t
L' :/ byt ds+/ s dW. T +// x(p — vir-)(ds, dx)
0 0 0 Jrd ot



Backward Induction (6)

Second measure change
dp'Tz

i,2
apr =& (M)

where

g
iy

M? = / o (8,T3,T1)cs dWq
0

+/0 /Rd (8'(s,x,T2T7) — 1) (1 — 77 )(ds, dx)

This way we get for each time point T;" in the tenor structure a Libor rate
process which is under the forward martingale measure P71 of the form

) ) t —_—
L'(t, ;") = L'(0,T;") exp (/ )\'(s,Tj*)dLS’TH)
0



Alternative Backward Induction (1)

Postulate
L al (T = @+ sl oT e ([ t NsTha”)
equivalently
Fei (LTI T7) = Fei(0.T1,T7) exp (/Ot Ai(s,Tf)dLis’T*>

In differential form

dFgi(, 1, T7) = F (t= i T ) (N (6T o aw, ™

+/Rd (e*'“f)X - 1) (i — Vi,T*)(dt,dx))



Alternative Backward Induction (2)

Define the forward martingale measures associated with T;*

dp'Ti
dPiT”

_ ng (I\A//Ii,l)

where

|\7|f’1:/ (s, T )cs dWIT™ + // T (nym)(ds,dx).
0 RY



Cross-currency Lévy market model

Domestic Market Foreign Market

- Fi (T -
PO T forward measure P -forward measure

’ PO TN -forward measure ‘ ’ PN -forward measure ‘
0, TN—1 TN -1
P -forward measure P -forward measure
0,Ti 1 iTig1
P~ iI+1-forward measure P 1+1-forward measure
Fa (s Tj, Tj41) Fai (5 T Tja)

Fi (5 T))

0,T, X T
’ P~ '] -forward measure H P i -forward measure ‘

’ 1P0-T1 forward measure ‘ ’ P T1 forward measure ‘

Relationship between domestic and foreign fixed income markets in a discrete-tenor framework.



Relationship between the
domestic and the foreign market

The forward exchange rates in the i-th foreign market are related by

Fgi (thi 7Ti+1)

Pl =Pt T 7, m )

From this one gets the dynamics of Fyi(t,T;)

dFy (t,T; . .o
T T T W [ (€T T D)0 6)
xi (t=.Tj) j

Rd

where the coefficients are given recursively

(T Tis1) = o' (6,75, 1) — a®(6,T5, 1) + ¢ (6, Tja,Tis2)

) i T,
Zl(t,x,Tj,THl) o B'(t, %X, Tj,Tj1)

= C(t,x, Tz, Ty
ﬂo(t7X,Tj aTj+l) C( , X5 14, J+2)



Pricing cross-currency derivates
(1)
Foreign forward caps and floors
SX[L(Tj-1,Tj-1) —K'T*
Time-0-value of a foreign Ty-maturity cap

N+1

FC(0,Tx) =8> B'(0,T)E [(Li (Ti—1,Tj-1) — Ki)j

=1

Alternatively if we define Ki=1+6K' (forward process approach)

N+1
FC(0,Tv) = > B'(0.T)E,r, [(1+5|—'(T1717T171) - K')T ;
=1
N+1 ) .
=) C'(0,T;,K")

i=1



Pricing cross-currency derivates

(2)

Numerical evaluation of the cap price

i ! 14 6L(t,Tj—1)
Define Xt (t) = [ N(s,Ti_1)dLy" = In 2 2= 7i=1)

ine Xr_, (1) /0 (s.Ti-1) 1160(0.T, 1)
and let x'i-1(z) be its characteristic function, then via a convolution
representation

C'(0T,K") = B'(OT)K %i)/_eXp('”@)(Rfynj;)l((lii;elit)iu)

where & = In(K') — In(1 + 6L'(0,Tj_1)) and R is s.t. x'T-1(iR) < oo.



Pricing cross-currency derivates

(3)

Cross-currency swaps

Floating-for-floating cross-currency (i; ¢; 0) swap

Libor rate L'(T;_1,T;_1) of currency i is received at each date T,
Libor rate Le(Tj_l,Tj_l) of currency ¢ is paid

Payments are made in units of the domestic currency

Thus the cashflow at time point T; is (notional = 1)

S(L'(Tj—1,Tj—1) — LY(Tj—1,Tj—1))



Pricing cross-currency derivates
(4)

The time-0-value of a floating-for-floating (i; ¢; 0) cross-currency forward
swap in units of the domestic currency is

N-+1 Bi(O,Tj_l)

Bi (O,Tj) exp (Di (O’Tj—lvTJ' ))

CCFSjir0(0) = B%(0,T;) (

=1

N+l

0 T;
Z Be 0 i|-)1 exp (D[(O7TJ'—17TJ'))>

where
D'(0,Tj-1,T))

Ti—1 )
= 7/ N(s, Tj- 1) cs¢'(s,Tj,Tj+1) ds

/ /Rd exp (s,Ti—1) x) - 1) (Gi(s, %, T, i) — )uo,Tj(ds,dx)



Pricing cross-currency derivates

(5)

A quanto caplet with strike K, which expires at time T;_1, pays at time T;
QCp!'(T;,Tj,K') = 6X' (L'(Tj_1,Tj_1) — K')*
where X' is the preassigned foreign exchange rate
Time-0-value
QCpl'(0,T;,K") = B®(0,T))E 0.1, [0X'(L'(Tj-1,Tj-1) — K')*]
= BY(0,T)X'Epor, [(1 + 6L (Tj-1,Tj-1) — (1 4 6K'))"]

(forward process approach)



Pricing cross-currency derivates
(6)

Numerical evaluation of quanto caplets. Write

. . Tji—1 . iT
1+5L|(Tj,17Tj,1) = (1+5L'(O,Tj,1))exp (/J )\I(S,ijl)dLS‘TJ)
0

= (1+6L'(0,Tj—1)) exp (M'(0,Tj-1,T)) + D'(0,Tj-1,T}) )

assume density o non-random
then forv(x) = (e — 1)*
QCp!'(0,T;,K') = B®(0,T))X' (1 + 5K')(v * 0)(§)
Finally we get
QCpl'(0,T;,K') = B%(0,T;)X"(1 + 6K")

exp(§R) [ . MTi—1(iR — u)
o /_oo eXp(Iugj)(RX—i—iu)(R T1tiu)




Absolute errors of EUR caplet

calibration

S
s =
L ]

Maturity (years)
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2.50%

Strike Rate



Absolute errors of USD caplet
calibration

.00 %
Strike Rate 3.00%
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