CHARACTERISATION OF b(M) FOR CONTINUOUS BMO-MARTINGALES.

Delbaen Freddy ETH Zürich Joint work with S. Tang of Fudan University Shanghai Maryland: Dilip County, October, 2006

- (1) $(\Omega, (\mathcal{F}_t)_{0 \le t \le \infty}, \mathbf{P})$, usual assumptions
- (2) all martingales are continuous, all stopping times are predictable
- (3) M is a (real) BMO-martingale

(4)
$$\mathcal{E}(M) = \exp\left(M - \frac{1}{2}\langle M, M \rangle\right), \, d\mathbf{Q} = \mathcal{E}(M)_{\infty} \, d\mathbf{P}$$

(5) For
$$\lambda \in \mathbb{C}$$
: $\mathcal{E}(\lambda M) = \exp\left(\lambda M - \frac{1}{2}\lambda^2 \langle M, M \rangle\right)$

(6)
$$\mathcal{E}(iM) = \exp\left(iM + \frac{1}{2}\langle M, M \rangle\right)$$

$$b(M) = \sup \left\{ \begin{array}{l} b \\ B \\ \end{bmatrix} \text{ there is } K \text{ so that for every stopping time } T : \\ \mathbb{E} \left[\exp \left(\frac{b^2}{2} \left(\langle M, M \rangle_{\infty} - \langle M, M \rangle_T \right) \right) \mid \mathcal{F}_T \right] \leq K \right\}$$

Kazamaki asked if there is a relation between b(M) and the BMO-distance of M to $H^{\infty} = \{N \mid \langle N, N \rangle \in L^{\infty}\}$

Grandits answered the question by "no"

Schachermayer characterised the closure of H^{∞} in BMO What is the meaning of b(M)?

The Föllmer-Schweizer decomposition.

Let $S = M - \langle M, M \rangle + N$ be a price process, here $d\langle N, N \rangle \perp d\langle M, M \rangle$. All price processes can be written in such a way by adapting the "drift related part" of the stochastic driver.

We say that a Föllmer-Schweizer decomposition exists if each random variable $f \in (H^p)^*$ can be written as

$$f = \pi(f) + \int_0^\infty H_u \, dS_u + W_\infty$$
, where $W \perp S, W \in (H^p)^*$

This problem was solved

- (1) D., Monat, Schachermayer, Schweizer, Stricker for p = 2
- (2) Grandits and Krawczyk for 1
- (3) p = 1 i.e. FS holds in BMO (D. and Tang)

Theorem. The necessary and sufficient condition for FS to hold in $(H^p)^*$ is that $\mathcal{E}(M)$ satisfies the reverse Hölder condition for p, " R_p ", i.e. there is a constant K such that for every stopping time T

$$\mathbb{E}\left[\left(\frac{\mathcal{E}(M)_{\infty}}{\mathcal{E}(M)_{T}}\right)^{p} \mid \mathcal{F}_{T}\right] \leq K.$$

We need the operator that maps

f to the element $f-\langle M,Z\rangle_\infty$

where Z is the martingale $Z_t = \mathbb{E}_{\mathbf{P}}[f \mid \mathcal{F}_t].$

For $M \in BMO$ this operator maps H^p into L^p , where $1 \leq p \leq \infty$. (for $p = \infty$ we use BMO instead of H^{∞}, L^{∞}).

But the risk neutral measure involved is

$$d\mathbf{Q}/d\mathbf{P} = \mathcal{E}(M).$$

Basic ingredient is the following

Lemma (Yor). Suppose p > 1, suppose $\mathcal{E}(M)$ satisfies R_p . Let $Z \in L^{\infty}$, let $Z'_t = \mathbb{E}_{\mathbf{Q}}[Z_{\infty} | \mathcal{F}_t]$, then $\|\langle Z', Z' \rangle^{1/2}\|_q \leq c \|Z\|_q$.

For p = 1 we need the following.

