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Brief Overview

Objective
Estimate the edges in a piecewise smooth function from blurred and noisy Fourier data.

Assume a finite number of Fourier Coefficients is available for a piecewise function.

Desire accurate and robust detection of jump discontinuities.

Aim to improve reconstructions, restorations and classifications of signals.

The Approach
Approximate the jump function using Concentration Function - l1 minimization.
Remove Gibbs oscillations and aliasing introduced by concentration using

1 Matching waveform to estimate the jump function.
2 Impose sparseness on the jump function using regularization.
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Overview of Test Problems

One dimensional examples considered
No noise, no blur, no under sampling: Best case scenario but still non trivial.

No noise, no blur, but under sampling: Only partial Fourier data available. Fourier coefficients
are deleted from the middle of the spectrum (symmetrically), i.e. both low as
well as high frequencies still present. In context of minimization problems,
missing band of Fourier data corresponds to under sampling.

No noise, Gaussian blur, no under sampling: Fourier coefficients blurred by Gaussian filter

ĥk = e−
k2τ2

2 . (1)

Smooths edges in signal, edge detection using classical methods is difficult.

Additive i.i.d. Gaussian noise, no blur, all samples: How does additive noise in Fourier
coefficients impact edge detection?

Non-harmonic Fourier data: Examine edge detection for efficient data collection, eg in MRI.
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Background

The function f is represented by a finite number of spectral coefficients

f is 2π-periodic and piecewise-smooth in [−π, π).

It has Fourier series coefficients

f̂k =
1

2π

Z π

−π
f(x)e−ikxdx , k ∈ [−N,N ]

f̂ is a global representation; i.e., f̂k are obtained using values of f over the entire domain
[−π, π).

Assume f is piecewise smooth
Its jump function is defined by

[f ](x) := f(x+)− f(x−)

A jump discontinuity is a local feature; i.e., the jump function at any point x only depends
on the values of f at x+ and x−.
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Concentration Factor Edge Detection Method (Gelb, Tadmor)

Concentrating the edges using the concentration factor

Approximate [f ](x) using generalized conjugate partial Fourier sum (convolution with CσN (x))

SσN [f ](x) = i

NX
k=−N

f̂k sgn(k)σ

„
|k|
N

«
eikx = (f ∗ CσN )(x) (2)

σk,N (η) = σ( |k|
N

) are known as concentration factors.
For convergence of (2) concentration factors have to satisfy admissibility properties:

1

NX
k=1

σ

„
k

N

«
sin(kx) isodd

2
σ(η)

η
∈ C2(0, 1)

3

Z 1

ε

σ(η)

η
→ −π, ε = ε(N) > 0 is small

Then the convergence

SσN [f ](x) = [f ](x) +O(ε), ε = ε(N) > 0 small

depends on σ and the distance between x and a discontinuity of f .
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Two relevant examples for Concentration Functions

Low or high order convergence away from a jump

Polynomial: low order linear or
quadratic

σpoly(ξ) = pξp, p ∈ N+

Exponential: higher order.

σexp(ξ) = γξexp
„

1

αξ(ξ − 1)

«
,

where

γ =
πR 1−ε

ε
exp( 1

αρ(ρ−1)
)dρ

and α > 0.

Figure: Illustration of the CFs σ1 (dash), σ2 (dash
dot) and σexp (solid line).National Science Foundation: Division of Computational Mathematics 7 / 33
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Illustration of Edge Detection N = 64. Black line is the jump function

Example Case

f(x) =

8>><>>:
3/2 for − 3π

4
≤ x < −π

2

7/4− x/2 + sin(7x− 1/4) for −π
4
≤ x < π

8

x · 11/4− 5 for 3π
8
≤ x < 3π

4

0 otherwise.

(3)

(a) Polynomial p=1 (σ1) (b) Polynomial p=2 (σ2) (c) Exponential (σexp)
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Observations

Polynomial CFs only filter low frequencies

Exponential also filters some high frequencies

Fast convergence away from a jump leads to more oscillations around the jump

Many false positive and false negatives with regard to classifying jumps.

The minmod to improve the approximation (Gelb and Tadmor (2006))
Use the minmod function over different concentration functions

minmod{a1, a2, . . . , an} :=


s ·min(|a1|, |a2|, . . . , |an|) if sgn(a1) = · · · = sgn(an) := s
0 otherwise ,

(4)
yielding the approximation

SMM
N [f ](x) = minmod{Sσ1

N [f ](x), Sσ2
N [f ](x), . . . , SσnN [f ](x)}. (5)
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Minmod CF approximation to the jump function for noisy and blurred functions

(d) Under sampling (e) Blurring by a Gaussian (f) Noisy Fourier coefficients

Figure: Noting false positives and false negatives for identifying edges using a 5% threshold. (a) 10%
missing Fourier Coefficients. (b) Gaussian blur of variance τ = 0.05, for point spread function coefficients

ĥk = e−
k2τ2

2 . (c) Noise of variance .015 applied to Fourier Coefficients.

