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(1) (Ω, (Ft)0≤t≤∞,P), usual assumptions

(2) all martingales are continuous, all stopping times
are predictable

(3) M is a (real) BMO-martingale

(4) E(M) = exp
(
M − 1

2 〈M, M〉
)
, dQ = E(M)∞ dP

(5) For λ ∈ C: E(λM) = exp
(
λM − 1

2λ2〈M, M〉
)

(6) E(iM) = exp
(
iM + 1

2 〈M, M〉
)
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there is K so that for every stopping time T :

E

[
exp

(
b2

2
(〈M, M〉∞ − 〈M, M〉T )

)
| FT

]
≤ K


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Kazamaki asked if there is a relation between b(M) and
the BMO-distance of M to H∞ = {N | 〈N, N〉 ∈ L∞}
Grandits answered the question by “no”

Schachermayer characterised the closure of H∞ in BMO

What is the meaning of b(M)?



The Föllmer-Schweizer decomposition.

Let S = M − 〈M, M〉 + N be a price process, here
d〈N, N〉⊥ d〈M, M〉. All price processes can be written
in such a way by adapting the “drift related part” of
the stochastic driver.

We say that a Föllmer-Schweizer decomposition exists
if each random variable f ∈ (Hp)∗ can be written as

f = π(f)+
∫ ∞

0

Hu dSu+W∞, where W⊥S, W ∈ (Hp)∗.



This problem was solved
(1) D., Monat, Schachermayer, Schweizer, Stricker

for p = 2
(2) Grandits and Krawczyk for 1 < p < ∞
(3) p = 1 i.e. FS holds in BMO (D. and Tang)

Theorem. The necessary and sufficient condition for
FS to hold in (Hp)∗ is that E(M) satisfies the reverse
Hölder condition for p, “Rp”, i.e. there is a constant
K such that for every stopping time T

E

[(E(M)∞
E(M)T

)p

| FT

]
≤ K.



We need the operator that maps

f to the element f − 〈M, Z〉∞
where Z is the martingale Zt = EP[f | Ft].

For M ∈ BMO this operator maps Hp into Lp, where
1 ≤ p ≤ ∞. (for p = ∞ we use BMO instead of
H∞, L∞).

But the risk neutral measure involved is

dQ/dP = E(M).



Basic ingredient is the following

Lemma (Yor). Suppose p > 1, suppose E(M) satis-
fies Rp. Let Z ∈ L∞, let Z ′

t = EQ[Z∞ | Ft], then
‖〈Z ′, Z ′〉1/2‖q ≤ c‖Z‖q.

For p = 1 we need the following.

Theorem.

‖H · M‖1 ≤ c‖H · M − (H · M) · M‖1.

Proof. Based on Fefferman’s inequality, stochastic anal-
ysis and BMO-theory.



dXt = (Xt + gt) dMt, X0 = 0

Its solution is (put MQ = M − 〈M, M〉):

Xt = E(M)t

∫ t

0

E(M)−1
s gs dMQ

s

How good is X if g · M ∈ Hp, 1 ≤ p < ∞?

Known Theorem. The operator ϕ defined as ϕ(X) =
X · M maps the Hp-martingales into Hp-martingales
and this for all 1 ≤ p < ∞. (L∞ → BMO)

The theorem remains true for complex martingale spaces
and ‖ϕn‖C ≤ 2‖ϕn‖R, ‖ϕn‖R depending on p.



The dual of ϕ on (Hp)∗ ∼ Lq (for p > 1) and (H1)∗ =
BMO for p = 1 is given by

ϕ∗(Z∞) = 〈Z, M〉∞
It is defined on the random variables Z∞ and returns a
random variable.

Theorem. For 1 ≤ p < ∞, the SDE satisfies

‖X‖p ≤ c‖g · M‖p if and only if
(1) Y − ϕ(Y ) is an isomorphism of Hp or equiva-

lently
(2) Z∞−〈Z, M〉∞ defines an isomorphism of (Hp)∗.



The equation can now be written as the equation

X − ϕ(X) = g · M.



Theorem. For 1 ≤ p < ∞, the following are equiva-
lent:

(1) the SDE satisfies ‖X‖p ≤ c‖g·M‖p (Hp norms).
(2) Y − ϕ(Y ) is an isomorphism of Hp or equiva-

lently
(3) Z∞−〈Z, M〉∞ defines an isomorphism of (Hp)∗.
(4) The FS decomposition holds in (Hp)∗.
(5) E(M) satisfies the reverse Hölder condition Rp.

Remark. E(M) satisfies Rp for some p > 1.



Study of the operator ϕ
It is better to study the operator on the complex Hp

spaces. In the case of complex λ, the exponential E(λM)
is no longer a uniformly integrable martingale and the
case p = 1 becomes similar to the case p > 1. The
operator Id − λϕ, λ 
= 0 is an isomorphism if and only
if λ−1 is not in the spectrum of ϕ. (seen on complex
Hp space).

Theorem. Let rp be the spectral radius of ϕ on Hp.
Then we have

1
b(M)

√
p ≤ rp ≤ 1

b(M)

√
p(2p − 1)



Theorem. Are equivalent
(1) for all λ ∈ C and all (some) 1 ≤ p < ∞, Id−λϕ

is an isomorphism on complex Hp

(2) for all λ ∈ C and all (some) 1 ≤ p < ∞ there
is K so that for all stopping times T ≤ τ :

E

[∣
∣
∣
∣
E(λM)τ

E(λM)T

∣
∣
∣
∣

p

| FT

]
≤ K.

(3) b(M) = ∞
(4) ϕ is quasi-nilpotent on all (some) Hp (1 ≤ p <

∞), i.e. rp = 0
(5) lim ‖ϕn‖1/n = 0 on all (some) Hp (1 ≤ p < ∞).