Theorem.

$$||H \cdot M||_1 \le c ||H \cdot M - (H \cdot M) \cdot M||_1.$$

Proof. Based on Fefferman's inequality, stochastic analysis and BMO-theory.

 $dX_t = (X_t + g_t) \ dM_t, \quad X_0 = 0$ Its solution is (put $M^{\mathbf{Q}} = M - \langle M, M \rangle$):

$$X_t = \mathcal{E}(M)_t \int_0^t \mathcal{E}(M)_s^{-1} g_s \, dM_s^{\mathbf{Q}}$$

How good is X if $g \cdot M \in H^p$, $1 \le p < \infty$?

Known Theorem. The operator φ defined as $\varphi(X) = X \cdot M$ maps the H^p -martingales into H^p -martingales and this for all $1 \leq p < \infty$. $(L^{\infty} \to BMO)$

The theorem remains true for complex martingale spaces and $\|\varphi^n\|_{\mathbb{C}} \leq 2\|\varphi^n\|_{\mathbb{R}}, \|\varphi^n\|_{\mathbb{R}}$ depending on p. The dual of φ on $(H^p)^* \sim L^q$ (for p > 1) and $(H^1)^* = BMO$ for p = 1 is given by

$$\varphi^*(Z_\infty) = \langle Z, M \rangle_\infty$$

It is defined on the random variables Z_{∞} and returns a random variable.

Theorem. For $1 \le p < \infty$, the SDE satisfies $\|X\|_p \le c \|g \cdot M\|_p$ if and only if (1) $Y - \varphi(Y)$ is an isomorphism of H^p or equivalently (2) $Z_{\infty} - \langle Z, M \rangle_{\infty}$ defines an isomorphism of $(H^p)^*$. The equation can now be written as the equation

$$X - \varphi(X) = g \cdot M.$$

Theorem. For $1 \le p < \infty$, the following are equivalent:

- (1) the SDE satisfies $||X||_p \leq c ||g \cdot M||_p$ (H^p norms).
- (2) $Y \varphi(Y)$ is an isomorphism of H^p or equivalently
- (3) $Z_{\infty} \langle Z, M \rangle_{\infty}$ defines an isomorphism of $(H^p)^*$.
- (4) The FS decomposition holds in $(H^p)^*$.
- (5) $\mathcal{E}(M)$ satisfies the reverse Hölder condition R_p .

Remark. $\mathcal{E}(M)$ satisfies R_p for some p > 1.

Study of the operator φ

It is better to study the operator on the complex H^p spaces. In the case of complex λ , the exponential $\mathcal{E}(\lambda M)$ is no longer a uniformly integrable martingale and the case p = 1 becomes similar to the case p > 1. The operator $Id - \lambda \varphi$, $\lambda \neq 0$ is an isomorphism if and only if λ^{-1} is not in the spectrum of φ . (seen on complex H^p space).

Theorem. Let r_p be the spectral radius of φ on H^p . Then we have

$$\frac{1}{b(M)}\sqrt{p} \le r_p \le \frac{1}{b(M)}\sqrt{p(2p-1)}$$

Theorem. Are equivalent

(1) for all $\lambda \in \mathbb{C}$ and all (some) $1 \leq p < \infty$, $Id - \lambda \varphi$ is an isomorphism on complex H^p

(2) for all $\lambda \in \mathbb{C}$ and all (some) $1 \leq p < \infty$ there is K so that for all stopping times $T \leq \tau$:

$$\mathbb{E}\left[\left|\frac{\mathcal{E}(\lambda M)_{\tau}}{\mathcal{E}(\lambda M)_{T}}\right|^{p} \mid \mathcal{F}_{T}\right] \leq K.$$

(3)
$$b(M) = \infty$$

(4) φ is quasi-nilpotent on all (some) H^p ($1 \le p < \infty$), i.e. $r_p = 0$
(5) $\lim \|\varphi^n\|^{1/n} = 0$ on all (some) H^p ($1 \le p < \infty$).