For blurred functions the edges may be missed, for noisy functions or with missing data too
many edges are determined.
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Improving Concentration using the Matching Waveform (A. Gelb and D. Cates, 2008)

Jump function approximation at x = ξ depends on size and location of jump but not on f :

SσN [f ](x) =
[f ](ξ)

π

NX
k=1

σ

„
k

N

«
cos k(x− ξ)

k
+O

„
logN

N

«
.

Introduce the waveform

Wσ
N (x) =

NX
k=1

σ

„
k

N

«
cos kx

k
. (6)

Apply the CF and correlate the obtained waveform with CF applied to an indicator function

SσmwN [f ](x) =
1

γmw
(SσN [f ] ∗Wσ

N )(x), normalization γmw =
1

π

NX
k=1

`σ( k
N

)

k

´2
(7)

This leads to the admissible matching waveform concentration factor (MWCF)

σmw
“ |k|
N

”
:=

1

γmw
σ
“ |k|
N

”Z π

−π
Wσ
N (ρ) exp (−ikρ) dρ. (8)

MWCF performs better in the presence of noise, but does not remove oscillations.
Performance deteriorates for nearby jumps.
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Appealing to Sparsity (Tadmor and Zou 2008)

A minimization formulation (iterative) provides an alternative to the matched filter edge
detector.

We take inspiration from sparsity enforcing regularization routines and their iterative
solutions (Tadmor and Zou).

Using a fit to data functional with a constraint condition on the sparsity of total variation in
the signal is one approach.

We consider l1 sparsity as an alternative and combine with the matching waveform
technique for correlating edges.
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Find Approximate jump function for f using coefficients of Noisy Blurred Function f

Appealing to sparsity

Given are ĝk for blur function h and noise n, ĝk = ĥk · f̂k + n̂k

Approximating jump function for f is jump function for g with Fourier coefficients

( ˆSσN [g])k =

„
i · σ

„
|k|
N

«
· sgn(k)

«
· ĝk

Using ĝk ≈ ĥk · f̂k yields„
i · σ

„
|k|
N

«
· sgn(k)

«
· ĝk = ( ˆSσN [g])k ≈ ĥk( ˆSσN [f ])k

We seek a sparse y which also approximates the jump function of f

Convolving y with Wσ
N (x) should also approximate jump function SσN [f ](x)

( ˆSσN [f ])k ≈ ( ˆWσ
N ∗ y)k = (Ŵσ

N )k · ŷk (9)

We obtain

ĥk · (Ŵσ
N )k · ŷk ≈ i · σ

„
|k|
N

«
· sgn(k) · ĝk
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A Discrete Variational Formulation

l1 minimization
Introduce matrices describing the components of the approximate equation

Σ = diag
„
σ

„
| −N |
N

«
, · · · , 0, · · · , σ

„
|N − 1|
N

««
H = diag(

π

| −N | ĥ−N , · · · , 0, · · · ,
π

|N − 1| ĥN−1) and

Fkj =
1

2N
(−1)k exp(

−iπjk
N

) where ŷ = Fy((x)).

Then to find the discrete approximation to y(x) , given by vector y, we can solve

y = arg min
u
‖u‖1 subject to ‖Σ(HFu− b)‖22 ≤ δ, (10)

b = (−i · ĝ−N , · · · , 0, · · · , i · ĝN−1). Concentration weights the data fit term.

This is a second order cone problem.

Introduce λ and solve

y = arg min
u
{λ‖u‖1 +

1

2
‖Σ(HFu− b)‖22}, (11)

National Science Foundation: Division of Computational Mathematics 14 / 33
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Experiments with N = 64 and under sampling but no noise and no blur.
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Figure: Edge detection using the exponential concentration factor. FC is the percentage of Fourier
Coefficients used, y is the thin line, unseen in (b). FP and FN are the count of misidentified edges, either
false positive or false negative, using 5% threshold on y.

One sees the effect of the regularization parameter comparing (a) and (b), and the effect of
reducing the number of Fourier Coefficients comparing (a) and (c).
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Under sampling, no noise, no blur. False Positives and False Negatives with Waveform
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Figure: Illustrating the impact of the regularization parameter
choice in relation to the number of Fourier Coefficients that are
sampled, and the impact on the number of False Positives and
False Negatives

Region (d) shows that there is a range
of regularization parameters for which
the method is robust with respect to
correct identification of edges
provided up to about 70% of
coefficients are retained.
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Using the Polynomial Concentration Factors. N = 64
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(a) N=64, σ1
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(b) N=64, σ2

Figure: No blur and no noise. Edge detection using the polynomial concentration factor with varying
amounts of Fourier data missing.

Higher order concentration factors perform better at capturing the edges correctly for a wider
range of regularization parameters.
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Edge detection in the presence of blur in the coefficients. N = 64.
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(c) σexp

Figure: Edge detection in blurred signals using σp, for p = 1, 2, and σexp. All plots show that the method
can handle blurring where the traditional CF method fails.

Gaussian blur of variance τ = 0.05, for point spread function coefficients ĥk = e−
k2τ2

2 . The
higher order concentration factors again perform better at capturing the edges correctly for a
wider range of regularization parameters.
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Edge detection in the presence of additive noise in the coefficients. N = 64.
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(c) σexp

Figure: Edge detection in signals with noise of variance .015 applied to Fourier Coefficients. All plots show
that the method can handle noise where the traditional CF method fails.

In this case the higher order exponential concentration factor performs better than the quadratic,
perhaps due to its inherent filtering of coefficients contaminated with noise.
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Is the waveform correlation required? Examples without the waveform for N = 64
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Figure: The figures illustrate for no blur and no noise success of edge detection for correctly finding edges,
as Fourier data are removed, and robustness to choice of the regularization parameter λ.

When using the low order polynomial concentration factor the method is quite robust, but for
higher order concentration factors the method is more sensitive to the choice of λ and the ability
to correctly detect edges is limited.
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Non-harmonic Fourier data

Motivation
Modern MRI scanners optimize data collection strategies by collection of Fourier data on
non-cartesian representations of the k-space. The non-harmonic Fourier data, f̂(ωk), for
piecewise-analytic f ∈ L2(R(−π, π)) are defined by

f̂(ωk) :=
1

2π

Z π

−π
f(x)e−iωkxdx, ωk /∈ Z. (12)

Consider an immediate extension of the convolution form of the generalized conjugate
partial Fourier sum (2)

S̃σN [f ](x) = (f ∗ C̃σN )(x) (13)

:= i
NX

k=−N

αkf̂(ωk)sgn(ωk)σ

„
|ωk|
N

«
eiωkx. (14)

The coefficients αk are weights for the non-uniform trapezoidal rule approximation of the
inverse Fourier integral. (convolutional gridding).

Example sampling

jittering ωk = k ± ζk, ζk ∼ U [0, θ], k = −N,−(N − 1), ..., N. (15)
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Example Distributions
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(a) Jittered sampling
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Figure: Non-harmonic sampling distributions (right half plane), N = 16
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Applying the Edge Detector with the non-harmonic concentration sum
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(a) Edges from jittered sampling using σ1 and σexp with α = 2.
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(b) Edges from log sampling using σ1 and σexp with α = 2.

Figure: Jump approximations: non-harmonic Fourier data using non-harmonic concentration sum, N = 64
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Extending the Sparsity Approach

Find a Sparse Approximation of the Jump Function

Assume g = (ĝ(ω−N ), ..., ĝ(ωN−1))T is the vector of non-harmonic measurements.

Assume y, approximates [f ] on equispaced grid xj = πj
N
− π, j = 0, . . . , 2N − 1.

Introduce the necessary matrices on the non-harmonic modes, Σ the diagonal matrix of
concentration factors, H the diagonal matrix of blur coefficients, F ∈ C2N×2N the
discrete non-harmonic Fourier matrix, and W a Toeplitz matrix whose rows contain
shifted replicates of the jump waveform Wσ

N (x)

Σ = i · diag
„

sgn(ω−N )σ

„
|ω−N |
N

«
, ..., 0, ..., sgn(|ωN−1|)σ

„
|ωN−1|
N

««
H = diag

“
ĥ(ω−N ), ..., ĥ(ωN−1)

”
,

Fkj = exp

»
i

„
−π +

πj

N

«
ωk

–
, k = −N, ...., N − 1, j = 0, ..., 2N − 1.

Compute the jump approximation by solving

y = arg min
u
{λ‖u‖1 +

1

2
‖HFWu− Σg‖22}. (16)
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Example for exact data: Detects the location but not the height
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(a) Jittered sampling, σ1, λ = .0017
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(b) Log sampling, σexp, α = 2, λ = .00091

Figure: Jump approximations from non-harmonic Fourier data using the variational formulation, N = 64
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Example for blurred and noisy non-harmonic Fourier data, N = 64
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(a) Fourier reconstruction of blurred noisy data
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(b) Jittered spectral data using σ1
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(c) Log spectral data using σexp, α = 2

Figure:

Gaussian blur variance
τ = .05.

Additive white
complex Gaussian
noise, variance .015.

Regularization
parameters .002 in (b)
and .0013 in (c).

Solution is more
sensitive to choice of
regularization
parameter λ than for
the harmonic case.

Determination of λ is
harder for the log than
jittered data.
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Conclusions

Use of the variational formulation which employs sparsity in the jump function
approximation yields a robust approach for both noisy and blurred signals.

The approach requires the matching waveform to improve robustness with respect to
choice of the regularization parameter.

Method is successful in the presence of missing Fourier data. (here sampled from the
middle of the spectrum).

The approach is a regularized deconvolution of the approximate jump function.

Higher order exponential concentration function outperforms low order polynomial
concentration functions.

Method can be extended for non-harmonic data, edges are detected but the heights are not
correct.

Algorithm has been extended for two dimensional examples, Stefan and Yin (2010).

Can be useful for accurate classification of edges in signals.

National Science Foundation: Division of Computational Mathematics 27 / 33



Problem Statement and Test Examples Background Concentration Method The Matching Waveform l1 minimization to detect edges in blurred signals Extension for Edge Detection from Non-harmonic Coefficients Conclusions

References

1 A. GELB AND E. TADMOR, Detection of Edges in Spectral Data, in Appl. Comp.
Harmonic Anal., 7 (1999), pp. 101–135.

2 A. GELB AND E. TADMOR, Detection of Edges in Spectral Data II Nonlinear
Enhancement, in SIAM J. Numer. Anal., Vol. 38, 4 (2000), pp. 1389–1408.

3 A. GELB AND E. TADMOR, Adaptive edge detectors for piecewise smooth data based on
the minmod limiter, in J. Sci. Comput., 28(2-3): (2006), pp. 279–306.

4 A. GELB AND D. CATES, Detection of Edges in Spectral Data III -refinement of the
concentration method, in J. Sci. Comput., 36, 1 (2008), pp. 1-43.

5 E. TADMOR AND J. ZOU, Novel edge detection methods for incomplete and noisy spectral
data, in J. Four. Analy. App. 14(5) (2008), pp 744-763.

6 W. STEFAN, A. VISWANATHAN, A. GELB, AND R. A. RENAUT, Sparsity enforcing edge
detection method for blurred and noisy Fourier data, (2010).

National Science Foundation: Division of Computational Mathematics 28 / 33



Problem Statement and Test Examples Background Concentration Method The Matching Waveform l1 minimization to detect edges in blurred signals Extension for Edge Detection from Non-harmonic Coefficients Conclusions

A Two Dimensional Example (Stefan and Yin)

(a) (b)

Figure: A modified Shepp logan phantom with gradients and a radial sampling pattern.
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Some Two Dimensional Results (Stefan and Yin)

(a) (b) (c)

Figure: Edge detection using (a) Canny edge detector (matlab) after reconstruction from the radial samples
using TV. (b) Wavelet edge detector on TV reconstruction. (c) A 5th order FD edge detector
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Comparing the performance of the waveform correlation N = 64, for σ1
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(b) WithoutW

Figure: No blur, no noise. Edge detection using the polynomial concentration factor with and without the
waveform weighting, varying amounts of Fourier data missing.

The two approaches are comparable when using the low order polynomial concentration factor.
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Comparing the performance of the waveform correlation N = 64, for σ3
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(b) WithoutW

Figure: No blur, no noise.. Edge detection using the polynomial concentration factor with and without the
waveform weighting, varying amounts of Fourier data missing.

The waveform is required when using a higher order polynomial concentration factor, which
introduces more oscillations that need to be suppressed by the waveform.

National Science Foundation: Division of Computational Mathematics 32 / 33



Problem Statement and Test Examples Background Concentration Method The Matching Waveform l1 minimization to detect edges in blurred signals Extension for Edge Detection from Non-harmonic Coefficients Conclusions

Comparing the performance of the waveform correlation N = 64, for σexp
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(b) WithoutW

Figure: No blur, no noise. Edge detection using the exponential concentration factor with and without the
waveform weighting, varying amounts of Fourier data missing.

Again, the waveform is required when using a higher order concentration factor, which
introduces more oscillations that need to be suppressed by the waveform.
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